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Myeloproliferative neoplasms (MPN) are chronic cancers of the hematopoietic stem cells
in the bone marrow, and patients often harbor elevated numbers of circulating platelets
(PLT). We investigated the frequencies of circulating PLT-lymphocyte aggregates in MPN
patients and the effect of PLT-binding on CD8 T cell function. The phenotype of these
aggregates was evaluated in 50 MPN patients and 24 controls, using flow cytometry. In
vitro studies compared the proliferation, cytokine release, and cytoxicity of PLT-bound
and PLT-free CD8 T cells. Frequencies of PLT-CD8 T cell aggregates, were significantly
elevated in MPN patients. Advanced disease stage and CALR mutation associated with
the highest aggregate frequencies with a predominance of PLT-binding to antigen-
experienced CD8 T cells. PLT-bound CD8 T cells showed reduction in proliferation and
cytotoxic capacity. Our data suggest that CD8 T cell responses are jeopardized in MPN
patients. JAK2 and CALR exon 9 mutations – the two predominant driver mutations in
MPN – are targets for natural T cell responses in MPN patients. Moreover, MPN patients
have more infections compared to background. Thus, PLT binding to antigen experienced
CD8 T cells could play a role in the inadequacy of the immune system to control MPN
disease progression and prevent recurrent infections.
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INTRODUCTION

The Philadelphia chromosome-negative myeloproliferative
neoplasms (MPN) comprise a heterogeneous group of diseases
characterized by the clonal expansion of transformed
hematopoietic stem cells (1, 2). In the early stages of MPN –
essential thrombocythemia (ET) and polycythemia vera (PV) –
platelet counts are variably elevated. The advanced MPN stage,
primary myelofibrosis (PMF), is characterized by progressive
bone marrow fibrosis and development of cytopenia (1). The
overproduction of peripheral blood cells occurs primarily due to
mutations in the janus kinase 2 (JAK2), calreticulin (CALR), or
myeloproliferative leukemia (MPL) genes, leading to the
constitutive activation of the JAK-STAT pathway [reviewed by
Vainchenker et al. (2)]. However, up to 15% of patients do not
harbor any driver mutation – known as triple-negative MPN (3).

JAK2 and CALR mutations generate cancer-specific
neoantigens that are recognized by effector T cells (4, 5).
Previous studies generated JAK2V617F-specific CD8 T cell
cultures from a healthy donor, which recognized and selectively
killed JAK2-mutated cancer cells (4). In CALR-mutant MPN
patients, we observed spontaneous and frequent immune
responses against epitopes derived from the mutant CALR
terminus, mediated by CD4+ T cells (5). Despite recognizing
and killing autologous CALR-mutant cells (6), T cells derived
from PMF patients elicited significantly reduced responses
compared to ET-derived T cells (5). Remarkably, stronger and
more frequent responses against CALR neoepitope were observed
in healthy individuals (7) as well as in asymptomatic individuals
harboring a low CALR-mutant allelic burden (8). These results
support the hypothesis that CALR-mutant MPN evolves due to
loss of immune-mediated tumor control.

Mounting evidence points towards a severe immune
dysregulation in patients with MPN (8, 9), with both early- and
advanced-stage patients exhibiting increased levels of several
inflammatory cytokines (10–12) and a dysregulation in the
frequency of circulating immune cells (13–16). Data on
interferon-alpha (IFNa) efficacy in MPN patients further
supports the theory of immune suppression: IFNa is an
immunostimulatory drug capable of inducing long-lasting
hematological and molecular remission in these patients (17,
18). As IFNa treatment results in marked alterations in the
immune phenotype of patients (15, 19, 20) it is speculated that
one of its mechanisms of action is the ability to induce an immune
response against the malignant cells. Taken together, these data
suggest that deregulation of the immune system is an important
pathogenic factor for the development and evolvement of MPN.

PLT have been extensively described as crucial players in
cancer development, progression, and metastasis (21, 22).
Activated PLT (act-PLT) can release a wide range of molecules
that promote tumor cell proliferation and maintenance of tumor
integrity. Recently, Rachidi et al. have shown that transforming
growth factor-beta (TGFb) and lactate, released from PLT, can
inhibit T cell function and promote resistance to adoptive T cell
therapy in murine models (23). Increased circulating PLT-T cell
aggregates were reported in lung cancer patients compared to
healthy controls (24). Moreover, in vitro studies showed that
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these PLT-bound T cell aggregates exhibited a reduced
prol i ferat ive capacity and released lower levels of
proinflammatory cytokines than PLT-free T cells (25–27).
Interestingly, expression of CD62P, a marker for platelet
activation, is increased in MPN patients (28). PLT-monocyte
and PLT-neutrophil aggregates have been previously studied in
MPN (28, 29), but, to our knowledge, the presence of PLT-T cell
aggregates in MPN patients has not been investigated.

As PLT levels are generally elevated in patients with MPN,
and all three driver mutations affect the megakaryocytes, it has
been speculated that PLT could interact with immune and tumor
cells, thus facilitating tumor immune escape in MPN (30). In the
present study, we evaluated the frequency of circulating PLT-
lymphocyte aggregates in MPN and found that these patients
display markedly higher PLT-T cell aggregates than healthy
controls. Furthermore, our in vitro studies suggest that the
binding of PLT decrease T cell functionality. Hence, we
hypothesize that dampened T cell responses potentially
jeopardize reactivity to transformed cells as well as preventive
responses to infections.
MATERIALS AND METHODS

Patient Population
Fifty patients diagnosed with MPN [according to the 2016 WHO
classification (31)] were included in this study. Four
asymptomatic individuals harboring a low CALR-mutant allelic
burden with clonal hematopoiesis of indeterminate potential
(CALR-mutant CHIP), from the GESUS cohort (32), were also
included. The detailed baseline clinical parameters from the
patient population are summarized in Table 1. For comparison
purposes, 24 age-matched healthy controls (HC) with a median
age of 57 years were included. The study was approved by the
local ethics committee at Zealand Region (SJ-175, SJ-452, SJ-456
and SJ-585) and conducted according to the provisions of the
Declaration of Helsinki. Written informed consent was obtained
from all patients and healthy volunteers prior to the beginning of
the study.

Isolation of Mononuclear Cells
From Peripheral Blood and
Bone Marrow Samples
Peripheral blood was collected from MPN patients, age-matched
HC and young healthy volunteers. The last group was used for
the in vitro studies. Bone marrow aspirates were collected from
seven JAK2-mutated MPN patients (ET = 1; PV = 5; PMF = 1).

Peripheral blood mononuclear cells (PBMC) and bone
marrow mononuclear cells (BMNC) were isolated from venous
blood and bone marrow aspirate, respectively, by density
gradient as described elsewhere (33). The cells were then used
immediately or cryopreserved.

Phenotyping PLT-Bound Immune Cells
Frequencies of PLT-binding to lymphocytes, as well as the
activation status of bound PLT were detected using flow
cytometry, an established technique to detect these aggregates
May 2022 | Volume 13 | Article 866610
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(25–27). Platelet-bound T cells were evaluated in fresh and
cryopreserved PMBC from MPN patients, and age-matched
HC (Panel I, Supplemental Table 1). A similar setup was used
to compare PLT-binding in isolated PBMC and BMNC from
MPN (Panel II, Supplemental Table 1).

Ex vivo PLT-binding to antigen-specific T cells in MPN and
HC was evaluated in 10 x 106 PBMC stained with CMV- and
FLU-loaded MHC-multimers and analyzed by flow cytometry
(Panel III, Supplemental Table 1). See the Supplemental
Material for the detailed methodology.

Isolation of Platelets
Blood was collected from young healthy volunteers who had not
taken any drugs known to affect PLT function, for at least 14 days
prior to the study. Venous peripheral blood was collected into
acid citrate dextrose solution A tubes (Greiner Bio-One) and the
PLT isolation procedure was adapted from Radomski et al. (34).
Detailed methodology is available in the Supplemental Material.
Frontiers in Immunology | www.frontiersin.org 3
PLT-Binding to Stimulated CD8 T Cells
CD8 T cells from young healthy volunteers were stimulated with
different concentrations of an anti-OKT-3 antibody or CMV-
peptide. For OKT-3 stimulation, CD8 T cells were first isolated
from PBMC using the MagniSort™ Human CD8 T cell
Enrichment Kit (Thermofisher) following the manufacturer
instructions. The cells were rested overnight, at 37°C and 5%
CO2, and stimulated for three days with high (500 ng/ml),
intermediate (20 ng/ml) or low (0.5 ng/ml) concentrations of
plate-coated anti-CD3 (clone: OKT-3, Thermofisher), at a cell
density of 1 x 106 cells/ml. For CMV-peptide activation 4 - 5 x
106 PBMC/ml from HLA-A2 positive healthy volunteers were
stimulated with 20 nM CMV peptide and 120 U/ml IL-2 for
seven days, followed by an additional overnight restimulation.
After the activation period, the stimulated cells were co-cultured
with allogenic PLT and PLT-binding was analyzed by flow
cytometry (OKT-3: Panel IV; CMV-MHC-multimer staining:
Panel V; Supplemental Table 1).

Lymphocyte and PLT Co-Culture
OKT-3 stimulated CD8 T cells, CMV-stimulated PBMC and
gp100-transduced (gp100+) T cells (see transduction protocol in
the Supplemental Material) were co-cultured with allogenic
PLT for one hour, at a PLT to lymphocyte ratio of 100: 1. The
co-cultures were washed twice to remove any unbound PLT,
before proceeding. To compare the sole effect of platelet-derived
molecules on T cell functionality, gp100+ T cells were also co-
cultured with PLT supernatant (sPLT), for one hour before
removal by centrifugation.

MHC-Multimer Staining
PLT-binding to antigen-specific T cells was evaluated by
tetramer staining, in MPN patients and after PLT-lymphocyte
co-culture. Empty loadable-MHC multimers (HLA-A*02:01;
The Tetramer Shop) were loaded with HIV, CMV or FLU
peptides, as described by Sanai et al. (35). See the supplemental
material for the detailed protocol.

In Vitro Characterization of PLT-Bound
T Cell Function
PBMC from MPN patients were stimulated with OKT-3 for five
hours or five days, to compare, respectively, the cytokine release
and proliferation of PLT-bound and PLT-free T cells. Cytokine
release and proliferation were evaluated using intracellular
staining and CellTrace® violet (CTV) (Thermofisher),
respectively. Furthermore, gp100+ T cells were co-cultured
with a melanoma cancer cell line (FM3) in the presence or
absence of PLT, and real-time tumor cytotoxic capacity of T cells
was evaluated with the xCELLigence system (Agilent, USA).
Detailed methodology is available in the Supplemental Material.

Statistical Analysis
Statistical analyses were performed using unpaired or paired T
tests for comparisons of two groups, and unpaired non-
parametric Kruskal-Wallis test for comparison of more than
two groups. Single and multiple linear regression were used in
TABLE 1 | Baseline Characteristics of the MPN study population.

Characteristics MPN Patients (n = SO)

Median Age [range]
at Diagnosis 58 [33-79]
at Sample 67 [42-81]

Median Time from Diagnosis [range] 7[0-24]
Gender, n (%)
Female/male 30 (60%) / 20 (40%)

Median PLTCount (PLTx 109/L) [range] 325 [105-809]
Driver Mutation, n (%)
CALR 29 (58%)
JAK2 16 (32%)
MPL 2 (4%)
Triple Negative 3 (6%)

Diagnosis, n (%)
Healthy CALR mutation 4 (8%)
ET 11 (22%)
PV 11 (22%)
PreMF 7 (14%)
PMF 17 (34%)

ATI, n (%)
None 9 (18%)
Aspirin 34 (68%)
Clopidogrel 3 (6%)
Apixabane 1 (2%)
Aspirin + Clopidogrel 2 (4%)
Aspirin + Dipyridamole 1 (2%)

CRT, n (%)
None 11 (22%)
HU 11 (22%)
IFN-a 16 (32%)
ANA 6 (12%)
ANA+ HU 3 (6%)
Momelotinib 1 (2%)
Phlebotomy 2 (4%)

Hematological Response, n (%)
CR/Non-CR 31 (62%) / 15 (30%)

Status, n (%)
Alive/Deceased 44 (88%) / 6 (12%)
PV, Polycythemia Vera; ET, Essesntial Thrombocythemia; PMF, Primary Myelofibrosis;
ATI, Anti-thrombotic Therapy; CRT, Cell Reduction Therapy; IFN, Interferon; HU,
Hydroxyurea; ANA, Anagrelide.
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the correlation studies, after applying a logarithmic
transformation to the frequencies of PLT-bound lymphocytes.
R2 and p values were calculated for each linear regression. All
statistical tests were performed with a two-sided 95% confidence
interval, at the 0.05 significant level, and the analyses were
conducted using GraphPad software (version 8).
RESULTS

MPN Patients Have Increased
Frequencies of PLT-Bound CD8 T Cells
Compared to HC
This study investigated the presence and frequencies of PLT-
bound lymphocytes in MPN patients. The percentage of
circulating PLT-bound lymphocytes in patients (N=50) and
age-matched HC (N=24) was evaluated using flow cytometry.
Since MPN patients display increased PLT activation, and act-
PLT are thought to bind more avidly than resting PLT (36), we
will focus on the act-PLT binding results.

Figure 1A shows a representative plot comparing the
frequency of act-PLT-CD8 T cells aggregates in MPN and HC
(gating strategy in Supplemental Figure 1). Significantly higher
frequencies of act-PLT-bound T cells, NK cells, and CD3+/
CD56+ cells were observed in the patients compared to the HC
(Figure 1B). Furthermore, MPN presented with significantly
higher percentages of act-PLT bound CD8, CD4, and DN T cells
than the control group (Figure 1C). Similar results were
obtained for the frequencies of total-PLT (tPLT)-bound
lymphocytes (Supplemental Figure 2). The results described
above were obtained from cryopreserved samples. Therefore, the
frequency of PLT-bound immune cells was also analyzed in
freshly isolated and cryopreserved PBMC from MPN patients
(Supplemental Figure 3). This comparison showed no
significant differences between the samples. Comparison of the
parent immune populations revealed no biologically relevant
differences in the frequencies of live cells (mean(MPN) = 99.9% vs
mean(HC) = 99.4%; Supplemental Figure 4A). The frequency of
NKcells showedadecreasing trend (mean(MPN)=8%vsmean(HC)=
14%; p = 0.095) inMPN patients, but no differences were observed
in the frequencies of T cells, B cells, CD3+/CD56+ cells, or T cell
subsets (Supplemental Figure 4B).

Analysis based on MPN diagnosis revealed that act-PLT-
immune cell aggregates were elevated in advanced-stage patients
(i.e., PreMF and PMF) compared to HC (Figure 1D),
particularly the PreMF patients. Although no statistics were
performed due to the small sample size. the four CALR-
mutated CHIP individuals had frequencies of act-PLT -CD8 T
cells and -CD3+/CD56+ cells comparable to patients. The
frequencies of act-PLT- (Supplemental Figure 5A) and tPLT-
(Supplemental Figure 5B) bound lymphocytes were also
compared across the different mutations: CALR-mutated
patients exhibited increased frequencies of PLT-bound
lymphocytes compared to HC and JAK2-mutated patients,
although significance was not reached for the CALR-JAK2
comparison. The two MPL-mutated patients presented with
Frontiers in Immunology | www.frontiersin.org 4
high levels in all PLT-bound populations, compared to other
patient groups and HC. Lastly, triple-negative-MPN patients
(n=3) exhibited frequencies PLT binding comparable to the
HC population. However, a larger study population would be
necessary to verify the results in MPL and triple-negative-MPN
patients. Stratification according to cytoreductive therapy (CRT)
revealed that patients receiving therapy other than IFNa (Not
IFNa, n = 22) presented with the highest levels of act-PLT-
lymphocyte aggregates (Supplemental Figure 5C).

Overall, these results point towards elevated frequencies of
tPLT and act-PLT -bound lymphocytes, especially PLT -CD8 T
cell, -CD3/CD56 cell and -NK cell aggregates, in MPN compared
to the controls. Furthermore, CALR-mutated patients, patients
receiving CRT other than IFNa, and patients with advanced
disease tend to have the highest frequencies of these aggregates.

PLT Count Correlates With the
Frequencies of Circulating PLT-CD8 T
Cell Aggregates in JAK2 but Not
CALR -Mutated MPN
To further explore potential clinical factors affecting PLT-
binding in MPN patients, we investigated the association
between these factors and the frequencies of act-PLT bound
cells. To reduce the high variability seen for small subgroups,
only CALR- or JAK2- mutated MPN were included.

PLT count accounted for 19% of the variability in the
frequency of act-PLT bound NK cells (R2 = 0.19; p = 0.004),
while also correlating with act-PLT binding to T cells (R2 = 0.15;
p = 0.012), CD8 T cells (R2 = 0.14; p = 0.013), CD4 T cells (R2 =
0.16; p = 0.009) and DN T cells (R2 = 0.14; p = 0.013) (Figure 2A).
The driver mutation strongly correlated with a higher act-PLT
binding to CD3+/CD56+ (R2 = 0.24; p=0.001) and CD8 T cells
(R2 = 0.19; p = 0.004), with JAK2-mutated patients displaying
lower frequencies of aggregates compared to CALR-mutant MPN
(regression models in Supplemental Table 2). Finally,
antithrombotic therapy (ATT), CRT and diagnosis showed some
degree of correlation with act-PLT-binding to lymphocytes.
However, the small sample sizes within each group prevents
strong conclusions.

Multivariate linear regression analyses showed that PLT
count and mutation type account for over 30% of the
variability seen in the frequency of act-PLT-bound CD8 T cells
(R2 = 0.30; p = 0.001). Interestingly, PLT count did not correlate
with the frequency of act-PLT-CD8 T cell aggregates in patients
with CALR mutation (R2 = 0.07; p = 0.209) but had a strong
association in JAK2-mutated MPN (R2 = 0.37; p = 0.013)
(Figure 2B). Separating patients by mutation and CRT showed
that patients receiving IFNa revealed higher act-PLT-bound
CD8 T cells in CALR- than JAK2- mutated patients (23% vs.
6%; p = 0.029) (Figure 2C). These results should be interpreted
with caution due to the limited sample sizes in the IFNa-
receiving CALR-mutated group (n = 4). Lastly, MPN patients
with and without a complete hematological response showed
similar levels of act-PLT immune cell aggregates (Figure 2D).

The regression analysis was also performed for the frequencies
of tPLT-bound lymphocytes, which yielded similar results
May 2022 | Volume 13 | Article 866610
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(Supplemental Figures 6A–B ; Regression models in
Supplemental Table 2). Interestingly, the mutant allele burden
showed a significant association with tPLT-binding to CD8 T for
JAK2- (R2 = 0.28; p = 0.033) but not CALR- (R2 = 0.02; p = 0.540)
mutated patients (Supplemental Figure 6C). Although, this
correlation did not stem from an association between the two
characteristics (R2 = 0.03; p = 0.265; Supplemental Figure 5D), the
allele burden was significantly higher inCALR- compared to JAK2-
mutated MPN (36% vs 10%; p = 0.016; Supplemental Figure 6E).

Taken together, our results show that JAK2 mutation
strengthens the correlation between PLT count and the
Frontiers in Immunology | www.frontiersin.org 5
frequency of PLT-CD8 T cell aggregates. Additionally, JAK2
mutations also increases the correlation between the mutant
allele burden and tPLT-binding to CD8 T cells.

Comparable Frequencies of PLT-Immune
Cell Aggregates in the Peripheral Blood
and Bone Marrow of MPN
Since the transformed cells in MPN reside in the bonemarrow and
PLT-bound T cells in the bonemarrowmay affect the local tumor-
specific immune response, we analyzed the frequencies of PLT-
lymphocyte aggregates in freshly isolated PBMC and BMNC from
A

B

D

C

FIGURE 1 | MPN patients have increased frequencies of circulating act-PLT bound cells compared to HC. Cryopreserved PBMCs from 50 patients with chronic
myeloproliferative neoplasms (MPN) and 24 age-matched healthy controls (HC) were analyzed using flow cytometry (Panel I, Supplemental Table 1). Activated-
Platelet (act-PLT) binding populations were identified by their concurrent expression of PLT markers (CD41a+/CD62P+) and immune specific markers, i.e., CD3+/
CD56- (T cells), CD3-/CD19+ (B cells), CD3-/CD56+ (NK cells), CD3+/CD56+ (CD3+/CD56+ cells) CD3+/CD8+ (CD8 T cells), CD3+/CD4+ (CD4 T cells) and CD3+/
CD8-/CD4- (DN T cells). (A) Representative plots, comparing the frequency of act-PLT bound CD8 T cells in MPN and HC. CD41a and CD62P fluorescence minus one
(FMO) were used as control. (See Supplemental Figure 1 for detailed gating strategy). Frequencies of act-PLT binding to (B) the main lymphocytic populations and (C) the
T cell subsets were compared in HC (•) and MPN patients (♦). (D) These frequencies were also compared across the different diagnoses within the patient population –

essential thrombocythemia (ET; n = 11), Polycythemia Vera (PV; n = 11), Pre-myelofibrosis (PreMF; n = 7), and primary myelofibrosis (PMF; n = 17) - and including HC and
asymptomatic individuals carrying a low CALR-mutant allelic burden (CALR-mutated CHIP; n = 4). All frequencies are shown as percentage of parent population. The
horizontal lines and error whiskers represent the mean ± standard deviation of the mean, whereas boxplots follow the Tukey method. Unpaired T test was used to compare
MPN patient and HC, whereas Kruskal-wallis test was used to compare the different mutation groups with n ≥ 6. Differences were considered significant when p < 0.05, as
indicated with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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MPN patients. No significant differences in the frequencies of act-
PLT-bound (Figure 3A) or tPLT-bound (Figure 3B) lymphocytes
were observed between the two populations. Nevertheless, some
patients displayed twice the frequencies of act-PLT-bound BMNC
compared to act-PLT-bound PBMC. No differences were
registered in the parent immune populations between the
groups (data not shown). Therefore, our results suggest that
peripheral blood and bone marrow of MPN patients display
similar frequencies of PLT-immune cell aggregates.
Frontiers in Immunology | www.frontiersin.org 6
PLT Bind Preferentially to Antigen-
Experienced CD8 T Cells
To probe into the phenotype of PLT-bound T cells, PBMC from
healthy volunteers were stimulated with different concentrations
of OKT-3, co-cultured with allogenic PLT and analyzed by flow
cytometry (N = 6, Figure 4). Figure 4A shows the mean
distribution of the differentiation stages within the PLT-free
and PLT-bound CD8 T cells, after low OKT-3 stimulation.
PLT-bound CD8 T cells had a significantly higher frequency of
A

B C

D

FIGURE 2 | PLT Count correlates with act-PLT-binding to CD8 T cells in JAK2- but not CALR-mutated MPN patients. 41 MPN patients harboring either CALR or JAK2
mutations were used for regression analysis. (A) The correlation between clinical characteristic (column factors) and the frequencies of activated-PLT (act-PLT) bound cells
was analyzed, using single linear regressions. The goodness of fit (R2 value) for each linear regression model is shown as a heatmap (0 < R2 <0.3). The models were
considered relevant when R2 > 0.10 and p-value < 0.05; (B) The correlation between PLT count and the frequency of act-PLT bound CD8 T cells was analyzed
independently for CALR- and JAK2- mutated patients. Dotted lines represent the 95% confidence bands of the best-fit line. The frequencies of act-PLT-bound CD8 T
cells were assessed after stratifying the patient population by (C) mutation (CALR: n = 25; JAK2: n = 16) and cytoreductive therapy (CRT) therapy. Patients either did not
receive any CRT therapy (None, empty bars, n = 6), received IFNa therapy (IFNa, light-grey bars, n = 15), or received CRT other than IFNa (Not IFN a, dark-grey bars,
n = 20). (D) Patients were stratified by hematological response – non-complete response (Non-CR; blue bars; n = 12) and complete response (CR; empty bars; n = 29).
The frequencies of act-PLT bound T cells, CD8 T cells, CD4 T cells and DN T cells were compared within the stratified MPN population. All frequencies are shown as
percentage of parent population, and boxplots follow the Tukey method. Kruskal-wallis test or multiple unpaired T test were used to compare the populations with n ≥ 6.
Differences between groups were considered significant when p < 0.05. Asterisks represent *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. # means the p value
ranges from 0.05 < p < 0.1. PLT, Platelets; MPN, Chronic Myeloproliferative Neoplasms; AAT, Anti-thrombotic Therapy.
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memory cells (CD45RO+) than PLT-free CD8 T cells (26% vs
40%, p = 0.036) (Figure 4B), while PLT-free CD8 T cells
harbored primarily a naïve (CCR7+/CD45RO-) phenotype
(58% vs 44%, p = 0.042). Similar trends were observed in
higher dose OKT-3, as well as in unstimulated cells (data not
shown). No differences were observed in the frequencies of
activated CD8 T cells (CD137+) within the PLT-free or PLT-
bound populations (Figure 4C).

Next, we examined the PLT capacity to bind antigen-
experienced CD8 T cells. PBMC from healthy volunteers were
stimulated in vitro with a CMV peptide, co-cultured with PLT and
analyzed by flow cytometry (N=6) (gating strategy in Supplemental
Figure 7). We compared the frequencies of PLT-bound naïve, non-
naïve cells not expressingMHC-tetramer (non-naïve tetramer-) and
CMV-specific (tetramer+) CD8 T cells (Figure 4D). PLT-binding
was highest in CMV-specific CD8 T cells (mean = 63%) compared
to the non-naïve tetramer- (mean = 42%; p = 0.026) and naïve
(mean = 14%; p = 0.002) groups. Additionally, differences were
observed between the naïve and the non-naïve tetramer-

populations (p = 0.0001), and a significant increase was found in
PLT-binding to activated CD8 T cells compared to non-activated
cells (mean of differences = 30%; p = 0.009; Figure 4E).

Lastly, circulating PLT-bound CMV- and influenza- specific
CD8 T cells were evaluated in ex vivo unstimulated cells from
MPN patients and age-matched HC (Figure 4F). The frequency
of PLT-bound virus-specific CD8 T cells (tetramer+) was
significantly increased compared to tetramer- CD8 T cells, in
MPN (mean of differences = 13%; p = 0.0096) and HC (mean of
differences = 14%; p < 0.0001) groups. PLT-binding to virus-
Frontiers in Immunology | www.frontiersin.org 7
specific CD8 T cells was also significantly increased in MPN
patients compared to the HC group (MPN = 52% vs. HC = 25%;
p = 0.0018).

Taken together, these results show that PLT have a clear
preference to bind antigen-experienced CD8 T cells.
Importantly, similar analyses in MPN patients show this
feature too.

PLT-Binding Impacts the Proliferation and
Killing Capacity of CD8 T Cells in MPN
To investigate the impact of PLT-binding on CD8 T cell function,
proliferation and cytokine release were evaluated in PBMC from
MPN patients, after stimulation with OKT-3. Figure 5A shows a
representative plot of PLT-bound and PLT-free CD8 T cell
proliferation, after a 5-day OKT-3 stimulation. CD8 T cell
proliferation is significantly reduced in PLT-bound compared to
PLT-free cells in MPN patients (N=6, Figure 5B), with PLT-
bound cells undergoing less divisions than PLT-free CD8 T cells.
Conversely, after five-hour OKT-3 stimulation, the expression of
IFNg, TNFa and CD107a was increased in PLT-bound CD8 cells
compared to the PLT-free population (Figure 5C).

In a pilot study, we co-cultured gp100+-transduced T cells
with PLT, before assessing the cytokine release and cytotoxicity
of these aggregates against the gp100-expressing melanoma cell
line FM3. Over an 80-hour period, CD8 T cells showed a
reduction in cytolysis in the condition containing PLT
compared to T cells alone (Figure 6A). Since this system
cannot distinguish between PLT-bound and PLT-free within
the same culture, a condition containing gp100+ T cells with PLT
A

B

FIGURE 3 | BMNC and PBMC show comparable frequencies of PLT-bound cells in MPN patients. PBMC (black dots and empty bars) and BMNC (grey dots and
grey filled bars) were isolated from seven JAK2-mutated MPN patients (ET = 1; PV = 5; PMF = 1). (A) activated-PLT (act-PLT) bound lymphocytes and (B) total
(tPLT)- bound lymphocytes were evaluated using flow cytometry (Panel II, Supplemental Table 1). The graph shows the frequencies of act-PLT-bound cells for
different lymphocytic populations and all frequencies are shown as percentage of parent population. The bars represent the median frequency for each population.
Multiple unpaired T tests were used to compared PLT bound cells in PBMC and BMNC samples, and differences were considered significant when p < 0.05.
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supernatant (sPLT) was added, which showed the highest
cytolysis levels. Killing time 40 (KT40) and KT50 provided
information on the number of hours necessary for effector cells
to kill 40-50% of FM3. While KT50 for gp100+ T cells alone was
50.3 hours, the conditions containing PLT and sPLT registered
63.5 and 74.7 hours, respectively (Figure 6B). The cytokine
release analysis after a 5-day co-culture with PLT and FM3
showed that PLT-bound CD8 T cells decreased the expression of
IFN-g and CD107a and increased Granzyme B, compared to
PLT-free cells (Figure 6C).

These in vitro results point towards a decrease in the
proliferation, cytokine release and cytotoxic capacity of CD8 T
cells when exposed to prolonged/chronic PLT-binding.
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION

Our results show that PLT count is themost relevant factor associated
with PLT-binding. Additionally, we show an association between
driver mutation and PLT-binding, with JAK2-mutants displaying
lower levels of PLT-CD8 T cell aggregates than CALR-mutants.
Interestingly, in JAK2-mutated MPN, the PLT count is highly
correlated to the PLT binding, whereas no association is seen in
CALR-mutants. These data are quite surprising, as both mutations
confer aberrant activation of the thrombopoietin receptor leading to
exacerbated JAK-STAT signaling (2). Hence, we expected that PLT
binding would be independent of the driver mutation. As both the
JAK2- and CALR- mutations have been identified in the lymphoid
A B

D E F

C

FIGURE 4 | PLTs bind preferentially to antigen-specific CD8 T cells, in vitro and ex vivo. Isolated CD8 T cells from healthy donors were stimulated with OKT-3 (20 or
0.5 ng/ml) for three days. Afterwards, CD8 T cells were co-cultured with PLT for one hour (1:100 ratio), and PLT-binding was assessed by flow cytometry (Panel IV,
Supplemental Table 1). (A) The frequency of Naïve (CCR7+/CD45RO-), Memory (CD45RO+) and terminally differentiated effector (TEMRA; CCR7-/CD45RO-) CD8 T
cells is shown as the mean value of all donors (N = 6) in a pie chart. The percentages of (B) naïve, memory and TEMRA as well as (C) CD137+ cells are shown for
each individual donor for PLT-bound (empty bars) and PLT-free (grey bars) CD8 T cells. Unpaired T test was used to compare the PLT-free and PLT-bound populations.
Next, PBMC from healthy donors were stimulated twice with a CMV peptide. PBMCwere co-cultured with PLT as described above and PLT-binding to CMV-specific CD8 T
cells was evaluated using flow cytometry (Panel IV, Supplemental Table 1). Frequencies of PLT-binding to (D) Naïve (empty bar), Non-Naïve tetramer- (Non-Naïve Tet-;
CMV-MHC-tetramer- and exclusion of CCR7+/CD45RO-; light grey bar) and Tetramer+ (Tet+; dark gray bar), and (E) non-activated (CD137-; empty bar) and activated
(CD137+; grey bar) CD8 T cells were compared using paired non-parametric ANOVA analysis or T test, respectively (n = 6). (F) PBMC from age-matched healthy controls
(HC; N = 8) and MPN patients (N = 10) were stained for Flu and CMVMHC-I tetramer, and the circulating frequencies of PLT-bound to MHC-tetramer negative (Tet-; •) and
virus-specific (Tet+; ▪) CD8 T cells were analyzed by flow cytometry (Panel V). Paired T tests were used to compare unspecific and virus-specific frequencies, whereas
unpaired T test was used to compare the virus-specific populations in HC and MPN patients. All frequencies are shown as percentage of parent population and the boxplots
represent the median ± interquartile range of the populations, while the whiskers extend to the maximum and minimum values. Differences were considered significant when
p<0.05, as indicated with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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compartment (37, 38), the differences in PLT binding cannot be
explained by different occurrences of driver mutations in the
lymphoid cells. Instead, these data could indicate that even though
the CALR-mutations activate the JAK-STAT pathway, it may also
facilitate aberrant activation of other pathways, which are not
triggered by the JAK2V617F-mutation. An increased mutant allele
burden correlates with PLT-binding in JAK2 but not CALRmutated
patients, indicating that the PLT-T-cell binding mechanisms
facilitated by the two mutations may be different. Lastly, we find it
noteworthy that the triple-negative group shows low levels of PLT-
binding, whereas MPN with MPL mutations – another
thrombopoietin receptor mutation - exhibited high binding levels.
These data further support our hypothesis that the increased PLT-T-
cell interaction depends on aberrant activation of JAK-STAT
signaling, as well as other pathways specific to the thrombopoietin
receptor. Nevertheless, the small sample size in the triple-negative and
the MPL-mutated populations prevents stronger conclusions.

Most MPN patients receive ATT and/or CRT drugs to reduce
the peripheral blood counts and decrease the risk of thrombosis.
Thus, we speculated that CRT could be correlated to decreased
Frontiers in Immunology | www.frontiersin.org 9
PLT-binding. However, this was only observed in patients with
JAK2-mutated MPN for whom treatment with IFNa decreased the
PLT-binding to CD8 T cells. This interesting finding supports the
theory that IFNa enhances the tumor-specific immune response in
patients (17, 18, 39). As MPN is an inflammatory disease and the
PLT-binding could be mediated by the high levels of inflammation
(36), it would be interesting to investigate PLT-binding in MPN
patients treated with the clinically approved JAK1/2 inhibitor
ruxolitinib, as this drug is a highly anti-inflammatory agent (40).
Despite the encouraging results, the validation and understanding
of our data require a bigger and more homogenous cohort.

As the bone marrow in MPN represents the actual tumor site,
it was important to assess PLT-binding in BMNC. It may be
challenging to estimate/compare the frequencies of PLT-immune
cell aggregates in the peripheral blood and bone marrow, due to
fibrosis and PB contamination. However, most of the patients
included in the comparison of platelet-binding in the periphery
and bone marrow are early stage PV (N=5) and ET (N=1) who
do not present with fibrosis. Here we showed no difference in the
frequency of aggregates in the peripheral blood and bone
A B

C

FIGURE 5 | In vitro PLT-bound CD8 T cells from MPN patients show decreased proliferation compared to PLT-free CD8 T cells. Cryopreserved samples from six
MPN were stimulated with OKT-3 (0.5ng/ml) for five hours (intracellular staining) or six days (Proliferation Assay). For the proliferation assay, PBMC were stained with
CellTrace Violet® (CTV) before OKT-3 stimulation. (A) A representative plot of the proliferation cycles in PLT-free (black) and PLT-bound (red) CD8 T cells is shown.
(B) The frequency of proliferating PLT-free and PLT-bound CD8 T cells, CD4 T cells and total T cells are shown (n = 6) after five-day stimulation. (C) The release of
interferon-gamma (IFN-g), tumor necrosis factor-alpha (TNF-a) and Granzyme B (GrzB), as well as the expression of CD107a were compared in PLT-free and PLT-
bound CD8 T cells (n = 6). All frequencies are shown as percentage of parent population. Paired T tests were used to compare PLT-free and PLT-bound frequencies
and differences were considered significant when p < 0.05, as indicated with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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marrow samples. However, the small sample size could be
masking a significant difference between the two groups,
particularly for PLT-bound CD8 T cells and CD3+/CD56+

cells, where several patients display a higher frequency of
aggregates at the tumor site compared to the peripheral blood.

Here we characterized the PLT-bound CD8 T cell aggregates
in vitro after stimulation with OKT-3 or CMV-peptide. Our
results strongly suggest a selective PLT-binding to memory and
antigen-specific CD8 T cells. Moreover, our in vitro data showed
a decrease in PLT-CD8 T cell proliferation in MPN samples, as
well as a reduction in cytokine release and killing capacity of CD8
T cells in the presence of PLT. Previous studies have also shown
that PLT-binding decreases T cell proliferation (25–27), but, to
our knowledge, this is the first report on the effect of PLT-
binding on T cell killing efficiency. Although cytotoxic CD8 T
cells are often the primary mediators of anti-tumor specific
cytolysis, we have previously shown low CALR-specific CD8 T
Frontiers in Immunology | www.frontiersin.org 10
cell-responses in MPN. Instead, these responses seem to be
primarily mediated by CD4 T cells (5, 6). The high PLT-
binding to CD8 T cells could explain these results. However,
these hypotheses would require further investigation.

Interestingly, CALR-mutated CHIP individuals display a
PLT-binding frequency close to that of MPN patients. This
group was suggested to be in an immunoediting step of cancer
elimination: they can mount strong CALR-specific responses
but cannot eliminate all mutant cells (8). In that context, we
suggest that PLT could be a factor preventing the full
elimination of cancer cells by binding CD8 T cells and other
lymphocytes, which could otherwise potentiate an effective
anti-tumor immune response. Accordingly, we show high
PLT-binding to NK cells in MPN patients compared to HC.
NK cells have been shown to protect from metastasis
formation, whereas PLT-binding to cancer cells allows these
aggregates to evade NK cell-mediated killing (41–43). It is
A B

C

FIGURE 6 | After prolonged PLT exposure, in vitro PLT-bound CD8 T cells show impaired killing capacity compared to PLT-free CD8 T cells. Gp100-transduced T
cells were co-cultured with PLT (ratio 100:1) or PLT-supernatant (sPLT) for 1h, after which unbound PLT were washed off. (A) The xCELLigence system was used to
evaluate FM3 cytolysis after co-culture with transduced T cells alone (GP100+T cells, green), transduced T cells + PLT (GP100+ T cells + PLT, red) or transduced T
cells + PLT-supernatant (GP100+ T cells + sPLT, blue) at an effector to target ratio of 1.5: 1 (dotted lines) or 0.75:1 (full lines), for 80 hours (N = 1). (B) Killing time 40
(KT40) and 50 (KT50) (i.e., hours until 40% or 50% FM3 cells were killed, respectively) was calculated for all conditions at a ratio of 0.75:1. (C) PLT were co-cultured
with Gp100-transduced T cells for 48 hours, followed by a 48-hour co-culture with FM3 cell line. The cytokine release of interferon-gamma (IFN-g), tumor necrosis
factor-alpha (TNF-a) and Granzyme B (GrzB), as well as CD107a were compared in PLT-free and PLT-bound CD8 T cells (n = 1). Due to the small sample size
statistical analyses were not performed (N = 1).
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tempting to suggest that PLT can also bind NK cells, thus
shielding the tumor cells from NK cell-mediated killing.

There is a strong association between MPN and autoimmune
disorders, with one disease increasing the susceptibility to the other
(30). Zamora et al. has shown that rheumatoid arthritis patients
with a good prognosis have higher PLT-binding CD4 T cells than
patients with worse prognosis and healthy controls (25), suggesting
that PLT-binding helps prevent the flared immune reaction against
self. Our in vitro data on proliferation and cytokine secretion upon
PLT binding – showing less proliferation but more cytokine
secretion – seem counterintuitive in this regard. However,
Starossom et al. proposed a model for the PLT-binding to CD4 T
cells in multiple sclerosis: during acute inflammation platelets can
support CD4 T cells and promote their Th1/Th17 differentiation;
once chronic inflammation sets in, exhausted platelets bind CD4 T
cells and hamper the T cell function (27). This model helps explain
our conflicting cytokine release data: when T cell were co-cultured
with PLT for short periods, IFNg and TNFa release increased; when
PLTwere co-cultured for over a 48-hour period, the cytokine release
was decreased. Taken together, these data support the hypothesis
that the high PLT-binding to T cells in chronically inflamed MPN
may be impairing the CALR- and JAK2-specific immune responses,
and thus allowing the disease to progress unrestrained.

The mechanism mediating the immune suppression by
platelet-binding is not fully understood. TGF-b has been
described as the main platelet-derived factor inhibiting in vitro
T cell proliferation and cytokine release as well as in vivo tumor
cell killing: Rachidi et al. have shown, in a murine model, an
almost complete abrogation of tumor killing capacity by T cells in
the presence of platelets supernatant (23). Therefore, one cannot
exclude that the added effect of platelet-binding on T cell function
may simply be the result of proximity. Nevertheless, Zamora et al.
demonstrated that the platelet-binding immune suppression is
mediated via P-selectin ligation to P-selecting glycoprotein ligand
(PSGL)-1 on the surface of lymphocytes (26). Other studies have
shown a negative effect of PSGL-1 signaling on T cell function
(44), and more recently PSGL-1 was proposed as a new immune
checkpoint (45). Studies on PSGL-1-/- murine models have not
only revealed an increase in proliferation, but also shown that P-
selectin is the major receptor for PSGL-1 in activated T cells (44).
This is in line with our in vitro and ex vivo results that platelet-
binding occurs preferentially in memory and antigen-specific CD8
T cells. Future research evaluating anti-tumor T cell function, in
the presence of a P-selectin/PSGL-1 blocking antibody would
demonstrate the relevance of this interaction in tumor-specific
immune responses. Lastly, a recent study has shown that platelets
can upregulate their MHC-class I surface expression, which can
downregulate CD8 T cell activity (46). However, gene expression
profiling studies inMPN patients have shown a downregulation of
human leucocyte antigen (HLA)-I, HLA-II, and HLA-related
genes (47), making this mechanism less likely to occur in MPN.

In conclusion, we have shown that MPN patients have elevated
levels of circulating PLT-bound lymphocytes, especially PLT-
bound CD8 T and NK cells, compared to age-matched HC. Since
advanced disease and the presence of CALRmutation associate with
the highest frequency of these aggregates, we propose that the driver
Frontiers in Immunology | www.frontiersin.org 11
mutations may modulate PLT binding to lymphocytes differently.
In vitro and ex vivo phenotype analysis of PLT-bound CD8 T cells
show a predominant PLT-binding to antigen-experienced CD8 T
cells. Further analysis suggests a lower proliferative and cytotoxic
capacity of PLT-bound cells compared to PLT-free, as
demonstrated by a decrease in PLT-CD8 T cell proliferation as
well as a reduction in cytokine release and killing capacity of CD8 T
cells in the presence of PLT. Finally, we demonstrate that PLT-
binding occurs not only in circulation but also at the tumor site.
Therefore, we propose that PLT bind antigen-experienced T cells in
MPN and can potentially dampen their reactivity in future
encounters with the antigen, thus increasing the risk of recurrent
infections and promote tumor immune evasion. Further studies are
required to understand the underlying mechanism.
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