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A B S T R A C T

Background and purpose: Probabilistic optimization is an alternative to margins for handling geometrical un-
certainties in treatment planning of radiotherapy where uncertainties are explicitly incorporated in the opti-
mization. We present a novel probabilistic method based on the same statistical measures as those behind
conventional margin based planning.
Material and methods: Percentile Dosage (PD) was defined as the dose coverage that a treatment plan meet or
exceed to a given probability. For optimization, we used the convex measure Expected Percentile Dosage (EPD)
defined as the average dose coverage below a given PD. An iterative method gradually adjusted the constraint
tolerance associated with the EPD until the desired target PD was met. It was applied to planning of cervical
cancer patients focusing on systematic uncertainty caused by organ deformation. The resulting plans were
compared to margin based plans using target and organ at risk PDs.
Results: The EPD tolerance converged in less than ten iterations to produce a PD within 0.1 Gy of the requested.
The PD was on average within 0.5% of the requested PD when validated versus independent scenarios. The
rectum volume, extracted from the PDs, receiving 90% of the intended target dose was decreased with 16% for
the same target PD in comparison to margin based plans.
Conclusions: The proposed probabilistic optimization method enabled prescription of a dose volume histogram
metric to a chosen confidence. The probabilistic plans showed improved target dose homogeneity and decreased
rectum dose for the same target dose coverage compared to margin based plans.

1. Introduction

Geometrical uncertainties in radiotherapy, such as patient setup
errors and organ motion, are commonly handled by expanding the
clinical target volume (CTV) by a margin to create a planning target
volume (PTV) to which the dose intended for the CTV is prescribed
[1,2]. A widely used recipe [3] for setting the margin was designed such
that the entire CTV should be covered to receive 95% of the intended
dose for 90% of the treatments. However, such margin recipes are in-
trinsically population based and do not explore individual patient
geometries to reduce collateral dose burdens to surrounding normal
tissues. Probabilistic or robust optimization strategies that explicitly
include the uncertainties have been proposed to improve upon the
margin based planning [4]. However, probabilistic strategies in general
are not based on the same statistical basis as the margin recipe. Hence,
introduction of these alter the principles of dose prescription as com-
pared to margin based plans. Gordon et al. [5] formulated a probabil-
istic optimization strategy based on the statistics of the margin recipe

which was extended by Mescher et al. [6] to include dose coverage as
constraints. However, none of these formulations are convex thus ren-
dering implementation of efficient optimization algorithms difficult.

The dose coverage DV is defined as the dose that the partial volume
V of a region of interest (ROI) at least receives, normally extracted by
means of a cumulative dose volume histogram (DVH). The Qth per-
centile dosage (PD) DV Q, (strictly really the Q( 1)th percentile) is
defined such that the probability for at least a dose coverage DV is Q.
We can use D98%,90% as a target minimum dose measure which is con-
sistent with the common margin recipe. A mathematically equivalent
measure to PD is the Value at Risk (VaR) that has been used in stock
portfolio management to estimate the maximum loss of the Qth per-
centile worst outcome of the portfolio [7]. However, VaR and PD yields
non-convex optimization problems [8]. Luckily, the Conditional Value at
Risk (CVaR), defined as the expectation value of the distribution within
the Qth percentile, gives a convex problem suitable for optimization.
The concept was derived for investment management [9] but has also
been applied to radiotherapy treatment planning [10,11]. To suit the
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later, we introduce the term Expected Percentile Dosage (EPD), defined as
the expectation value of the dose coverage for all scenarios with worse
dose coverage than the PD (i.e. mathematically equivalent to CVaR).

In this work, we take advantage of the close statistical relationships
between PD, EPD and the margin concept, creating a novel method for
probabilistic and hence robust treatment planning. The algorithm sa-
tisfies a target PD constraint while minimizing the expectation value of
the organ at risk (OAR) objective functions. To test the feasibility of this
methodology, we applied it to radiotherapy planning of cervical cancer
patients for which systematic geometrical uncertainties were modelled
by a deformation model [12]. The resulting probabilistic treatment
plans were evaluated versus margin based plans satisfying the same
target PD. For simplicity, the effect of fractionation was not considered,
although our method is general enough for future inclusion. To our
knowledge, probabilistic planning taking organ deformation into ac-
count has previously never been explored for cervical cancer patients.

2. Methods

2.1. Dose coverage probability and the expected percentile dosage

In our simulations, we defined a scenario as one possible realization
of a treatment with data for all relevant uncertainties sampled ac-
cordingly. We focused on patient setup errors as well as position and
shape of the target and surrounding risk organs as they exhibit large
variations for cervical cancer patients. Uncertainties in segmentation
could have been included but were left out for simplicity. Also, single
fraction scenarios were used implying that only systematic errors were
modelled but the concepts of EPD is general enough to include also
fraction specific random errors for fractionated treatments.

The shape and position of the patient anatomy was described by a
statistical shape model (SSM) where the parameters are sampled from
the probability density function of a random vector y [12]. The SSM
was derived through principal component analysis (PCA) of deformable
image registration results of images acquired at different fractions
during the radiotherapy. The sampled displacement transform y rT ( , )
from the SSM is applied to the spatial position r of the reference image
to generate a randomized geometrical state of the patient anatomy.

The dose distribution x rd ( , )F without positional error was calcu-
lated using the fixed reference geometry. Then the dose distribution for
the anatomy in the reference geometry for a sampled single fraction
scenario could be given by

=x y r x y rD d T( , , ) ( , ( , ))F (1)

where x represent the beamlet intensities (and hence the optimization
variables) defining the irradiation. Note that Eq. (1) assumes that the
dose distribution in the treatment machine coordinate system do not
change due to patient or organ motion. This is a reasonable approx-
imation for male pelvic patients [13] and a reasonable approximation
also for females. Since y is a random vector, it follows that for a fixed x
also the dose coverage = x yD D ( , )V V is a random variable. Fig. 1 il-
lustrates how the probability density function xp D( , )D VV for =DV 98%
can be determined from repeated treatment scenario simulations where
the input elements of y are sampled from their respective probability
density functions for each scenario (see e.g. Tilly et al. [12] for a de-
tailed description). Following the recommendations of the ICRU we
used D98% to represent the minimum target dose [14]. From pDV we
could calculate the probability for DV to be at least some number as

=x y xP D p t t( ( , ) ) ( , )d .V DV
(2)

We defined DV Q, as the dose that DV exceeds with the probability Q

= x yQ P D D( ( , ) )V V Q, (3)

We could then express a probabilistic prescription using a PD

criteria

xD D( )V Q V Q, ,
presc (4)

where DV Q,
presc is the prescribed PD with its probabilityQ explicitly stated.

Margin based plans often use 95% of the intended homogenous target
dose as the DV Q,

presc [3]. Similar criteria can be defined for OAR by re-
quiring that a relevant DV Q, does not exceed a tolerated dose.

PD is not convex in x and therefore we instead used the EPD that is
convex and defined as

= =x x y x xD E D D D
Q

t p t t( ) [ ( , )| ( )] 1
1

· ( , ) d .
x

V Q V V V Q
D

D,
( )V Q

V

,

(5)

For the implementation of the optimization we used surrogate
functions closely related to DV Q rather than a direct implementing of
Eq. (5).

The DV Q, for any dose-volume combination and fixed Q, can be
determined from simulation results by first creating dose volume cov-
erage maps [5] describing the probability that a volume will receive at
least a certain dose (i.e. the probability that a DVH will pass above/
right of a dose-volume combination). We chose to use DV ,90% for targets
and DV ,10% for OARs where DV ,90% was obtained from the dose coverage
maps by extracting their 90% iso-probability line and DV ,10% in analo-
gous way. The probabilistic and margin based plans were compared
using the relevant DV ,90% for targets and DV ,10% for OARs. Analogous to
DVHs for OARs the DV Q, can be expressed in terms of the volume VD Q,
receiving at least a dose to the probability Q.

2.2. Probabilistic optimization using an EPD constraint

The quantities DV and DV Q, are non-convex with respect to x [15]
and cannot easily be used to solve for x with standard optimization
methods. The planning paradigm chosen in this work was to treat the
PD criterion of Eq. (4) as a constraint while minimizing the sum of
objective functions describing all other aspects of the treatment plan
(e.g. limiting the dose to the OARs). We therefore employed convex
objective functions, routinely used in radiotherapy optimization, of the
type

=x y x y rf d
V

d D
d

( , , , ROI ) 1 max 0, ( , , )
h

h v

v

ROI

2

h (6)

for a minimum dose coverage criterion, and similar + +x yf d( , , , ROI )h
for a maximum dose coverage criterion. Vh is the volume of h:th region
ROIh. The function f penalizes voxels v with dose below d whereas the
analogous max dose function +f penalize voxels above +d . With a sui-
table choice of d the behaviour of f will be a good surrogate for a
function directly measuring the deviation of D98%from DV Q,

presc. We em-
pirically found that setting d 5% higher than DV Q,

presc yielded a very good
proxy for the D98% criterion.

For a given x , f is a random variable with a probability density
function, xp t( , )f . Percentile quantities of f (i.e. f Q, and f Q) were
defined in analogy with PD and EPD and used as surrogates for the for
the latter. Rockafellar and Uryasev [9] introduced a help function that
in our context (and discretized over scenarios) could be expressed as:

= +
=

x x yF
Q N

f d( , ) 1
1

1 max(0, ( , , , ROI ) )Q
s s

N

s
1

CTV

s

(7)

where Ns is the number of scenarios, ys are scenario specific samples
from the probability density functions of y and ROICTV is the CTV re-
gion. Moreover, they showed that f Q can be minimized by mini-
mizing xF ( , )Q with respect to x and , which we utilized in this work.
We limited the dose to the OARs and prevented overdosage of the CTV
by minimizing the weighted sums of functions of type +f with suitable

+d h, values per ROI. The probabilistic optimization problem can then be
formulated as
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where h is the importance weight for ROIh, Nh is number of ROIs,
xF ( , )Q expresses the EPD constraint, and >x 0 denotes the po-

sitivity requirement on the beamlet weights. The value of f Q, and
indirectly the value of f Q, , is then limited by the constraint tolerance
that was iteratively adjusted until DV P,

presc was fulfilled. Note that since FQ
and +f / are convex, the whole problem is convex and hence standard
methods for non-linear constrained optimization could be used. By
controlling f Q, and f Q via we also controlled the PD since f is a
surrogate for DV . In summary, a solution to problem (8) yields a treat-
ment plan with a PD that is determined by while trying to limit the dose to
OARs and also limit the overdosage to the CTV. We implemented the
method introduced by Baum et al. [16] to efficiently calculate the
weighted sums in the objective function by first determine the prob-
ability that ROIh occupies voxel v and thus inter-changing the sum-
mation order over voxels and scenarios.

In the following we will outline a bilevel optimization procedure
where the inner loop solves problem (8) and the outer loop determines
the tolerance that yields the requested PD.

2.3. Optimization towards a percentile dosage

The planning paradigm used in this project was to optimize towards
a given target dose coverage constraint D DV Q V Q, ,

presc. We hypothesized
that given a good surrogate function f for deviation of DV from the
requested there is a value = for which problem (8) yields
D DV Q V Q, ,

presc. Finding by trial and error is possible but may be in-
efficient. Instead we repeatedly solved the inner problem (8) and used
the difference between f Q and f Q, to gradually tighten in an outer
loop until the desired DV Q, criterion was met ( sufficiently close to ).
The inner loop problem (8) was implemented in C++ using the Ipopt
[17] as a solver, see Supplement A for more details. Details of the outer
loop are given in Supplement B.

Several hundred simulated scenarios are in general needed to
provide sub-percent accuracy in the calculated DV Q, . Due to high
memory load and long calculation times we used Ns =100 in the inner
optimization problem and the influence of this was quantified in the
results.

2.4. Probabilistic optimization applied to cervical cancer

2.4.1. Patient data
We used the same data set as in a previous work where we devel-

oped a probabilistic tool for treatment plan evaluation using a SSM to
sample the large deformations of cervical cancer patients anatomy for
five patients (with informed consent) treated at the Academic Medical
Center, Amsterdam [12]. These patients were treated with single-arc
rotational therapy 6MV and was prescribed ×2Gy 23fx. The primary
CTV encompassed the GTV, cervix, corpus-uterus, and the upper 20mm
of the vagina with the left and right lymph nodes included into the total
CTV.

2.4.2. Scenario sampling
The uncertainties considered were systematic setup-errors and

organ motion for single fraction treatments. The deformations were
sampled using the previously developed SSM. Segmentation un-
certainty was not explicitly included but could to some degree be
considered as part of the model since its learning data included
manually drawn contours. The deformations were characterized by
eigenmodes (seven was sufficient) resulting from a PCA with the first
eigenmode representing the most dominating deformation pattern. As
in our previous work [12] we made the assumption that a re-
presentative deformation scenario can be sampled as a weighted sum of
eigenvectors. The setup-error was assumed to be normally distributed
with zero mean and standard deviations of (0.3, 1.3, 1.9) mm in the
left-right, superior-inferior and anterior-posterior directions [18].

2.4.3. Implementation of EPD constrained optimization
We used the CTV D98%,90% constraint to ensure the minimum dose

requirement. All the OARs (bladder, rectum and the rest of the normal
tissue) as well as the CTV were assigned a max dose objective per
scenario (see details in Table 1). A conformance objective enforced a
dose fall-off gradient from the edge of each scenario CTV as well as
from the edge of the union of all scenario CTVs.

Note that the dose was calculated only in the fixed geometry, see Eq.
(1). The beamlets for use in dose calculation were generated with a
Monte Carlo dose engine [19], implemented in a research version of
Monaco treatment planning system (Elekta AB, Stockholm, Sweden), to
a 3% statistical uncertainty per beamlet. The 360° arcs for VMAT
planning were approximated by 36 beam directions with 10° intervals.
The resolution of the fluence map bixels were 10× 10mm2 and the
dose grid voxel resolution was 3×3×3mm3.

Fig. 1. In this schematic example the probability density function pD98% (right) is estimated from extracting the D98% values determined from the scenario DVHs along
the dashed arrow (left figure). The percentile dosage DV Q, and expected percentile dosage DV Q can then be determined from the constructed pD98%. The D98%,90% is
the D98% that 90% of all scenarios meet or exceed (i.e. dashed line at the border of the red/white area). The D98% 90% is the average D98% of all scenarios with worse
dose coverage than D98%,90% (i.e. the average of the red area). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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For verification of the generated probabilistic treatment plan, a set
of 1000 scenarios (different from those used in the optimization) was
generated for each patient. The PDs based on the verification calcula-
tions were evaluated versus the targeted probabilistic dose coverage
criterion D98%,90%

presc .

2.5. Comparison with conventional margin based plans

As far as possible the treatment planning parameters were kept the
same for the conventional margin based plans as the probabilistic plans
to facilitate a fair comparison. The clinically used PTV max dose criteria
D2% at our department enforces that V102% < 2% which required a high
PTV max dose weight, see Table 1. Similar to the CTV in the prob-
abilistic plans, a conformance objective enforced a dose gradient from
the edge of the PTV. The conventional plans were designed to meet the
same D98%,90%

presc criteria as the probabilistic plans by stepwise increasing
the margin size until the prescribed D98%,90% was fulfilled. The D98%,90%
was determined by treatment scenario simulation as described in Fig. 1.
Here, we found that a 20mm CTV to PTV margin resulted in a D98%,90%
equal to the D98%,90%

presc . The same beamlets, objective functions f and +f ,
objective weights and the same solver was used as in the probabilistic
optimization.

3. Results

The iterative method of gradually finding the constraint tolerance
that produces the requested percentile dosage converged as intended
for all patients such that the D98%,90% were within 0.1 Gy (0.2%) of

=D 43.7Gy98%,90%
presc after 10 iterations, see Fig. 2. The D98%,90% from the

verification calculations were on average 0.2 Gy (0.5%) lower than
D98%,90%

presc . The EPD, or D98% 90%, were near identical 42.6 Gy for the two
planning paradigms.

A representative dose distribution for a sagittal slice through the
center of the CTV is shown in Fig. 3. The margin based plan exhibited
the designed homogenous dose in the PTV and a good conformance.
The probabilistic plan redistributed dose from areas with little de-
formation (superior, inferior and posterior) to the area with large de-
formation (anterior). Moreover, for the probabilistic plans the dose
inside the CTV of the reference geometry was higher whereas it was
lower in the rectum in the reference geometry.

The probabilistic evaluation of the dose distribution from Fig. 3 is
shown as the CTV DV ,90% and the OAR DV ,10% in Fig. 4. The probabilistic
planning consistently resulted in increased dose homogeneity in the
CTV with near equivalent D98%,90%, and increased median dose D50%,50%
closer to the intended dose, and lower max dose D98%,10%, see Table 2.
Furthermore, the rectum volume receiving high dose V90%,10% was de-
creased. The decrease in the high dose volume for the bladder was
however not consistent across all patients.

Another way to compare the plans is to calculate the treated vo-
lume, defined as the total volume receiving at least 95% of the intended
dose 46 Gy. The 95% isodose mark the ideal anisotropic margin to
produce the prescribed D98%,90%

presc . The probabilistic plans showed an
average treated volume reduction of 18.8% (ranging from 7.9% to
28.8%) compared to the margin based plans.

Each treatment optimization, i.e. solving the inner problem (8),
with =N 100s took ∼2 h on an Intel Core i7-6820HQ CPU @ 2.7 GHz
computer with 32 GB RAM (single threaded).

Table 1
Treatment planning criteria (implemented in Eq. (8)). The dose is given as percent of intended dose 46 Gy.

ROI Prob. Margin D98%,90% [%] Weight Min dose [%] Max dose [%]

PTV ✓ Constraint 95
PTV ✓ 1000 101
CTV ✓ 95 Constraint
CTV ✓ 1000 101
Bladder ✓ ✓ 1 90
Rectum ✓ ✓ 10 90
Normal Tissue ✓ 100 98%→50% in 2 cm from PTV edge
Normal Tissue ✓ 100 98%→50% in 2 cm from edge of union of scenario CTVs
Normal Tissue ✓ 10 98%→50% in 2 cm from edge of scenario CTVs

Fig. 2. The evolution per iteration of the D98%,90%. The rightmost points (without connecting line) of the left panel shows the D98%,90% determined from the validation
simulations using 1000 scenarios.
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4. Discussion

In this work we developed a novel probabilistic optimization fra-
mework based on the percentile dosage (PD) which is the same statis-
tical basis as the van Herk margin recipe. This also demonstrates for the
first time probabilistic optimization of cervical cancer radiotherapy
where organ deformation is taken into account. The probabilistic plans
showed an improved target conformance while at the same time re-
ducing the rectum volume receiving high dose when compared to
margin based plans. The method enables a dose planner to directly plan

for a target percentile dosage.
The target PD criterion was met by gradually tightening with the

proposed iterative algorithm. The convex reformulation of the optimi-
zation problem, in contrast to Gordon et al. [5] and Mescher et al. [6],
enabled the use of standard optimization methods to find the global
optima.

The sampled scenarios are from a population based shape model.
Even so, the decrease in treated volume (18.8%) can be set in relation to
individual margin creation. It has been shown that the margin (sys-
tematic and random) could be decreased to 7–10mm with repeat
imaging of the patients [20]. For the patients in this work, a ten mm
PTV margin would be an average volume reduction of 25.1% compared
to a 20mm PTV margin. An alternative PTV might be created by ad-
justing the margin to the 95% isodose of the probabilistic plans. This
would likely improve the margin based plans but this evaluation was
out of scope for this work.

The transformation from an optimization problem using DP to in-
stead use EDP enabled a convex optimization where the lower tail of
pD98% is controlled to yield a requested D98%,90%. There could potentially
be a solution to Eq. (8) that yields a highly irregular pD98% for which the
iterative method of tightening the constraint tolerance might fail. Note
that margin based plans do not consider the shape of the pD98% at all and
the resulting differences in pD98% is worth further study. The near
identical EPD in this work does not indicate that one or the other
method produce more conservative plans.

The choice of threshold dose d in the penalty function f is non-
trivial. The solution will be close to the requested PD given a close
relationship between f and D98%. The naive choice of d in f would be
D98%,90%

presc . However, this would imply a very small to meet the dose
coverage constraint. We found that the optimizer had problems finding
a solution to problem (8) for very low . Increasing d to 5% above
D98%,90%

presc and thereby increasing the for the same D98%,90% improved
the performance of the optimizer. Note that the increased d does not
imply an increased target dose coverage since will be relaxed to en-
sure the prescribed D98%,90%. Even though the same D98%,90% is achieved
using different surrogate functions the associated pD98% distribution
may be different.

The beamlet weights as optimization variables must for photons be
converted into machine parameters to enable delivery of the generated
plan. This can be done using the resulting dose distribution as an input
to a subsequent optimization to recreate the same dose distribution but
with machine parameters as decision variables, see e.g. [21]. The cur-
rent implementation was not optimized for performance, e.g. only

Fig. 3. Dose distribution comparison between the margin based plan (left) and the probabilistic plan (right) for a sagittal plane through the middle of patient #4. The
PTV is shown as a reference in the probabilistic dose although not used in the optimization. The dose is displayed relative the intended target dose 46 Gy. The CTV to
PTV margin was 20mm for the margin based plans.

Fig. 4. A comparison between the probabilistic and margin based plan for pa-
tient #4 using the DV ,90% for the CTV and DV ,10% for the bladder and rectum.

Table 2
The treatment evaluation statistics. All doses are given in Gy. The prescribed
D98%,90% was 43.7 Gy. The D ( V ) is the value for the probabilistic plans minus
the corresponding value for the margin based pans. The V is the difference in
relative volume for the given relative dose.

Patient # CTV D98%,90% CTV
D50%,50%

CTV
D2%,90%

Bladder
V90%,10%

Rectum
V90%,10%

Prob. Margin

1 43.7 43.8 0.61 −0.74 −18.2 −0.72
2 43.6 43.9 0.65 −0.77 −13.2 −5.9
3 43.4 43.7 0.79 −1.59 14.4 −19.9
4 43.4 43.3 0.91 −1.04 12.9 −33.5
5 43.4 43.8 0.78 −1.40 −10.5 −18.4
Average 43.5 43.7 0.75 −1.11 −2.9 −15.7
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single threaded, such that 10 iterations with progressively tighter
constraint tolerance may take ∼20 h.

In conclusion, we have demonstrated a novel probabilistic optimi-
zation framework that enables radiotherapy treatment planning to-
wards a requested dose coverage probability. The expected percentile
dosage provided a convex measure that facilitates finding the global
optima during optimization. An iterative scheme that gradually tigh-
tened the constraint tolerance of the expected percentile dosage pro-
vided convergence towards the percentile dosage planning goal.
Verification calculations for the generated plans using 1000 new sce-
narios independent of the optimizations showed that the requested dose
coverage was met within 1.2%. The resulting probabilistic plans out-
performed conventional margin when evaluated using percentile do-
sages by showing improved target dose homogeneity and decreased
rectum dose.
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