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Abstract: Boiler waterwall tube leakage is the most probable cause of failure in steam power plants
(SPPs). The development of an intelligent tube leak detection system can increase the efficiency and
reliability of modern power plants. The idea of e-maintenance based on multivariate algorithms was
recently introduced for intelligent fault detection and diagnosis in SPPs. However, these multivariate
algorithms are highly dependent on the number of input process variables (sensors). Therefore,
this work proposes a machine learning-based model integrated with an optimal sensor selection
scheme to analyze boiler waterwall tube leakage. Finally, a real SPP test case is employed to validate
the proposed model’s effectiveness. The results indicate that the proposed model can successfully
detect waterwall tube leakage with improved accuracy vs. other comparable models.

Keywords: waterwall tube; leakage detection; machine learning; optimal sensor selection; steam
power plant

1. Introduction

Given the growing demand for electricity, the operation of modern power plants must be ever
more efficient and reliable [1]. The steam boiler, which converts thermal energy into electricity, is one
of the most significant components in a steam power plant (SPP). Approximately 60% of boiler outages
are the result of boiler tube failure [2]. Such failure can significantly affect the safe and economical
operation of thermal power facilities [3]. Early detection and prediction of boiler tube leakage can
assist in scheduling shutdowns and reducing maintenance and labor costs [4].

In a power plant, waterwall tubes extract heat from the furnace and convert water into steam.
Waterwall tube leakage is one of the most frequent causes of tube failure in SPPs. Corrosion [5],
erosion [6], and fatigue [7] are the general phenomena that cause a decrease in tube wall thickness,
which ultimately leads to explosion and leakage in the event of failure. Therefore, in the last
decade, numerous attempts have been made to detect boiler waterwall tube leakage using three main
approaches, namely the model-based method [8], the knowledge-based method [9], and the statistical
analysis method [10]. The model-based method is the traditional method that consists of the process
variables’ static and dynamic operations. It provides an effective solution in different fault diagnosis
applications. However, in some cases, it cannot provide accurate solutions as it is challenging to develop
a valid process mathematical model for some industrial applications. For complex industrial problems
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and processes with an unknown model, the knowledge-based method and statistical approaches
are effective in fault detection applications. These approaches easily handle many process variables
(sensors). Employing these multivariate algorithms in power plants for intelligent fault diagnosis
can reduce the maintenance time and save significant production losses. The idea of e-maintenance
based on multivariate algorithms [11] was recently introduced for intelligent fault detection and
diagnosis in SPPs. These algorithms include artificial neural networks (ANNs) and multivariate
statistical techniques such as Principal Component Analysis (PCA). These techniques can be employed
to eliminate the need for additional tasks and can also assist in efficient monitoring of the status of
SPPs [12]. These approaches utilize the operators’ knowledge with rich industrial experiences and
use the process control variables (sensors) selected by the experts in power plants for intelligent fault
diagnosis. However, sensor redundancy issues can highly affect the performance of these approaches.
Therefore, removing the redundant and irrelevant sensors and selecting the optimal sensors which
are most sensitive to the fault is necessary. Thus, this study focuses on providing a simple and
straightforward methodology to choose the optimal sensors for power plant boiler waterwall tube
leakage detection.

E-maintenance mostly relies on acoustic emissions [13] and standard process control variables [14]
for leak detection and localization. Zhang et al. [15] developed a three-dimensional algorithm based
on a time delay of arrival (TDOA) approach that utilizes acoustic emission technology to detect
furnace waterwall tube leakage and localize leaks in a 600 MW power plant. However, this approach
requires the installation of expensive devices (acoustic sensors), and it is not effective at detecting
small tube leaks. On the other hand, various methods of analyzing process control data are currently
being investigated [16,17]. Swiercz et al. [18] proposed a leak detection model based on multiway
principal component analysis (MPCA) for boiler riser and downcomer tubes that uses process variables
determined by experts. Kornel et al. [19] used ANN to develop models for early tube leak detection that
are based on process variables. Jungwon et al. [20] used data from thermocouple sensors mounted on
the final superheater (FSH) tube bank for plugging tube detection and identification. As these signals
are obtained for the process control system, this method eliminates the need to install expensive devices
specifically for the intelligent fault detection system. Furthermore, it has been proven that these process
variables can provide sufficient data to detect boiler leaks [21]. Generally, an overwhelming amount of
data is collected in a power plant, which makes data processing difficult; it also contains redundant
and irrelevant information due to the presence of highly localized, redundant sensors [22]. The studies
mentioned above rely solely on experts’ experience for the selection of sensitive input sensors to detect
boiler tube leakage. However, this may affect the performance of multivariate algorithms as these
algorithms are highly dependent on the number of input sensors. This creates a need to develop an
accurate and precise method of determining the optimal sensor arrangement for detection of boiler
tube leakage.

In the literature, artificial intelligence-based fault detection techniques are generally merged
with feature extraction techniques such as PCA to exclude redundant information [23,24]. However,
these techniques are not useful in identifying the root cause of a failure. On the other hand, optimal
sensor selection via feature selection techniques can be helpful in identifying the most sensitive
input sensors by eliminating redundant sensors and reducing dimensionality [25]. Different feature
selection techniques, such as optimization-based feature selection [26], regression-based feature
selection [27], and classification-based feature selection, have been attempted [28]. These techniques
are computationally expensive for data with a large number of features. To implement feature selection
approaches in an SPP, it is necessary to weigh the computational cost and the complexity of the
algorithm. The correlation method is a well-known feature selection technique that uses a correlation
function to estimate the relationship between pairwise inputs and remove redundant features [29].
Therefore, optimal sensor selection via correlation analysis can be considered the most feasible approach
in an SPP due to its ease of implementation and reduced complexity and computational cost.
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In this paper, we propose a machine learning-based integrated optimal sensor selection technique
for waterwall tube leakage detection in an SPP. The study consists of two main parts. In the first
part, optimal sensor selection is performed via correlation analysis to select the most sensitive sensors
necessary to detect waterwall tube leakage. In the second part, different supervised machine learning
algorithms are utilized for boiler waterwall tube leakage detection. In the end, a real power plant
boiler waterwall tube leak scenario is used to validate the proposed model’s effectiveness.

2. Significance of the Boiler Waterwall Tube in an SPP

In this section, first, a brief introduction to SPPs is given, and then the significance of the boiler
waterwall tube in an SPP, including waterwall failure analysis and important monitoring parameters,
is discussed in detail. Figure 1 demonstrates the fundamental steps in the conversion of fossil fuels to
electricity. The boiler converts fuel energy to heat energy, thus transforming water into steam. In the
second stage, the turbine utilizes high-pressure steam to produce electricity [30].
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Figure 1. Schematic illustration of energy conversion in a thermal power plant.

2.1. Equipment in a Coal-Fired Power Plant

Modern SPPs are the product of extensive development efforts that have taken place over many
years; they rely on state-of-the-art technologies, research work, and experience. However, the essential
elements have remained more or less the same through the years, though they have become more
efficient as a result of increasingly sophisticated techniques and scientific advancements. The equipment
includes five essential elements, i.e., a boiler, turbine, condenser, generator, and monitoring alarm [31].

1. Boiler: A boiler is the primary piece of equipment in an SPP. It transfers energy to water
until it becomes a heated steam, which is then utilized to run the steam turbine. The boiler
consists of three main subsystems, i.e., a feedwater system, steam system, and fuel/air draft
system. Each subsystem comprises numerous additional components that make them suitable
for application in advanced power plants.

2. Turbine: The turbine uses high-temperature, pressurized steam to transform heat energy into
mechanical energy in order to run the electric generator. The associated subsystems are the
turbine gear/barring gear, gland sealing system, and turbine oil system.

3. Condenser: High-temperature steam travels to the condenser from the turbine exhaust outlet.
The condenser condenses the steam via heat transfer with cooling water from another source.
It includes the steam ejectors, cooling water system, condensate pumps, and heat exchangers as
associated subsystems.

4. Electrical generator: The function of an electrical generator is to convert mechanical energy into
electrical energy. It includes an exciter and transformer as subsystems.

5. Monitoring alarm system: The alarm system is used to check the health status of the equipment
mentioned above. It rings alarms in case of any abnormality.

The current study concerns a circulating fluidized bed (CFB) boiler. CFB boilers have gained
popularity due to their various benefits, such as improved combustion efficiency, stable operation, and
lower NOx emissions [32]. A CFB boiler incorporates a combustor, solid separator, and second pass flue
gas ducting. A solid cyclone separator connected to the outlet of the combustion chamber collects most
of the solids leaving the chamber and delivers the remainder back to the combustor. A convective pass
includes superheaters, reheaters, an economizer, and air heaters. Water travels around the waterwall
tubes to generate steam. The steam then enters the stage I and stage II superheater (SHI and SHII),
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where it overheats. The primary and final reheater (RHI and RHII) collect steam from the high-pressure
turbine in the second pass. Finally, the second-pass flue gas ducting comprises an economizer and air
heater (AirH). A schematic diagram of the CFB boiler in steam power plant is shown in Figure 2.
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Figure 2. Schematic of a Circulating Fluidized Bed (CFB) boiler in steam power plant.

2.2. Waterwall Tube Failure Analysis

The waterwall tube is one of the most important components of a boiler. Leakage in the waterwall
tube is a serious problem, and various studies have been conducted to examine waterwall tube failure.
Nurbanasri et al. [33] carried out a microstructural analysis of waterwall tubes and observed that cracks
were initiated due to defects that occurred during the welding process. Ahmad et al. [34] investigated
the failure mechanisms in rear waterwall tubes. They showed that wall thinning happens due to fly
ash erosion and an increase in temperature, which prompts the thermally activated process of creep
problem. Moreover, Liu et al. [6] found that wall thinning in the fire-facing side of a waterwall tube
occurs due to oxidation of the tube, which causes the tube pressure to surpass the bearing limit of
thin tubes.

Condition-based monitoring utilizing a data-driven approach is one possible and efficient solution
for fault diagnosis and classification [35]. Data-driven maintenance of the condition of an object can
be divided into two main steps: (1) acquisition of data on the relevant status of the object, and (2)
data preprocessing and classification of the preprocessed data. Thus, tube leakage detection can be
defined as a classification problem. Acoustic emission (AE) is one of the most popular techniques
used in boiler tube leak detection [36]. However, AE-based leak detection systems are not effective
as they cannot detect small tube leaks [37]. Furthermore, a change in the power plant’s operating
conditions generates a significant degree of variation in the characteristics of the signal, and the noise
due to the geometry of the furnace, which creates echoes, also affects the outcomes of signal processing,
thus complicating the decision process. An alternative technique for data-driven maintenance is to
identify the patterns associated with healthy and faulty conditions directly from historical process
control data [29]. Such an approach does not require complicated models of large-scale plant operation
and eliminates the need to install expensive devices.

In an SPP boiler, it is difficult to pinpoint the exact moment at which a leak occurs, and a significant
amount of time elapses between the formation of a small hole and the moment at which the leak is
large enough to cause identifiable failure. Moreover, the length of the tube is several dozen meters,
and a leak may develop in a random location. Such fault developments impact the process variables in
numerous ways. Therefore, a tube leak detection algorithm must employ estimations of the different
process variables and associate them with the typical fault patterns.
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3. Proposed Methodology

This section introduces the complete methodology used to implement our machine learning-based
optimal sensor selection model. The proposed model is divided into four main stages, as shown in
Figure 3. In the first stage, the key monitoring variables that are sensitive to waterwall tube leakage
are identified. The second stage is the data preprocessing phase. In the data preprocessing phase,
the data are preprocessed to enable optimal sensor selection and construction of machine learning
classifiers. This step includes noise removal and data normalization. In the third step, optimal sensor
selection based on correlation analysis is utilized to reduce the number of sensor variables for the input
data. In the final step, the primary task is to construct the machine learning classifiers and validate
the performance of the optimal sensor selection analysis. The following subsections present a more
comprehensive analysis of the proposed model.
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3.1. Data Preprocessing

Real power plant data are generally noisy and inconsistent; data preprocessing is required to
overcome these obstacles [38]. Upon analyzing the acquired real plant data, it was observed that
the plant data contain noise due to the measuring instruments (sensors) that need to work in harsh
environments, e.g., vibration, high temperature, and corrosion [39]. The sensors are more vulnerable
to strong electromagnetic interference and the influence of temperature and humidity. During the data
transmission process, the signal data are inevitably mixed with the channel noise and the propagation
error. All the factors mentioned above result in noise in the monitoring data. The resulting noisy data
can affect data analysis and the performance of the machine learning algorithms. Therefore, it was
necessary to analyze and preprocess the data obtained from the power plant.

Recently, wavelets have emerged as a powerful tool for noise removal in fault diagnosis
applications [40]. Wavelets can be used to identify important features during noise removal, as different
features are localized at different scales [41]. Traditional techniques, such as Fourier transform
analysis [42] and power spectral density analysis [43], are more sensitive to impulsive oscillations
and cannot be used to obtain hidden frequencies in the data. Wavelet analysis helps to overcome
these drawbacks by simultaneously monitoring both the time and frequency domains. Wavelet-based
denoising is chosen and preferred over filter-type denoising for multiple reasons. The first and
foremost reason is that one needs to know the signal’s frequency content and noise frequency content
for filter-type denoising. However, in this study, we could not clearly separate the two, which hindered
the filter-type denoising application. Wavelet analysis can analyze the signal in both the time and
frequency domain, giving it an advantage over the typical techniques that only focus on one aspect,
either time domain or frequency domain. This study’s sensor signals consist of long non-stationary
events; the potential noise sources were unknown. Using wavelet is recommended in such scenarios,
as wavelet-based denoising is best suited for non-stationary signal analysis. The main advantage of a
wavelet basis is that it can perfectly reconstruct functions with linear and higher-order polynomial
shapes despite having an irregular shape of the signal. The denoising was performed using the
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Daubechies wavelet, the most used set of discrete wavelet transforms (DWT). The wavelet coefficients
were denoised by using the wavelet thresholding method. The thresholding method is simple and has
a good effect on the aspect of removing noise. Soft thresholding performs better when the detailed
wavelet coefficient contains both signal and noise [44]. In this study, the wavelet analyzer toolbox in
MATLAB [45] was used for denoising by selecting soft thresholding for Daubechies wavelet with five
decomposition levels. The wavelet denoising method consists of three steps. In the first step, signals
are decomposed using wavelet transform in both the time and frequency domains. Wavelet transform
of the continuous signal x(t) is defined in Equation (1). In the second step, an appropriate threshold
limit is selected and a threshold method that optimizes the noise removal process is defined. In the final
step, the denoised signal is obtained by taking the inverse wavelet transform of the wavelet coefficients.

WT(a, b) =

∞∫
−∞

x(t)ψ
(

t− b
a

)
dt (1)

where ψ(t) is the analyzing wavelet, a is the scale parameter, and b is the position parameter.

3.2. Optimal Sensor Selection

In a power plant, operators and field technicians use a piping and instrumentation diagram
(P&ID) to keep track of all the equipment and the sensors that regulate the process flow. A unique
tag number or label is assigned to each sensor for individual identification. For example, in Figure 4,
the P&ID diagram of the furnace section shows the six thermocouple sensors with their unique tag
numbers that are used to measure the furnace wall temperature at separate locations. These localized
sensors may contain irrelevant and redundant information that may influence the performance of
a multivariate algorithm. Therefore, it was necessary to decrease the number of process variables
(sensors) and pick the optimal number of sensors necessary to detect waterwall tube leaks.Sensors 2020, 20, x FOR PEER REVIEW 7 of 18 
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Generally, the data collected in the power plant are too large to handle, and to overcome
this issue, artificial intelligence (AI)-based fault detection techniques are commonly combined with
feature extraction techniques such as PCA to remove redundant information. Statistically, PCA can
reduce the sensor data’s dimensionality, but it is not possible to pinpoint the redundant sensor by
using dimensionality reduction techniques. To physically specify the redundant sensor, optimal
sensor selection via a feature selection technique such as correlation analysis is the most suitable
solution. It allows for identifying the redundant and irrelevant sensors by showing its correlation with
other sensors.

In this study, first, the Pearson correlation coefficient [46] (Pearson’s r value) is computed between
the input sensor variables. Only the highly correlated sensors are retained. The Pearson coefficient
values range from −1 to 1, where 1 represents the strongest possible positive correlation, 0 shows
that there is no linear correlation, and −1 is the strongest possible negative correlation between two
variables. This method evaluates the strength of the relationship between two sensor signals, as shown
in Equation (2).

r =
s(

∑
ab) − (a)(

∑
b)√√

[[s
∑

b2 − (
∑

b)2]][s
∑

a2 − (
∑

a)2]

(2)

where s is the sample size, r is the Pearson correlation coefficient, and a and b are the two sensor signals.

3.3. Machine Learning Algorithms

Recently, machine learning in intelligent fault diagnosis applications has become an area of
intense focus [47]. Machine learning uses examples and the knowledge gained from experience to
optimize a task. There are three main types of machine learning techniques: supervised machine
learning, unsupervised machine learning, and reinforcement machine learning. Of these, supervised
learning is the most popular technique for classification and regression problems. The results of
supervised learning are reliable and accurate owing to the use of labeled and well-characterized input
data [48]. In this study, four well-known supervised machine learning classifiers (support vector
machines (SVMs), k-nearest neighbors (k-NNs), naïve Bayes algorithm (NB), and linear discriminant
analysis (LDA)) are employed and compared in terms of their performance. The overall schematic
of the machine learning process is shown in Figure 5. The methodology involves employing and
evaluating two cases (raw and optimal sensors) in machine learning classifiers. First, the training
and testing datasets are created from the individual time domain sensor data. Eighty percent of the
sensor data are used for training purposes, and the remaining twenty percent of the data are used
as independent testing. Statistical time domain features are extracted and used in machine learning
algorithms. The classifiers’ training is carried out by using a 10-fold cross-validation strategy on the
training data to avoid overfitting. The independent test dataset is used for the validation of classifier’s
performance. The raw and optimal feature dataset is processed, and the performance of the employed
supervised learning classifiers are compared. The details of the machine learning classifiers are given
as follows:Sensors 2020, 20, x FOR PEER REVIEW 8 of 18 

 

 
Figure 5. Schematic of the machine learning process used to predict the boiler health state. 

3.3.1. SVM Classifier 

SVM works by establishing a hyperplane (decision boundary) between two classes and 
attempting to orientate the boundary in a manner such that the gap between the two classes is 
maximized [49]. The main benefits of SVM include the use of kernels that can solve any complex 
problem, the smaller risk of overfitting, and the absence of local minima. Because of these advantages, 
SVM is quite popular in fault detection and isolation problems [50]. 

Given that n is the total number of experiments in the training dataset, S = {푥 ,  푦  } , where 
푥 ∈ 푅 , 푦 ∈ 푅, 푦  denotes the target value corresponding to 푥 . An SVM attempts to develop a 
function f(x) based on the relationship between (푥 ,  푦 ) that is as smooth as possible by minimizing 
the error between the target and output values. In the case of linear non-separable data, SVM uses 
kernel functions, and these kernel functions have a significant influence on the performance of the 
model. The most commonly used kernel functions are as follows [51]: 

1. Linear kernel 
k(x, y) = X. Y (3) 

2. Polynomial kernel 
k(x, y) = (x. y + 1) , p=1,2, 3…, n (4) 

3. Radial basis function 

k(x, y) = exp −
|x − y|

2σ
 (5) 

4. Hyperbolic tangential kernel 
k(x, y) = tanh{kx. y + θ} (6) 

where k > 0 and θ < 0. 
In this paper, RBF is chosen as the kernel function of the SVM due to its superior characteristics, 

such as stronger robustness, infinite smoothness, and ease of calibration.  

3.3.2. k-NN classifier 

A k-NN classifies its target by measuring the distance between the target and the nearest feature 
space. Euclidean distance 푑  is generally used to measure the distance between two points, 푥 and 
푦, with Equation (7). 

푑 = ∑ (푥 − 푦 )  (7) 

k-NNs are being used in many applications, such as image processing, pattern recognition, and 
fault classification. We chose to use k-NN in this work because of its inherent advantages, such as 
ease of implementation, robustness, and ability to tune the network using few parameters.  
  

Figure 5. Schematic of the machine learning process used to predict the boiler health state.



Sensors 2020, 20, 6356 8 of 17

3.3.1. SVM Classifier

SVM works by establishing a hyperplane (decision boundary) between two classes and attempting
to orientate the boundary in a manner such that the gap between the two classes is maximized [49].
The main benefits of SVM include the use of kernels that can solve any complex problem, the smaller
risk of overfitting, and the absence of local minima. Because of these advantages, SVM is quite popular
in fault detection and isolation problems [50].

Given that n is the total number of experiments in the training dataset, S =
{
xi, yi

}n
i=1, where xi ∈ Rn,

yi ∈ R, yi denotes the target value corresponding to xi. An SVM attempts to develop a function f (x)
based on the relationship between (xi, yi) that is as smooth as possible by minimizing the error between
the target and output values. In the case of linear non-separable data, SVM uses kernel functions,
and these kernel functions have a significant influence on the performance of the model. The most
commonly used kernel functions are as follows [51]:

1. Linear kernel
k(x, y) = X.Y (3)

2. Polynomial kernel
k(x, y) = (x.y + 1)p, p = 1, 2, 3 . . . , n (4)

3. Radial basis function

k(x, y) = exp

−
∣∣∣x− y

∣∣∣2
2σ2

 (5)

4. Hyperbolic tangential kernel
k(x, y) = tan h

{
kx.y + θ

}
(6)

where k > 0 and θ < 0.

In this paper, RBF is chosen as the kernel function of the SVM due to its superior characteristics,
such as stronger robustness, infinite smoothness, and ease of calibration.

3.3.2. k-NN Classifier

A k-NN classifies its target by measuring the distance between the target and the nearest feature
space. Euclidean distance dE is generally used to measure the distance between two points, x and y,
with Equation (7).

dE =

√∑n

i=1
(xi − yi)

2 (7)

k-NNs are being used in many applications, such as image processing, pattern recognition, and fault
classification. We chose to use k-NN in this work because of its inherent advantages, such as ease of
implementation, robustness, and ability to tune the network using few parameters.

3.3.3. NB Classifier

An NB algorithm is a simple and powerful probabilistic machine learning algorithm for
classification based on Bayes’ theorem [52]. An NB algorithm is easy to implement and primarily
used for large datasets. The algorithm works on the assumption of conditional independence, i.e.,
the presence of a feature (x) in a class (c) is irrelevant and unbiased towards any other features. The
conditional independence assumption is shown in Equation (8) [53].

P(c|x) =
P(x|c)P(c)

P(x)
(8)
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where P(c) is the prior probability of a given class regardless of the predictor, P(x) is the probability of
the predictor regardless of the given class, and P(c|x ) is the probability of the predictor given the data,
also known as the posterior probability. NB classifiers have been used in many real-world applications.
In this study, we have opted to use a naïve Bayes classifier because of its substantial advantages in
terms of ease, learning and classification speed, and storage space.

3.3.4. LDA Classifier

LDA is a commonly used multivariate classification method that aims to find a linear combination of
features for class separation [54]. It attempts to project higher-dimensional data onto lower-dimensional
space to deliver maximum class separability and avoid overfitting and computational cost. Logistic
regression [55] and LDA [56] are widely used in pattern recognition in conventional statistical learning
techniques. Therefore, LDA is adopted in this study because it requires no parameter tuning and
because the extracted features are easier to understand under linear assumptions.

4. Real-World Power Plant Scenario—Computational Results

In this section, a real-world case of boiler waterwall tube leakage is employed to verify the
effectiveness of the proposed model.

4.1. Acquisition of Leak-Sensitive Sensor Data and Data Preprocessing

This study utilizes the data from 38 sensitive sensors in a SPP: these sensors provide data
on the inlet and outlet header temperatures; the tube metal temperature, which is collected from
thermocouples mounted on the superheaters (SHI, SHII, and SHIII) and reheaters (RHI and RHII);
and the active power of the corresponding generator. Table 1 summarizes the most sensitive sensors in
the SPP; in the table, “ID” represents the number assigned to each sensor and a notation is assigned to
each sensor to facilitate the optimal sensor selection process.

Table 1. Most sensitive sensor data from the Steam power plant used for boiler waterwall tube
leakage detection.

ID Description Notation ID Description Notation

P1CHA01GH001XQ01 Gen. Active Power X1 P1HAH72CT003XQ01 Steam Temperature After SH II X20
P1HAH55CT001XQ01 SH I Inlet Header Temperature X2 P1HAH77CT001XQ01 SH III Metal Temperature X21
P1HAH55CT002XQ01 SH I Inlet Header Temperature X3 P1HAH77CT002XQ01 SH III Metal Temperature X22
P1HAH55CT003XQ01 SH I Inlet Header Temperature X4 P1HAH77CT003XQ01 SH III Metal Temperature X23
P1HAH62CT001XQ01 Steam Temperature After SH I X5 P1HAH77CT004XQ01 SH III Metal Temperature X24
P1HAH62CT002XQ01 Steam Temperature After SHI X6 P1HAH77CT005XQ01 SH III Metal Temperature X25
P1HAH57CT001XQ01 SH I Metal Temperature X7 P1HAJ15CT001XQ01 RH I Metal Temperature X26
P1HAH57CT002XQ01 SH I Metal Temperature X8 P1HAJ15CT002XQ01 RH I Metal Temperature X27
P1HAH57CT003XQ01 SH I Metal Temperature X9 P1HAJ15C003XQ01 RH I Metal Temperature X28
P1HAH57CT004XQ01 SH I Metal Temperature X10 P1HAJ15CT004XQ01 RH I Metal Temperature X29
P1HAH57CT005XQ01 SH I Metal Temperature X11 P1HAJ15CT005XQ01 RH I Metal Temperature X30
P1HAH57CT006XQ01 SH I Metal Temperature X12 P1HAJ15CT006XQ01 RH I Metal Temperature X31
P1HAH67CT001XQ01 SH II Metal Temperature X13 P1HAJ20CT001XQ01 RH I Outlet Steam Temperature X32
P1HAH67CT002XQ01 SH II Metal Temperature X14 P1HAJ35CT001XQ01 RH II Metal Temperature X33
P1HAH67CT003XQ01 SH II Metal Temperature X15 P1HAJ35CT002XQ01 RH II Metal Temperature X34
P1HAH67CT004XQ01 SH II Metal Temperature X16 P1HAJ35CT003XQ01 RH II Metal Temperature X35
P1HAH67CT005XQ01 SH II Metal Temperature X17 P1HAJ35CT004XQ01 RH II Metal Temperature X36
P1HAH72CT001XQ01 Steam Temperature After SH II X18 P1HAJ35CT005XQ01 RH II Metal Temperature X37
P1HAH72CT002XQ01 Steam Temperature After SH II X19 P1HAJ35CT006XQ01 RH II Metal Temperature X38

Figure 6 presents the trends in active power when the plant is in healthy (fully functional) and
leakage states, SHIII metal temperature, temperature of the steam after it has passed through SH II,
and RH II metal temperature. The blue and red lines represent ten days’ worth of data in the healthy
state, when the boiler is operating under normal conditions, and ten days’ worth of data recorded
when the waterwall tube began to leak, respectively. It is clear that the generator’s active power and
the corresponding thermocouple sensor data vary substantially during a waterwall tube leakage event
as compared to the normal state of the boiler.
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The wavelet analyzer toolbox in MATLAB [45] was used for wavelet denoising by choosing soft
thresholding with five levels of decomposition. Figure 7 shows the efficacy of wavelet denoising using
an example of the generator’s active power signal with a signal length of 24 h. The red line displays
the noisy signal, whereas the blue line represents the denoised signal produced after removal of excess
noise with the wavelet denoising technique.
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4.2. Optimal Sensor Selection via Correlation Analysis

This section presents the results of correlation analysis. A Pearson correlation coefficient was
computed for all sensor variables, and the resulting correlation matrix is shown in Figure 8. Two sensor
variables are assumed to be highly correlated with each other when the value of the correlation
coefficient is equal to or greater than 0.95, as represented in red in Figure 8.
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Figure 9 shows the data from several different sensors and exhibits the different correlation
coefficient (r) values among the sensors. In Figure 9a,b, large correlations are observed between the sets
of sensor signals, with correlation coefficients of 0.986 and 0.951. In Figure 9c, the r value of −0.0003
between X20 (steam temperature after SH II) and X3 (SH I inlet header temperature) indicates that
there is no correlation between the data signals from these two sensors. In Figure 9d, X15 (SHII metal
temperature) and X33 (RH II metal temperature) are negatively correlated with each other, with a
correlation coefficient of −0.58.Sensors 2020, 20, x FOR PEER REVIEW 12 of 18 
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Table 2 presents the highest correlation coefficients among the different pairs of data sensors.
For example, X7, X8, X9, X10, X11, and X12 are highly correlated with X6, whereas X27, X28, X29, X30,
X31, and X32 are highly correlated with X26. X6 represents the steam temperature after SHI, and it
is highly correlated with the SH I metal temperature (sensors X7, X8, X9, X10, X11, and X12). X26
represents the RH I metal temperature, and it is highly correlated with the other RH I metal temperatures
(X27, X28, X29, X30, and X31) and the RHI outlet steam temperature (X32). The classification may not
be influenced by removing all but one of the highly correlated sensors. Therefore, these sensors are
considered irrelevant and can be removed. Following the same procedure, 17 sensors are considered
irrelevant, and 21 sensors are shortlisted and considered optimal sensors, as shown in Table 3.

Table 2. Correlation coefficients of highly correlated sensors.

Input Attributes Highly Correlated Attributes Correlation Coefficient (R)

X6 (Steam Temperature After SHI) X7 (SHI Metal temperature) 0.951
X6 X8 (SHI Metal temperature) 0.987
X6 X9 (SHI Metal temperature) 0.977
X6 X10 (SHI Metal temperature) 0.989
X6 X11 (SHI Metal temperature) 0.989
X6 X12 (SHI Metal temperature) 0.965

X26 (RH I Metal Temperature) X27 (RH I Metal Temperature) 0.986
X26 X28(RH I Metal Temperature) 0.986
X26 X29(RH I Metal Temperature) 0.979
X26 X30(RH I Metal Temperature) 0.982
X26 X31(RH I Metal Temperature) 0.975

X26 X32 (RH I Outlet Steam
Temperature) 0.982

Table 3. List of optimal sensors determined by the correlation analysis.

# Sensor ID Sensor Description Sensor Notation

1 P1CHA01GH001XQ01 Gen. active power X1
2 P1HAH55CT002XQ01 SH I Inlet Header Temperature X3
3 P1HAH55CT003XQ01 SH I Inlet Header Temperature X4
4 P1HAH62CT001XQ01 Steam Temperature After SH I X5
5 P1HAH67CT001XQ01 SH II Metal Temperature X13
6 P1HAH67CT002XQ01 SH II Metal Temperature X14
7 P1HAH67CT003XQ01 SH II Metal Temperature X15
8 P1HAH67CT004XQ01 SH II Metal Temperature X16
9 P1HAH72CT003XQ01 Steam Temperature After SH II X20
10 P1HAH77CT001XQ01 SH III Metal Temperature X21
11 P1HAH77CT002XQ01 SH III Metal Temperature X22
12 P1HAH77CT003XQ01 SH III Metal Temperature X23
13 P1HAH77CT004XQ01 SH III Metal Temperature X24
14 P1HAH77CT005XQ01 SH III Metal Temperature X25
15 P1HAJ15CT001XQ01 RH I Metal Temperature X26
16 P1HAJ35CT001XQ01 RH II Metal Temperature X33
17 P1HAJ35CT002XQ01 RH II Metal Temperature X34
18 P1HAJ35CT003XQ01 RH II Metal Temperature X35
19 P1HAJ35CT004XQ01 RH II Metal Temperature X36
20 P1HAJ35CT005XQ01 RH II Metal Temperature X37
21 P1HAJ35CT006XQ01 RH II Metal Temperature X38

4.3. Characteristics of the Dataset

The process variables are stored in the historical database of the distributed control system of the
power plant, which has a sampling period of 1 sec. This study attempts to detect early and smaller
tube leaks in a boiler waterwall tube; therefore, ten days’ worth of leak data (864,000 data points) from
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the early stage of the tube rupture are used for the machine learning analysis in addition to ten days’
worth of data from the healthy boiler (864,000 data points). Two cases (raw data and data from the
optimal sensors) are employed in the machine learning model, and their performance is evaluated and
compared. The raw data case consists of 38 input sensors, and the optimal data case after correlation
analysis consists of 21 input sensors. Eighty percent of the individual sensor data are used as a training
set, and the remaining twenty percent of the data are used as a test set. Table 4 provides information
about the raw and optimal sensors datasets used for machine learning.

Table 4. Characteristics of the dataset used for machine learning.

Data Type Input Sensors No of Records Train Set Test Set Target

Raw dataset 38
1,728,000 80% 20%

• Normal

Optimal dataset 21 • Leakage

4.4. Time Domain Statistical Feature Extraction

The leak-sensitive variables obtained from the SPP consist of time domain measurements.
Direct analysis of these measurements will not provide satisfactory results. Therefore, to reduce the
dimensions of the original data, evaluation of the statistical features of the time domain data was
necessary. Statistical time domain features serve to not only decrease computational complexity but
also separate signals with diverse structural integrity in the feature space. The time domain features
used in this study consist of root mean square (RMS), variance (V), skewness (S), and kurtosis (K).
Mathematical descriptions of the statistical time domain features are shown in Table 5.

Table 5. Statistical time domain features (x is the sensor signal).

Features Mathematical Expression

Root mean square RMS =
(

1
N

∑N
i=1 x2

i

) 1
2

Variance (V) V =
∑
(xi−x)2

N−1

Skewness (S) S = 1
N

N∑
i=1

(
xi−x
σ

)3

Kurtosis K = 1
N

N∑
i=1

(
xi−x
σ

)4

4.5. Machine Learning Classifiers and Performance Evaluation

Four supervised machine learning classifiers (SVM, k-NN, NB, and LDA) are built and compared
in terms of their performance in both the raw data case and the optimal sensors data case. Before a
machine learning model is ready for application and implementation, its performance must be
evaluated to validate its extrapolation ability and generalizability. There are several different validation
techniques for performance evaluation, such as leave-one-out cross-validation, k-fold cross-validation,
and bootstrapping [48]. In this study, 10-fold cross-validation is used to evaluate the training accuracy
of the machine learning models.

The performance of the proposed machine learning-based integrated optimal sensor selection
technique is compared to the raw data case in the machine learning model. Table 6 summarizes the
results of SVM, k-NN, LDA, and naïve Bayes algorithms. Without implementing the sensor selection
technique (raw dataset), SVM shows superior classification/testing accuracy (88.2%) compared to k-NN
(85.5%), NB (84.2%), and LDA (86.8%). In the case of optimal sensor selection via correlation analysis,
the performance increased slightly after removal of irrelevant and redundant features that caused
overfitting of the machine learning models. The correlation analysis reveals an increase in classification
performance (SVM: ↑2.3%, k-NN: ↑2.6%, NB: ↑1.5%, and LDA: ↑1.3%).
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Table 6. Performance evaluation and accuracy comparison.

Machine Learning
Classification Raw Data Optimal Sensors Data

Algorithms Training Accuracy (%) Testing Accuracy (%) Training Accuracy (%) Testing Accuracy (%)

SVM 90.8 88.2 92.9 90.5
k-NN 88.2 85.5 92.9 88.1

NB 86.8 84.2 88.1 85.7
LDA 89.5 86.8 90.5 88.1

Figure 10 shows the confusion matrix for the SVM classifier for both the raw data case and the
optimal sensors case. H and WWL represent the healthy and waterwall tube leakage states of the boiler.
The confusion chart shows the correct and incorrect predictions for both the raw and optimal data
cases. The correct and incorrect predictions are on the diagonal and off-diagonal positions, respectively.
SVM predicts the healthy data more accurately than the waterwall tube leakage data in both the raw
and optimal sensors data cases.
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Figure 10. Confusion chart of the SVM-based machine learning model for the (a) raw dataset case and
(b) optimal sensors dataset case.

High training accuracies accompanied by high testing accuracies show that the pre-trained
classifiers would perform better in new instances of waterwall tube leakage. The results of the machine
learning model show that the optimal sensor selection technique not only helped to identify the most
sensitive sensor variables by reducing the number of sensors by 44% (from 38 to 21) but also increased
the performance of the machine learning classifiers.

5. Conclusions

This study proposes a machine learning-based optimal sensor selection scheme to predict boiler
waterwall tube leakage in an SPP. The multivariate algorithms used for data analysis are highly
dependent on the number of input sensors. Selecting only the most informative sensors can save
computational time and enhance model performance. Therefore, the optimal sensors were selected via
correlation analysis of the leak-sensitive sensor data; this enabled use of only the most sensitive sensors
to detect waterwall tube leakage and avoided data redundancy and use of irrelevant information due
to the highly localized nature of the attached sensors. The correlation analysis was used to reduce the
number of sensors by 44%, from 38 to 21 sensors. Furthermore, four supervised machine learning
algorithms were developed, and their performance was evaluated and compared in both the raw data
(38 sensors) and optimal sensors data (21) cases. The computational results indicate that the proposed
SVM-based integrated optimal sensor selection process provided the highest accuracy among the
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models studied. This work suggests a simple and clear optimal sensor selection technique that is quick
and easy to implement in SPPs.
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