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Abstract: 7,8-dihydroxyflavone (DHF) is a flavone aglycone which has beneficial effects in several
central nervous system diseases. Most of the pharmacokinetic properties of DHF have been
characterized, while only limited information is available regarding its interactions with serum
albumin and biotransformation enzymes. In this study, the interactions of DHF with albumin was
examined employing fluorescence spectroscopy and ultrafiltration. Furthermore, the inhibitory
effects of DHF on cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) and xanthine oxidase (XO)
enzymes were also tested using in vitro models. Our results demonstrate that DHF forms a stable
complex with albumin (K = 4.9 × 105 L/mol) and that it is able to displace both Site I and Site II
ligands. Moreover, DHF proved to be a potent inhibitor of each enzyme tested, showing similar or
slightly weaker effects than the positive controls used. Considering the above-listed observations, the
coadministration of DHF with drugs may interfere with the drug therapy due to the development of
pharmacokinetic interactions.

Keywords: 7,8-dihydroxyflavone; serum albumin; cytochrome P450 enzymes; xanthine oxidase;
pharmacokinetic interactions

1. Introduction

Flavonoids are ubiquitous phenolic compounds in nature, and they exert several beneficial
effects [1]. Furthermore, flavonoids can affect several proteins, including numerous enzymes,
transporters, and receptors [2,3]. Due to their extensive presystemic elimination, the normal dietary
intake of flavonoids results in only their nanomolar concentrations in the systemic circulation [4].
However, as a result of extremely high intake (e.g., through the consumption of dietary supplements
or medications), the plasma concentrations of flavonoids (or some of their metabolites) can achieve
micromolar levels [5,6]. Depending on their structures, flavonoids can inhibit or induce different
biotransformation enzymes [7,8]. Therefore, the coadministration of flavonoids with drugs may
interfere with the drug therapy [9].

7,8-dihydroxyflavone (DHF; Figure 1) is a flavone aglycone; it occurs in Tridax procumbens
(Asteraceae) and Godmania aesculifolia (Bignoniaceae) [10]. Due to its ability to penetrate into the central
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nervous system, DHF can act as a tyrosine kinase receptor B (TrkB) agonist in the brain; therefore, it
mimics the activity of brain-derived neurotrophic factor (BDNF) [10,11]. Based on recent studies, DHF is
a promising candidate for the treatment of neurodegenerative diseases, including neurodevelopmental
disorders, depression, Rett syndrome, and Alzheimer’s disease [3,11,12]. Furthermore, DHF is able to
reverse the long-term central nervous system effects of chronic lead exposure in children due to its
BDNF mimetic activity [13]. Despite the fact that DHF has better pharmacokinetic properties (e.g.,
better oral bioavailability and longer elimination half-life) than orally administered BDNF, it still
has a poor oral bioavailability (approximately 4.5% in mice) [14], which can be improved 2.3-fold
by 7,8-bis-carbamate ester prodrug formation [14]. During its biotransformation, DHF undergoes
conjugation reactions; primarily glucuronide and sulfate metabolites were formed in monkeys after
the per os administration of 30 mg/kg DHF [15].

Figure 1. Chemical structure of 7,8-dihydroxyflavone.

Human serum albumin (HSA) is the most abundant plasma protein in human circulation. HSA
is a carrier of numerous endogenous and exogenous compounds in the blood, including fatty acids,
drugs, and toxins [16]. There are two major drug-binding sites of drugs in HSA, which are located
in subdomains IIA (Sudlow’s Site I) and IIIA (Sudlow’s Site II). Bulky, heterocyclic compounds with
negative delocalized charge are the typical ligands of Site I, while aromatic carboxylic acids preferably
bind to Site II [16]. Plasma protein binding can affect the pharmacokinetics and pharmacodynamics
of drugs because only unbound drug molecules are able to leave the circulation and to produce
pharmacological effects in other tissues [17]. Therefore, the displacement of strongly albumin-bound
drugs from HSA can significantly elevate their unbound concentration, which can increase their
therapeutic effects and/or may lead to the development of side effects or even toxicity [16,17].
Simultaneous administration of two or more drugs with high affinity to HSA may result in displacement
interaction, which can be caused by either allosteric or competitive mechanisms [16].

Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of several exogenous
and endogenous compounds. CYP3A4 metabolizes approximately 50% of medications, including
several immunosuppressants, anticancer drugs, statins, calcium channel blockers, and steroid
hormones [18]. CYP2C9 plays an important role in the biotransformation of certain oral anticoagulants,
antidiabetics, and nonsteroidal anti-inflammatory drugs [19]. CYP2C19 catalyzes the biotransformation
of some antiepileptic drugs, proton pump inhibitors, and tricyclic antidepressants [20,21].

Xanthine oxidase (XO) is a flavoprotein enzyme which plays a key role in the oxidation of
hypoxanthine to xanthine and then to uric acid. Physiologically, it exists in xanthine dehydrogenase
form, which can be converted to XO by proteolysis or oxidation in response to global ischaemia [22].
Therefore, XO is associated with the development of several pathological conditions such as
inflammation, gout, metabolic disorders, and carcinogenesis due to the formation of uric acid
and reactive superoxide anion radicals [23,24].

DHF is a promising candidate for the therapy of neurodegenerative disorders but only limited
information is available regarding its albumin binding and effects on biotransformation enzymes.
These properties play important roles in the development of potential pharmacokinetic interactions.
Therefore, in this study, the interactions of DHF with HSA as well as with CYP2C9, CYP2C19, CYP3A4,
and XO enzymes were investigated. The complex formation of DHF with HSA was examined
employing fluorescence quenching. Displacement of site markers from HSA by DHF were tested
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using ultrafiltration. To test the inhibitory effects of DHF on biotransformation enzymes, in vitro
enzyme assays were performed. Our results suggest that DHF may interfere with the albumin
binding and/or the biotransformation of several dugs, suggesting the potential importance of its
pharmacokinetic interactions.

2. Materials and Methods

2.1. Reagents

7,8-dihydroxyflavone (DHF) was obtained from Extrasynthese (Genay Cedex, France).
S-mephenytoin, 4-hydroxymephenytoin, diclofenac, 4′-hydroxydiclofenac, and 6-thiouric acid were
purchased from Carbosynth (Berkshire, UK). High-performance liquid chromatography (HPLC) grade
acetonitrile and methanol were acquired from VWR (Budapest, Hungary). Orthophosphoric acid
(85 v/v%), human serum albumin (HSA), racemic warfarin (WAR), naproxen (NAP), testosterone,
6β-hydroxytestosterone, naringenin, ticlopidine hydrochloride, 6-mercaptopurin, allopurinol,
CypExpress 2C9 kit, CypExpress 2C19 kit, CypExpress 3A4 kit, and xanthine oxidase (XO; from bovine
milk) were obtained from Sigma-Aldrich (Budapest, Hungary). Nicotinamide adenine dinucleotide
phosphate sodium salt (NADP+) and glucose-6-phosphate barium salt (G6P) were purchased from
Reanal (Budapest, Hungary). Glacial acetic acid (99.5 v/v%) was obtained from Fluka (Bucharest,
Romania). Stock solutions of DHF, site markers, substrates, and products (2000 µM each) were prepared
in dimethyl sulfoxide (spectroscopic grade; Fluka) and stored at −20◦C.

2.2. Spectroscopic Measurements

Fluorescence spectroscopic measurements were carried out using a Hitachi F-4500 fluorescence
spectrophotometer (Tokyo, Japan). The binding constant of the DHF–HSA complex was determined
by fluorescence quenching, during which increasing amounts of DHF (final concentrations: 0, 0.5,
1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 µM) were added to HSA (2 µM) in phosphate buffered saline (PBS;
pH 7.4; containing 8.00 g/L NaCl, 0.20 g/L KCl, 1.81 g/L Na2HPO4 × 2H2O, and 0.24 g/L KH2PO4);
then, emission spectra were recorded using 295-nm excitation wavelength (at 25 ◦C, in the presence
of air). DHF-HSA interaction was evaluated using the graphical application of the Stern-Volmer
equation [25,26]:

I0

I
= 1 + KSV + [Q], (1)

where I0 and I are the fluorescence emission intensity of HSA at 340 nm in the absence and presence
of DHF, respectively. KSV denotes the Stern–Volmer quenching constant (unit: L/mol), and [Q] is
the concentration of DHF (unit: mol/L). Furthermore, the binding constant (K; unit: L/mol) of the
DHF–HSA complex was determined by nonlinear fitting applying the Hyperquad2006 software as
described elsewhere [25,27].

The displacement of warfarin from HSA was investigated with the previously described
fluorescence-based method [25,26]. Fluorescence emission spectra of warfarin and HSA (1.0 and 3.5
µM, respectively) were recorded in the presence of increasing amounts of DHF (final concentrations:
0.0, 0.5, 1.0, 2.0, 3.0, 5.0, and 10.0 µM) in PBS (pH 7.4), using 317 nm excitation wavelength. Emission
signal of warfarin was evaluated at 379 nm.

Ultraviolet (UV)-Vis spectra of DHF were recorded employing a Halo DB-20 spectrophotometer
(Dynamica; Dietikon, Switzerland), after which the inner filter effect of DHF was corrected in each
experiment based on the following equation [26,28]:

Icorr = Iobs × e(Aex+ Aem)/2, (2)

where Icorr and Iobs indicate the corrected and the measured fluorescence emission intensity, respectively,
while Aex and Aem denote the absorption of DHF at the excitation and emission wavelengths
used, respectively.
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2.3. Ultrafiltratio

To test the displacement of the Site I marker warfarin and the Site II marker naproxen from HSA by
DHF, ultrafiltration experiments were performed, applying the previously described methods [29,30].
Pall Microsep Advance centrifugal devices with a 10-kDa molecular weight cut-off (MWCO) value
(VWR; Budapest, Hungary) were applied. The samples contained warfarin and HSA (1.0 and 5.0 µM,
respectively) or naproxen and HSA (1.0 and 1.5 µM, respectively) with and without DHF (10 or 20 µM).
Before ultrafiltration, the filter units were washed once with 3.0 mL of distilled water and twice with
3.0 mL of PBS; then, samples (with a 2.5 mL volume) were driven through the filters by centrifugation
(10 min, 7500× g, fixed-angle rotor, 25 ◦C). The concentrations of site markers in the filtrates were
quantified with HPLC (see Section 2.5).

2.4. In Vitro Enzyme Assays

The inhibitory action of DHF on CYP2C9 was investigated as described earlier [25]. In the
enzyme-catalyzed reaction, diclofenac is oxidized to 4′-hydroxydiclofenac. Racemic warfarin (at the
same concentrations as DHF) was applied as a known inhibitor of CYP2C9 (positive control). The
incubates (with 200 µL final volume) contained CypExpress 2C9 reagent (8 mg/mL) including also the
NADPH (nicotinamide adenine dinucleotide phosphate, reduced) generating system, diclofenac (15
µM), and increasing concentrations of DHF (0, 15, 30, 45, and 60 µM) in potassium phosphate buffer (50
mM, pH 7.5). The incubation was carried out in a thermomixer (80 min, 700 rpm, 30 ◦C). The reaction
was started by the addition of the enzyme and stopped by the addition of 100 µL of ice-cold methanol;
then, the samples were centrifuged (10 min, 14,000× g, 25 ◦C). Diclofenac and 4′-hydroxydiclofenac
were analyzed in the supernatants by HPLC (see Section 2.5).

To study the inhibitory effect of DHF on CYP2C19, S-mephenytoin was used as the substrate.
During the enzyme-catalyzed reaction, 4-hydroxymephenytoin is formed. Ticlopidine, as the known
inhibitor of CYP2C19, was employed as positive control (at the same concentrations as DHF). The
incubates (with 200 µL final volume) contained CypExpress 2C19 reagent (15 mg/mL; containing
also the NADPH generating system), S-mephenytoin (5 µM), NADP+ (200 µM), G6P (500 µM), and
increasing concentrations of DHF (0, 5, 10, 15, and 20 µM) in potassium phosphate buffer (50 mM, pH
7.5). The incubation was performed in a thermomixer (120 min, 600 rpm, 30 ◦C). The reaction was
started by the addition of the enzyme and stopped by the addition of 100 µL of ice-cold methanol. After
centrifugation (10 min, 14,000× g, 25 ◦C), S-mephenytoin and 4-hydroxymephenytoin were quantified
in the supernatants by HPLC (see Section 2.5).

The inhibitory effect of DHF on CYP3A4 was investigated as described previously [29]. In the
enzyme-catalyzed reaction, testosterone is oxidized to 6β-hydroxytestosterone. Naringenin (at the
same concentrations as DHF) was applied as the known inhibitor of CYP3A4 (positive control). The
incubates (with 200 µL final volume) contained CypExpress 3A4 reagent (15 mg/mL; containing also
the NADPH generating system), testosterone (5 µM), NADP+ (200 µM), G6P (500 µM), and increasing
concentrations of DHF (0, 5, 10, 15, and 20 µM) in potassium phosphate buffer (50 mM, pH 7.5). Samples
were incubated in thermomixer (180 min, 600 rpm, 30 ◦C). The reaction was started by the addition
of the enzyme and stopped by the addition of 100 µL of ice-cold methanol. After centrifugation (10
min, 14,000× g, 25 ◦C), testosterone and 6β-hydroxytestosterone were analyzed in the supernatants by
HPLC (see Section 2.5).

The inhibitory action of DHF on XO was investigated as described earlier [31]. In the
enzyme-catalyzed reaction, 6-mercaptopurine is oxidized to 6-thiouric acid. Allopurinol (at the
same concentrations as DHF) was applied as the known inhibitor of XO (positive control). The
incubates (with 500 µL final volume) contained XO enzyme (0.01 unit/mL), 6-mercaptopurine (5 µM),
and increasing concentrations of DHF (0, 5, 10, 15, and 20 µM) in sodium phosphate buffer (50 mM,
pH 7.5). Samples were incubated in thermomixer (40 min, 700 rpm, 37 ◦C). The reaction was started by
the addition of the enzyme and stopped by the addition of 30 µL of perchloric acid (6 M). After the
samples were vortexed and centrifuged (5 min, 1,4000× g, room temperature), a 300-µL aliquot of the
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supernatant was transferred into another Eppendorf tube; then, 36 µL of potassium hydroxide (1 M)
was added to this fraction. Samples were cooled to 3 ◦C, then, centrifuged (5 min, 14,000× g, 3◦C).
6-mercaptopurine and 6-thiouric acid were quantified in the supernatants by HPLC (see Section 2.5).

2.5. HPLC Analyses

HPLC analyses applied a HPLC system equipped with a Waters 510 pump (Milford, MA, USA),
a Rheodyne 7125 manual injector with a 20 µL sample loop, a Waters 486 UV-detector, and a Jasco
FP-920 fluorescent detector (Tokyo, Japan). Chromatographic data were evaluated using Millenium
Chromatography Manager Software (Waters; Milford, MA, USA).

The analysis of warfarin in the filtrates was performed applying the described method [29]. The
samples were driven through a Nova-Pak C18 guard column (3.9 × 20 mm, 4 µm; Waters,) and a
Nova-Pak C18 analytical column (3.9 × 150 mm, 4 µm; Waters). The mobile phase contained sodium
phosphate buffer (25 mM, pH 7.0), methanol, and acetonitrile (70:25:5 v/v%). The isocratic elution was
performed at 1.0 mL/min flow rate at room temperature. Warfarin was detected using 310 and 390 nm
excitation and emission wavelengths, respectively.

Naproxen was analyzed in the filtrates as described earlier [29]. The samples were driven through
a Security Guard (C18, 4.0 × 3.0 mm) guard column (Phenomenex; Torrance, CA, USA) linked to
a Gemini C18 (150 × 4.6 mm, 3 µm; Phenomenex) analytical column. The mobile phase contained
acetonitrile and sodium acetate buffer (6.9 mM, pH 4.0) (50:50 v/v%). The isocratic elution was
performed at 1.0 mL/min flow rate at room temperature. Naproxen was detected at 230 nm.

Diclofenac and 4′-hydroxydiclofenac (CYP2C9 assay) were quantified as reported previously [25].
The samples were driven through a Phenomenex Security Guard (C8, 4.0 × 3.0 mm) guard column
(Torrance, CA, USA) linked to an Eclipse C8 (150 × 4.6 mm, 5 µm; Agilent, Santa Clara, CA, USA)
analytical column. The separation was carried out at 1.0 mL/min flow rate at room temperature.
During the isocratic elution, the mobile phase contained acetonitrile and 6 mM orthophosphoric acid
(52:48 v/v%). Diclofenac and 4′-hydroxydiclofenac were detected at 275 nm.

S-mephenytoin and 4-hydroxymephenytoin (CYP2C19 assay) were quantified employing a
Phenomenex Security Guard (C8, 4.0 × 3.0 mm) guard column linked to a Phenomenex C8 (100 ×
4.6 mm, 2.6 µm) analytical column. The mobile phase contained acetonitrile, methanol, and sodium
phosphate buffer (10 mM, pH 4.55) (20:15:65 v/v%). The isocratic elution was performed at 1.0 mL/min
flow rate at room temperature. S-mephenytoin and 4-hydroxymephenytoin were detected at 230 nm.

Testosterone and 6β-hydroxytestosterone (CYP3A4 assay) were quantified as reported
previously [29]. The samples were driven through a Phenomenex Security Guard (C18, 4.0 × 3.0 mm)
guard column linked to a Kinetex EVO C18 (150 × 4.6 mm, 5 µm) analytical column (Phenomenex).
The mobile phase contained methanol, water, and glacial acetic acid (59:40:1 v/v%). The isocratic elution
was performed at 1.2 mL/min flow rate at room temperature. Testosterone and 6β-hydroxytestosterone
were detected at 240 nm.

6-mercaptopurine and 6-thiouric acid were quantified as described earlier [31]. The samples
were driven through a Phenomenex SecurityGuard (C18, 4.0 × 3.0 mm) guard column linked to a
Phenomenex Gemini-NX C18 (150 × 4.6 mm, 3 µm) analytical column. The eluent contained methanol,
acetonitrile, and 0.02 M orthophosphoric acid (4:5:91 v/v%). The isocratic elution was performed at 0.8
mL/min flow rate at room temperature. 6-mercaptopurine and 6-thiouric acid were detected at 334 nm.

2.6. Statistics

Our plotted data indicate mean ± standard error of the mean (SEM) values derived from at least
three independent experiments. Statistical evaluation of data was performed employing IBM SPSS
Statistics software (Version 21; IBM Corporation, New York, NY, USA) using one-way ANOVA tests (p
< 0.05 and p < 0.01).
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3. Results

3.1. Interaction of DHF with HSA Based on Fluorescence Quenching Studies

The complex formation of DHF with HSA was investigated using fluorescence quenching method.
In a concentration-dependent fashion, DHF markedly decreased the emission signal of HSA at 340
nm (λex = 295 nm; Figure 2A), and a slight blue shift of the emission maximum was also observed.
After the inner-filter effect of DHF was corrected (see in Equation (2)), DHF-HSA interaction was
evaluated applying the Stern–Volmer equation and the Hyperquad2006 software (see Section 2.2).
The Stern–Volmer plot showed an excellent linearity (R2 = 0.998, KSV = 3.44 × 105

± 0.03 × 105 L/mol;
Figure 2B), and the binding constant was 4.87 × 105

± 0.07 × 105 L/mol based on the nonlinear fitting
with the Hyperquad2006 software.

Figure 2. (A) Fluorescence emission spectrum of human serum albumin (HSA; 2 µM) in the presence
of increasing concentrations (0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 µM) of 7,8-dihydroxyflavone (DHF) in
phosphate buffered saline (PBS; pH 7.4). (B) Stern–Volmer plot of DHF-HSA interaction (λex = 295 nm,
λem = 340 nm).

3.2. Effects of DHF on the Fluorescence Signal of Warfarin–HSA Complex

First, the displacement of the Site I marker warfarin from HSA by DHF was investigated with a
fluorescence spectroscopic model based on the principle that the HSA-bound warfarin shows markedly
stronger fluorescence emission signal than the unbound molecule [25,32]. To test the displacing ability
of DHF, increasing concentrations of the flavonoid were added to warfarin and HSA; then, the emission
spectra were recorded (λex = 317 nm). Even after the elimination of the inner-filter effect of DHF (see in
Equation (2)), the flavonoid strongly decreased the fluorescence emission signal of warfarin at 379 nm
in a concentration-dependent fashion (Figure 3).

Figure 3. (A) Fluorescence emission spectrum of warfarin (1.0 µM) in the presence of HSA (3.5 µM)
and increasing concentrations (0.0, 0.5, 1.0, 2.0, 3.0, 5.0, and 10.0 µM) of DHF in PBS (pH 7.4). (B) DHF
induced decrease in the fluorescence emission of warfarin (λex = 317 nm, λem = 379 nm).
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3.3. Ultrafiltration Studies

In the following experiments, the displacement of the Site I marker warfarin and the Site II
marker naproxen by DHF was investigated employing ultrafiltration. Since HSA and albumin-bound
molecules cannot pass through the filter unit with a 10-kDa MWCO value, the increased concentration
of site markers in the filtrate suggests their displacement from albumin by the test compound [29,30].
In a concentration-dependent fashion, DHF markedly increased the concentrations of both site markers
in the filtrates (Figure 4). The 12 and 21% fractions of total warfarin became unbound in the presence
of 10 and 20 µM DHF, respectively. In addition, the appearance of further 14 and 22% of total naproxen
was observed in the filtrate, induced by 10 and 20 µM of DHF, respectively.

Figure 4. Displacement of Site I (warfarin, WAR) and Site II (naproxen, NAP) markers from HSA by
DHF. Concentrations of warfarin (A) and naproxen (B) in the filtrate: Before the ultrafiltration, the
samples contained warfarin and HSA (1.0 and 5.0 µM, respectively) or naproxen and HSA (1.0 and 1.5
µM, respectively) with or without 10 and 20 µM DHF in PBS (pH 7.4; * p < 0.05, ** p < 0.01). In each
model, the filtered concentration of site markers was compared to the concentration measured in the
filtrate when no HSA was added to the site markers (100%).

3.4. Inhibition of Biotransformation Enzymes by DHF

Inhibition of CYP2C9, CYP2C19, CYP3A4, and XO enzymes was tested applying in vitro enzyme
assays. DHF significantly inhibited the metabolite formation in each enzyme assay, even at equimolar
concentrations with the substrates (Figure 5). The absolute and relative IC50 values (the inhibitor
concentration which induces 50% decreases in metabolite formation) of DHF and the corresponding
positive controls as well as the α values (IC50 of DHF divided by the IC50 value of the positive
control) are listed in Table 1. DHF induced 50% inhibition at approximately two-fold concentration
vs. the substrates in CYP2C9 and XO assays. Furthermore, the IC50 values of DHF were circa three-
and four-fold higher compared to the substrate concentrations in the CYP3A4 and CYP2C19 assays,
respectively. The flavonoid proved to be a similarly potent inhibitor of CYP2C9 to the positive control
warfarin as well as 1.5- to 1.9-fold weaker inhibitor of other enzymes tested (CYP2C19, CYP3A4, and
XO) vs. the corresponding positive controls.
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Figure 5. Concentration-dependent inhibitory effects of DHF on CYP2C9, CYP2C19, CYP3A4, and
xanthine oxidase (XO) enzymes (** p < 0.01). The 50% inhibition of metabolite formation is marked
with the violet dashed line.

Table 1. IC50, relative IC50, and α values of DHF regarding the four tested biotransformation enzymes.
IC50 denotes the concentration of DHF which induces 50% inhibition of the metabolite formation,
IC50(rel) is the IC50 of DHF divided by the substrate concentration applied, while α marks the IC50 of
DHF divided by the IC50 value of the corresponding positive control.

Enzyme Substrate
Concentration (µM) Inhibitor IC50 (µM) IC50(rel) α

CYP2C9 15
DHF 34.5 2.3 1.0

WAR (positive ctrl) 34.5 2.3

CYP2C19 5.0
DHF 19.0 3.8 1.9

TIC (positive ctrl) 10.0 2.0

CYP3A4 5.0
DHF 14.5 2.9 1.5

NAR (positive ctrl) 10.0 2.0

XO 5.0
DHF 11.0 2.2 1.6

APU (positive ctrl) 7.0 1.4

WAR, warfarin; TIC, ticlopidine; NAR, naringenin; APU, allopurinol

4. Discussion

DHF is a promising candidate in the treatment of central nervous system diseases; however, its
possible pharmacokinetic interactions with serum albumin and biotransformation enzymes have not
been characterized. Therefore, in this study, we aimed to examine the interaction of DHF with serum
albumin employing fluorescence spectroscopy and ultrafiltration, and the inhibitory effect of DHF on
CYP and XO enzymes was also tested using in vitro enzyme assays.

In quenching studies, after the correction of the inner filter effect, the 0.5 µM and higher
concentrations of DHF (vs. 2 µM HSA) strongly decreased the fluorescence emission signal of albumin
at 340 nm (Figure 2). This observation suggests the formation of a stable DHF–albumin complex. The
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single tryptophan residue (Trp-214) of HSA (which is largely responsible for the intrinsic fluorescence
of the protein) is located in subdomain IIA [33,34]. Therefore, the strong quenching effect of DHF on
HSA suggests that the binding site of DHF needs to be near to the Trp-214 moiety. Furthermore, in the
presence of DHF, a blue shift in the fluorescence emission spectrum of HSA was observed (Figure 2). It
can be likely explained by the interaction of DHF with HSA, which leads to the increased lipophilicity
of the microenvironment around the Trp-214 residue [35]. Furthermore, the binding of DHF strongly
decreases the fluorescence of Trp-214, resulting in the more dominant fluorescence signal of tyrosine
amino acids vs. the sole tryptophan molecule [36]. It may also be responsible for the blue shift in
the fluorescence emission spectrum of albumin. Both linear and nonlinear fittings (received with the
Stern–Volmer equation and the Hyperquad2006 software, respectively) showed good correlation with
the 1:1 stoichiometry of complex formation. Our results demonstrate that DHF binds to HSA with
two-fold higher affinity compared to chrysin (5,7-dihydroxyflavone, a structural isomer of DHF; K
= 3.4 × 105 L/mol) [37] and the Site I marker warfarin (K = 3.4 × 105 L/mol) [32], which suggests the
potential biological importance of DHF–HSA interaction. Nevertheless, it is important to note that the
plasma concentrations of DHF seem to be relatively low (33–192 nM) based on animal studies (after
the per os administration of 15–50 mg/kg DHF to mice) [14].

DHF markedly decreased the emission signal of warfarin at 379 nm (Figure 3). Since the inner
filter effect was corrected, this observation suggests the displacement of warfarin from HSA because
HSA-bound warfarin exerts much higher fluorescence vs. the unbound fluorophore [25,32]. Based on
the previous investigations using the same model, the displacing ability of DHF vs. warfarin seems
similar to chrysin [37], quercetin [25], and diosmetin [26]. The ability of flavonoids to displace warfarin
from albumin has been reported in several studies [26,32,38,39]; however, Rimac et al. [40] suggest the
potential cooperative binding of warfarin and some flavonoids. Therefore, the displacement of warfarin
may be resulted from competitive and/or allosteric interactions, as it was also suggested regarding
diosmetin [26]. In ultrafiltration studies, DHF caused significant increases in the concentrations of
both Site I and II markers in the filtrate (Figure 4), showing that DHF can displace both Site I and Site II
ligands from HSA. Under the same experimental conditions, diosmetin showed a similar displacing
ability vs. warfarin than DHF [26] while quercetin showed considerably stronger effect compared
to both DHF and diosmetin [25]. At 20 µM concentration, chrysin displaced a similar fraction of
warfarin and naproxen than DHF in the same models [37]. The significant displacement of highly
albumin-bound drugs from HSA causes the strong elevation of their free fraction in the circulation,
leading to their increased tissue uptake or faster elimination [16,17]. If high concentrations of DHF
appear in circulation, it may be able to displace Site I or Site II ligands. However, based on our current
knowledge regarding the plasma concentrations and displacing ability of DHF, it does not seem likely.

In each enzyme assay, DHF significantly decreased metabolite formation (Figure 5 and Table 1),
suggesting that DHF may interfere with the biotransformation of several medications. DHF proved to
be a similarly potent inhibitor of the CYP2C9-catalyzed 4′-hydroxydiclofenac formation to warfarin
(Table 1). Racemic warfarin was applied in our experiments as the positive control. The (S)-warfarin is
the substrate of CYP2C9 enzyme; nevertheless, 7-hydroxywarfarin (formed via the CYP2C9-catalyzed
hydroxylation) can also inhibit the enzyme [41]. Inhibition of CYP2C9 by some other flavonoids has
been also described previously, including 6-hydroxyflavone, quercetin, apigenin, luteolin, casticin,
and diosmetin [26,29,42]. In the same model applied in this study, casticin was 1.3-fold weaker,
while diosmetin was 2.7-fold stronger inhibitor of CYP2C9 enzyme compared to DHF [26,29].
Despite the fact that quercetin and its metabolites proved to be weak inhibitors of CYP2C9-catalyzed
diclofenac hydroxylation [25], quercetin (500 mg, administered twice daily) significantly inhibited the
metabolism of diclofenac in healthy human volunteers [43]. These observations suggest the potential
hazardous consequences of the simultaneous administration of DHF with certain drugs eliminated
through CYP2C9.

DHF inhibited the CYP2C19-catalyzed 4′-hydroxymephenytoin formation 1.8-fold weaker than
ticlopidine. Among the previously tested flavonoids, quercetin showed significant inhibitory effect
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on CYP2C19 (using human liver microsomes and S-mephenytoin as substrate) [44,45]. The oral
antiplatelet drug ticlopidine (a competitive inhibitor of CYP2C19) reaches from 1.3 to 2.6 µM peak
plasma concentration after the oral administration of a single 250 mg dose [46]. Furthermore, during
chronic treatment with ticlopidine (oral administration of 250 mg twice daily), its peak plasma
concentrations were ranging from 3.4 to 4.1 µM in men [46]. The coadministration of ticlopidine
with phenytoin led to phenytoin intoxication in an epileptic patient [47]. In addition, ticlopidine
(administered orally 3 × 100 mg daily; average peak plasma concentrations: approximately 3.5
µM) increased the serum concentrations of omeprazole in healthy subjects due to the inhibition of
its CYP2C19-mediated metabolism [48]. Considering the previous data that even low micromolar
plasma concentrations of ticlopidine can induce clinically relevant CYP2C19 inhibition as well as our
observation that DHF is a slightly weaker inhibitor of CYP2C19 than ticlopidine, it seems possible that
DHF may interfere with the CYP2C19-mediated elimination of some drugs.

DHF inhibited the CYP3A4-catalyzed 6β-hydroxytestosterone formation 1.4-fold weaker than the
positive control naringenin (Table 1). Using the same model described here, resveratrol was a two-fold
stronger inhibitor of CYP3A4 while casticin has similar inhibitory effect on this enzyme compared to
DHF [29]. Furthermore, in in vitro studies, chrysin also proved to be a potent inhibitor of CYP3A4 [49].
CYP3A4 is the most abundant cytochrome enzyme in enterocytes and hepatocytes; its inhibition can
lead to the development of several clinically relevant food–drug and drug–drug interactions [50–52].
Hypericin, hyperforin, and I3,II8-biapigenin in St John’s wort (Hypericum perforatum, Hypericaceae) and
naringenin, bergamottin, and 6,7-dihydroxybergamottin in grapefruit (Citrus paradisi, Rutaceae) juice
can strongly interfere with the CYP3A4-mediated biotransformation of drugs (e.g., some statins) [53].
These data show that high intake of DHF may interfere with CYP3A4-mediated elimination of
some drugs.

DHF inhibited the XO-catalyzed 6-thiouric acid formation 1.7-fold weaker than the positive control
allopurinol (Table 1). It is well known that flavonoid aglycones (including chrysin and quercetin) are
strong inhibitors of XO-catalyzed xanthine oxidation [7,54]; however, we have limited data regarding
the effects of flavonoids on 6-mercatopurine oxidation. A recent study demonstrated that quercetin
and its sulfate or methyl conjugates are similarly strong inhibitors of XO-catalyzed xanthine and
6-mercaptopurine oxidation and are approximately ten-fold stronger inhibitors of 6-mercaptopurine
oxidation than allopurinol [31]. Inhibition of XO-mediated inactivation of the antitumor agent
6-mercaptopurine by allopurinol can result in severe or even fatal consequences [55]. However,
the therapeutic plasma concentrations of allopurinol and its metabolite oxipurinol (both are active
inhibitors of XO) are tens of micromoles [31,56]. Therefore, it is unlikely that DHF can reach similar
plasma and tissue concentrations to allopurinol/oxipurinol, which makes less likely the development
of clinically relevant pharmacokinetic interaction of DHF with 6-mercaptopurine.

5. Conclusions

The application of flavonoids as drugs and/or dietary supplements is emerging. Many studies
suggest that flavonoids may be able to interfere with the pharmacokinetics of certain drugs due to
their interactions with serum albumin, biotransformation enzymes, and drug transporters. However,
commonly limited information is available regarding the pharmacokinetic interactions of an individual
flavonoid and/or its metabolites, and the clinical relevance of these interactions is usually unclear.
Our results demonstrate that DHF forms a stable complex with HSA and it is able to displace both
Site I and Site II ligands. Furthermore, DHF can strongly inhibit each enzyme tested. Inhibition of
CYP2C9 enzyme seems the most relevant; however, the effects of DHF on CYP2C19 and CYP3A4 may
also cause the development of pharmacokinetic interactions with some medications. Based on our
observations, the simultaneous administration of DHF with drugs should be carefully considered.
However, further studies seem reasonable to explore the in vivo relevance of our in vitro results.
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28. Maciążek-Jurczyk, M.; Maliszewska, M.; Pożycka, J.; Równicka-Zubik, J.; Góra, A.; Sułkowska, A. Tamoxifen
and curcumin binding to serum albumin. Spectroscopic study. J. Mol. Struct. 2013, 1044, 194–200. [CrossRef]

29. Mohos, V.; Bencsik, T.; Boda, G.; Fliszár-Nyúl, E.; Lemli, B.; Kunsági-Máté, S.; Poór, M. Interactions of
casticin, ipriflavone, and resveratrol with serum albumin and their inhibitory effects on CYP2C9 and CYP3A4
enzymes. Biomed. Phamacother. 2018, 107, 777–784. [CrossRef]

30. Fliszár-Nyúl, E.; Lemli, B.; Kunsági-Máté, S.; Dellafiora, L.; Dall’Asta, C.; Cruciani, G.; Pethő, G.; Poór, M.
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warfarin from human serum albumin by flavonoid aglycones. J. Lumin. 2013, 142, 122–127. [CrossRef]

33. Dufour, C.; Dangles, O. Flavonoid–serum albumin complexation: Determination of binding constants
and binding sites by fluorescence spectroscopy. Biochimica Biophysica Acta 2005, 1721, 164–173. [CrossRef]
[PubMed]

34. Sułkowska, A. Interaction of drugs with bovine and human serum albumin. J. Mol. Struct. 2002, 614, 227–232.
[CrossRef]

35. Azimi, O.; Emami, Z.; Salari, H.; Chamami, J. Probing the Interaction of Human Serum Albumin with
Norfloxacin in the Presence of High-Frequency Electromagnetic Fields: Fluorescence Spectroscopy and
Circular Dichroism Investigations. Molecules 2011, 16, 9792–9818. [CrossRef] [PubMed]

36. Ghisaidoobe, A.B.T.; Chung, S.J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins:
A Focus on Förster Resonance Energy Transfer Techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [CrossRef]
[PubMed]

http://dx.doi.org/10.1111/nyas.13384
http://dx.doi.org/10.1016/j.clpt.2004.08.009
http://dx.doi.org/10.1016/j.clpt.2005.10.002
http://www.ncbi.nlm.nih.gov/pubmed/16413245
http://dx.doi.org/10.1111/j.1742-4658.2008.06489.x
http://www.ncbi.nlm.nih.gov/pubmed/18513323
http://dx.doi.org/10.2337/diabetes.51.4.1118
http://www.ncbi.nlm.nih.gov/pubmed/11916934
http://dx.doi.org/10.1161/01.CIR.0000041431.57222.AF
http://dx.doi.org/10.1016/j.biopha.2017.01.092
http://dx.doi.org/10.1016/j.biopha.2018.03.146
http://dx.doi.org/10.1016/0039-9140(96)01958-3
http://dx.doi.org/10.1016/j.molstruc.2012.11.024
http://dx.doi.org/10.1016/j.biopha.2018.08.068
http://dx.doi.org/10.3390/ijms20092352
http://dx.doi.org/10.3390/ijms20112681
http://www.ncbi.nlm.nih.gov/pubmed/31159151
http://dx.doi.org/10.1016/j.jlumin.2013.03.056
http://dx.doi.org/10.1016/j.bbagen.2004.10.013
http://www.ncbi.nlm.nih.gov/pubmed/15652191
http://dx.doi.org/10.1016/S0022-2860(02)00256-9
http://dx.doi.org/10.3390/molecules16129792
http://www.ncbi.nlm.nih.gov/pubmed/22117170
http://dx.doi.org/10.3390/ijms151222518
http://www.ncbi.nlm.nih.gov/pubmed/25490136


Biomolecules 2019, 9, 655 13 of 13

37. Mohos, V.; Fliszár-Nyúl, E.; Schilli, G.; Hetényi, C.; Lemli, B.; Kunsági-Máté, S.; Bognár, B.; Poór, M.
Interaction of Chrysin and Its Main Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide
with Serum Albumin. Int. J. Mol. Sci. 2018, 19, 4073. [CrossRef] [PubMed]

38. Feroz, S.R.; Mohamad, S.B.; Bujang, N.; Malek, S.N.A.; Tayyab, S. Multispectroscopic and Molecular Modeling
Approach to Investigate the Interaction of Flavokawain B with Human Serum Albumin. J. Agric. Food Chem.
2012, 60, 5899–5908. [CrossRef] [PubMed]

39. Barreca, D.; Laganà, G.; Toscano, G.; Calandra, P.; Kiselev, M.A.; Lombardo, D.; Bellocco, E. The interaction
and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against
aggregation and oxidative injuries. Biochimica Biophysica Acta 2017, 1861, 3531–3539. [CrossRef]

40. Rimac, H.; Dufour, C.; Debeljak, Ž.; Zorc, B.; Bojić, M. Warfarin and Flavonoids Do Not Share the Same
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