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ABSTRACT Here, we report the draft genome sequences of seven Paenibacillus sp.
strains (EKM202P, EKM205P, EKM206P, EKM207P, EKM208P, EKM211P, and EKM212P)
that were previously isolated from cultivated surface-sterilized seeds of Cucumis melo
L. (cantaloupe). These candidate Paenibacillus plant probiotics displayed in vitro
growth-promoting traits and suppressive activity against root-associated fungal/oo-
mycete pathogens.

In recent decades, the genus Paenibacillus has been described (1), and many strains
are commercially exploited (2). Paenibacilli are recognized as plant symbionts, par-

ticularly root associated (2, 3); however, their sporulation capacity enables dormancy
within seeds (4). High-throughput 16S rRNA gene sequencing showed that the genus
Paenibacillus dominated cucurbit seeds, including melons (5), consistent with their
cultivated microbiota (6). Seven unique bacterial colonies were selected from surface-
sterilized seeds of Cucumis melo L. (cantaloupe), classified using the 16S primer pair
799F/1492R as Paenibacillus spp. (EKM202P, EKM205P, EKM206P, EKM207P, EKM208P,
EKM211P, and EKM212P), and then submitted to GenBank (accession numbers
KT281420.1, KT281430.1, KT281426.1, KT281421.1, KT281431.1, KT281427.1, and
KT281423.1, respectively) (6). These microbes were assessed in vitro for their biostimu-
lant/biocontrol potential. All strains demonstrated exoenzymatic activity (cellulase,
pectinase, and protease [6] and RNase [7]) and acetoin/diacetyl (volatile) production
and suppressed the plant pathogens Fusarium graminearum, Rhizoctonia solani, and
Phytophthora capsici in vitro (7) (EKM212P was negative for pectinase [6] and RNase [7]
activities). Exclusively, EKM202P and EKM212P suppressed Pythium aphanidermatum
(7), while EKM202P and EKM205P grew on a nitrogen-free medium (LGI medium) (6).

With the use of �80°C glycerol stocks, the strains were cultured on LB agar. Single
colonies were inoculated into lysogeny broth and incubated overnight at 37°C at
250 rpm. Genomic DNA was isolated from pellets using DNeasy UltraClean microbial
kits (product number 12224-50; Qiagen) and then adjusted to 50 ng/�l. Libraries were
constructed using TruSeq DNA Nano library preparation kits (KAPA HyperPrep kit
KK8504) and then sequenced using the Illumina NovaSeq 6000 platform, which deliv-
ered 2,850,454 (EKM202P), 2,568,261 (EKM205P), 2,970,533 (EKM206P), 1,587,495
(EKM207P), 3,274,658 (EKM208P), 2,260,644 (EKM211P), and 2,754,662 (EKM212P) raw
reads of the 150-bp paired-end format. De novo assembly of clean reads (quality score
threshold, 30) was completed using the Evogene Clustering/Assembly Toolbox (Evo-
CAT) pipeline, and then the assembled contigs were taxonomically identified using
KmerFinder v3.2 (8) leading to 115, 100, 118, 65, 136, 96, and 116-fold sequence
coverage compared to that of Paenibacillus sp. strain M-152 (GenBank accession
number NZ_CP034141.1) (EKM202P and EKM207P), Paenibacillus polymyxa strain
YC0573 (NZ_CP017968.3) (9) (EKM205P and EKM206P), Paenibacillus polymyxa strain J
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(NZ_CP015423.1) (EKM208P and EKM212P), and Paenibacillus polymyxa strain HY96-2
(NZ_CP025957.1) (10) (EKM211P), respectively. Predicted proteins were defined using
Prodigal (11) and matched against the NCBI nonredundant protein database using
BLASTp (12), and then peptide domains were identified using InterProScan v5.32-71.0
(13). Assembly statistics and accession numbers are presented in Table 1.

All of the Paenibacillus genomes encode candidate proteins implicated in the
aforementioned in vitro activities and additional traits, including tryptophan synthase
(auxin production), carbon-nitrogen hydrolase, nitrogen regulatory protein PII, nitrogen
assimilation/fixation (nif), phytase, alkaline phosphatase, and trehalose-6-phosphate
hydrolase (2, 14, 15), cytokinin riboside 5’-monophosphate phosphoribohydrolase LOG
(16, 17), and 1-aminocyclopropane-1-carboxylate synthase (growth/stress regulation)
(18). Biocontrol/immunomodulation genes were identified for hydrolytic exoenzymes
(chitinases, �-glucanases, lipases, proteases, pectin/pectate lyases, and ribonucleases)
(2, 16, 19, 20), butanediol dehydrogenase-like enzymes (acetoin production) (1), iron
siderophore-like compounds (aerobactin siderophore biosynthesis and IucA/IucC [ex-
clusively EKM208P and EKM212P]) (2, 21), bacteriocins (thiopeptide type) (22),
polyketide synthase and nonribosomal peptide synthase (lipopeptide synthesis) (15,
23), phenazine biosynthesis PhzF protein (except EKM211P) (24), alkyl hydroperoxide
reductase (antioxidative enzyme) (25), and biomolecules for biofilm formation and
quorum sensing (10, 14, 26, 27). This fundamental analysis may support future exper-
iments to formulate new agricultural bioproducts.

Data availability. The whole-genome shotgun project and raw Illumina reads were
deposited in DDBJ/EMBL/GenBank and the SRA, respectively, under the accession
numbers provided in Table 1.
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