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Abstract

Cells react to extracellular perturbations with complex and intertwined responses. System-

atic identification of the regulatory mechanisms that control these responses is still a chal-

lenge and requires tailored analyses integrating different types of molecular data. Here we

acquired time-resolved metabolomics measurements in yeast under salt and pheromone

stimulation and developed a machine learning approach to explore regulatory associations

between metabolism and signal transduction. Existing phosphoproteomics measurements

under the same conditions and kinase-substrate regulatory interactions were used to in sil-

ico estimate the enzymatic activity of signalling kinases. Our approach identified informative

associations between kinases and metabolic enzymes capable of predicting metabolic

changes. We extended our analysis to two studies containing transcriptomics, phosphopro-

teomics and metabolomics measurements across a comprehensive panel of kinases/phos-

phatases knockouts and time-resolved perturbations to the nitrogen metabolism. Changes

in activity of transcription factors, kinases and phosphatases were estimated in silico and

these were capable of building predictive models to infer the metabolic adaptations of previ-

ously unseen conditions across different dynamic experiments. Time-resolved experiments

were significantly more informative than genetic perturbations to infer metabolic adaptation.

This difference may be due to the indirect nature of the associations and of general cellular

states that can hinder the identification of causal relationships. This work provides a novel

genome-scale integrative analysis to propose putative transcriptional and post-translational

regulatory mechanisms of metabolic processes.

Author Summary

Phosphorylation is a broad regulatory mechanism with implications in nearly all processes

of the cell. However, a global understanding of possible regulatory mechanisms remains
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elusive. In this study, we examined the potential regulatory role of kinases, phosphatases

and transcription-factors in yeast metabolism across a variety of steady-state and dynamic

conditions. The main novelty of our analysis was to infer putative regulatory interactions

from in silico estimated activity of transcription-factors and kinases/phosphatases. This

provided functional information about the proteins important for the experimental condi-

tions at hand that had not been uncovered before. We showed that activity profiles are

predictive features to estimate metabolite changes in dynamic experiments, while the

same was not visible in steady-state conditions. We also showed that dynamic experi-

ments could be used to recapitulate and provide novel TFs-metabolite and K/Ps-metabo-

lite regulatory associations. We believe these findings illustrates the usefulness of this

approach for future integrative studies interested in studying metabolic regulation.

Introduction

Cells sense and react to extracellular stimuli with coordinated intracellular responses convey-

ing transcriptional, protein and metabolic changes [1–3]. The continuous technological

advances over the last few decades has contributed to the advent of the omics era with quanti-

tative measurements of hundreds to thousands of transcripts, proteins and metabolites across

a variety of steady-state and time resolved conditions [4–6]. The increasing accumulation of

molecular measurements have provided unprecedented knowledge of the cellular molecular

adaptation, nonetheless the robust identification of the regulatory interactions underpinning

these changes is still a challenge [7,8]. Currently, the bottleneck has shifted from data acquisi-

tion to the development of statistically robust and computationally efficient mathematical

approaches capable of providing an integrated analysis of the different types of biological data

available.

Regulatory responses mediate the adaptation of many biological aspects of a cell, for exam-

ple, metabolism may be regulated transcriptionally and post-transcriptionally. At present,

most of the integrative analysis of metabolomics data-sets have focused on the role of tran-

scriptional regulation [8–11]. Previous studies have focused on the regulatory implication of

transcription-factors (TFs) to model the metabolic transition between different steady-state

conditions [10]. Moreover, these regulatory interactions may occur in the inverse direction

where metabolites directly impact the activity of global cellular regulators, such as TOR1

[11,12]. Nevertheless, transcript levels have been shown to poorly predict metabolic fluxes in

the central carbon metabolism and that glycolytic enzymes are predominantly regulated at the

post-transcriptional level [3,13,14]. Signal transduction by reversible protein phosphorylation

is a key cellular regulatory mechanism and has been shown to modulate the glycolytic flux by

regulating metabolic enzymes [7]. Recent studies have explored the implication of phospho-

sites in the enzymatic activity of kinases/phosphatases (K/Ps) by integrating with metabolo-

mics measurements and in silico estimated metabolic fluxes [7,15]. Nonetheless, data

acquisition and subsequent integrated analysis of phosphoproteomics data-sets are much

sparser than transcriptomics and are still lagging behind [7,15].

Transcriptional and translational regulatory interactions of metabolism can, in principle,

be comprehensively explored using available high-throughput data-sets and methods [4,5,11].

However, current methods have yet to integrate gene-expression and phosphoproteomics

measurement to infer regulatory interactions of metabolism. In this study, we set out to

address this issue. We propose a computational approach to systematically identify putative

post-transcriptional and post-translational regulatory mechanisms of metabolism (Fig 1A). To
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this end, we characterised the metabolomics adaptation of yeast under salt and pheromone

conditions and further expanded it to consider a compendium of experimental data-sets [4–

6,11,12], comprising a total of 143 unique conditions. Firstly, our computational approach pre-

dicted the in vivo activity of TFs and K/Ps. For that purpose, we considered prior-knowledge

on regulatory interactions and mathematical approaches that have been developed to predict

the activity status of transcription factors [16,17] and kinases [18,19] (Fig 1A). The activity of

regulatory proteins is difficult to measure directly, yet provides functional information about

the protein regulators involved in a cellular response. Subsequently, regulator activities were

integrated with the metabolomics measurements using a machine learning approach to infer

putative regulatory interactions. Our approach accurately estimates the activity status of

Fig 1. Analysis and experimental design and data consistency. (A) Representation of the different types data-sets used in the analysis.

Transcriptomics and phosphoproteomics data-sets are used to estimate transcription factor and kinase/phosphatase activity changes, which are then

separately associated with the respective metabolomics data-set using multilinear regression models. (B) Experimental design used to acquire the

intracellular metabolomics measurements. CDC28 analog sensitive yeast strains inoculated in shake flasks were treated with the CDC28 inhibitor. The

unperturbed initial time points were taken 1 hour after the CDC28 inhibitor and before adding the NaCl and pheromone. Sample filtration, metabolite

extraction and MS injection were performed in parallel on the samples from independent triplicate experiments. (C) Representative metabolite profiles of

untargeted metabolomics experiments. (D) Metabolites fold-changes correlation between targeted and untargeted metabolomics. Ions mapping to more

than one metabolite are marked with an asterisk (*) and were not considered for any downstream analysis.

doi:10.1371/journal.pcbi.1005297.g001
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known regulatory proteins, and identifies protein-metabolite associations capable of robustly

estimating metabolic phenotypes of previously unseen conditions.

Results

Generation of dynamic metabolomics upon salt and pheromone

perturbation and integration with a compendium of existing data-sets

To explore the functional implication of post-translational regulatory mechanisms in metabo-

lism we set out to obtain paired phosphorylation, expression and metabolomics data under the

same experimental conditions. For osmotic and pheromone conditions we resorted to existing

dynamic phosphoproteomics measurements and we experimentally determined the intracellu-

lar metabolite changes. Both salt and pheromones are known to promote changes in phos-

phorylation of MAPK pathway and specifically share STE11, STE20 and CDC24 protein

kinases [20,21]. The metabolic adaptations upon salt perturbation are arguably better charac-

terised than pheromone and these involve the regulation ion membrane transporters and the

production and retention of glycerol [21].

Wild-type strains of S. cerevisiae displays long periods to initiate the signalling response

when stimulated with pheromone, while salt response is almost immediate [22,23]. To ensure

that both responses began at comparable time-scales, yeast strains carrying a CDC28 analog

sensitive version were used and CDC28 was inhibited with an ATP analog (Fig 1B). The

dynamic response of metabolism was captured for both conditions pairing and expanding the

time-points acquired in the phosphoproteomics data-set, i.e. 0 and 25 seconds and 1, 4, 5, 9,

10, 15, 20, 25, 35, and 45 minutes, 0 seconds represents the unperturbed state immediately

before the stimuli are added. Cell material was extracted with fast-filtration and analysed with

targeted (LC-MS/MS) [24] and untargeted (QTOF-MS) [25] mass-spectrometry (see Meth-

ods). Robustly identified ions spectra mass were then matched and annotated to an existing

database [25]. In total, we measured with LC-MS/MS 54 metabolites and with QTOF-MS

11,190 ions for which 452 were mapped to metabolites using the genome-scale model iMM904

[26]. After robust quality assessment of the metabolite mass peaks and stringent identification

of matching ion mass, we retained 26 metabolites for the downstream analysis from LC-MS/

MS and 196 ions mapping to 74 metabolites from the QTOF-MS (see Methods). In order to

estimate the reliability of the metabolite measurements, we compared the metabolic fold-

changes measured in both targeted and untargeted MS (Fig 1C). A total of 11 unique metabo-

lites were quantified with both methods and these showed strong concordance (spearman’s

rho = 0.77, p-value< 1.9e-44). On the untargeted data-set, 33 ions were defined as significantly

changing in at least one of the time-points analyzed (see Methods). These include several

examples of metabolites known to be regulated under these conditions (Fig 1D). In general,

there was a lack of measured products and reactants from the same reaction. However, fuma-

rate and malate were reliably measured and both showed similar profiles [27]. Glycerol

3-phosphate displays an accumulation over time under salt stimulation, consistent with

known signalling regulation of GPD1 leading to the production of glycerol [21,28,29]. Yeast

cells also produce and accumulate trehalose under different types of stress conditions, includ-

ing osmotic stress, and this is visible with the trehalose profile [21,30]. While the metabolic

implications of the pheromone stimulation in yeast are generally poorly understood, the pher-

omone MAPK pathway is known to undergo regulation [31,32]. TOR and the pheromone

MAPK signalling pathways have been shown to crosstalk [20]. Therefore, it is interesting to

see that metabolites involved in the biosynthesis of amino-acids, such as, L-glutamine, N-ace-

tyl-L-glutamate and L-citrulline significantly accumulate over time after pheromone stimula-

tion. Some of these have been previously shown to directly influence TOR1 activity [12]. These

Transcriptional and Post-transcriptional Regulation of Metabolism
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results recapitulate previous findings and therefore support the usefulness of this metabolo-

mics data-set to understand the metabolic adaptation to salt and pheromone.

To compare the responses between time-resolved experiments and steady-state genetic per-

turbations as well as to test the inference methods across different conditions, we expanded

the analysis across a range of different cellular perturbations. Salt and pheromone data-sets

were integrated with a compendium of biological experiments including time-resolved mea-

surements related to nitrogen metabolism and steady-state genetic perturbations. To this end

we considered a panel of 115 K/Ps knockouts, for which molecular changes at the transcript

[5], phosphorylation [4] and metabolite [6] were characterised (Fig 1A) (see Methods) as well

as metabolomics, transcriptomics and phosphoproteomics data-sets for three perturbations

around nitrogen metabolism [11,12]. In these studies, yeast cells were perturbed by varying the

growth medium from poor to rich nitrogen growing conditions (nitrogen upshift) and vice-

versa (nitrogen downshift). Yeast cells were also stimulated with rapamycin, thereby inhibiting

TOR1, a condition that resembles the nitrogen downshift (Fig 1A). Combining all the experi-

mental data-sets together, we obtained a total of 143 different conditions for which metabolic,

phosphorylation and gene expression measurements are available, except for salt and phero-

mone conditions where transcriptomics is not available (S1 Fig). These data-sets provide the

basis for the systematic and comprehensive analysis of transcriptional and post-transcriptional

regulatory interactions with metabolism.

Inferring activity of transcription-factors, kinases and phosphatases

Changes in gene expression and in protein phosphorylation can be combined with metabolic

measurements to identify possible regulatory associations. However, identification of func-

tional regulatory interactions is hampered by the fact that expression is a poor proxy for TFs

activity [16,17] and phosphorylation sites often display no functional impact in protein activity

[7,33]. Therefore, to circumvent these limitations we have predicted the changes in activity of

TFs and K/Ps. Enzymatic activity of K/Ps were estimated resorting to a comprehensive set of

manually curated K/Ps-substrates interactions from PhosphoGrid [34]. TF activities were

inferred using a regulatory network obtained by combining gene-expression data from TF

knock-out experiments and TF binding sites from ChIP-chip experiments (see Methods). The

changes in activity of a regulator can be estimated by considering the changes of its targets

[16,18,35]. For example, by analysing the phosphorylation changes of reported target sites of a

protein K/P, one can predict whether the K/P is changing significantly (Fig 2A).

Considering the reported targets of TFs and K/Ps we used the gene-set enrichment analysis

(GSEA) [36] approach to quantify and estimate the significance of the activity of 91 TFs and

103 K/Ps across all conditions (see Methods). The phosphoproteomic data-sets contain 85.2%,

49.2% and 20.0% of missing values in the genetic, nitrogen and salt/pheromone perturbations,

respectively. For this reason, the activity scores of K/Ps could not be predicted in 3,227

(48.0%), 498 (25.2%) and 434 (7.7%) cases for the genetic, nitrogen metabolism and salt/phero-

mone perturbations, respectively. We note however, that the estimated activities do not always

rely on measuring the same set of reported targets, and hence the estimated activities matrices

are less sparse than the original measurements. For the dynamic experiment of salt and phero-

mone stimuli there are no transcriptomics available, thus TFs activity could not be calculated.

Nitrogen downshift and rapamycin are similar conditions that inhibit TOR1 activity; in

contrast, nitrogen upshift displays increased TOR1 activity. Thus, it is reassuring that the pre-

dicted protein activities tend to have similar changes in time for the nitrogen downshift and

rapamycin condition, and opposite changes for the nitrogen upshift (Fig 2B and 2C). Several

of the predicted activities are in line with known condition dependent activity changes.

Transcriptional and Post-transcriptional Regulation of Metabolism
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Examples include the TOR mediated inhibition of MSN2, MSN4 and GLN3 TFs [37] (Fig 2B)

and the kinases NPR1 [38], RIM15 [39] and YAK1 [40] (Fig 2C). Moreover, HOG1 and PBS2,

central kinases in the response to osmotic stress, display increased activity profiles [21,22] (Fig

2D). Similarly, the STE7 MAPK kinase of the pheromone pathway is predicted to be activated

during pheromone stimulation (Fig 2D). These examples suggest that the TFs and K/Ps activi-

ties are well predicted and can be used to explore regulatory associations with metabolic

changes. Regulator activities provide functional information that can be integrated with meta-

bolic changes to infer functional regulatory interactions. Nevertheless, the activity of the regu-

lators, as their expression and phosphorylation measurements, may be confounded by general

cellular states (e.g. growth rate) and therefore lead to indirect associations. In the next section

we tested the impact of growth rate on activity estimates and metabolic measurements.

Growth rate implications in intracellular changes

General effects in the cell, such as cell cycle and growth rate, can act as confounding factors

when searching for regulatory associations between TFs and K/Ps and metabolic changes. In

particular, gene expression changes, which upon different perturbations have been shown to

be tightly correlated with growth rate due to changes in the distribution of cells over the cell

cycle phases [41,42]. Considering that relative growth rate measurements are available for the

genetic perturbations experiments and for each time point of the dynamic nitrogen metabo-

lism experiments, we set out to assess how much of the variation in the data-sets can be

explained by growth rate alone. To this end, we performed Principal Component Analysis

(PCA) on TF and K/P activities as well as metabolomics measurements. We then measured the

correlation between relative growth rate and each of the top three principal components (PCs)

(S2 Fig). Genetic perturbations metabolomics data-set PC 1 displayed a moderate correlation

Fig 2. Protein activity analysis. (A) Representation of the workflow used to estimate protein activities using as input an experimental data-set and a

regulatory network. Regulatory network will contain either the kinase-phosphatase/substrate interactions or transcription factor/gene associations. GSEA with

random permutations is used for each protein in each condition. Red vertical lines represent the targets of the protein in the ascending sorted data-set. (B, C,

D) Estimated activity profile of representative proteins for each experiment used in the analysis.

doi:10.1371/journal.pcbi.1005297.g002
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(Pearson’s r = 0.25, p-value< 7.0e-3) with the relative growth rates of the knockout strains.

Growth rate displayed stronger correlations (Pearson’s r = 0.35 and -0.54, p-values< 1.2e-4

and 1.1e-4) with PC 1 of K/P and TF activities (S2 Fig). The same analysis was performed for

the dynamic nitrogen metabolism data-set where metabolomics PC 2 displayed a strong corre-

lation with the relative growth rate over time (Pearson’s r = 0.72, p-value < 8.0e-4). For the

estimated K/P and TF activities, PC3 and PC2 showed also strong correlations with growth

(Pearson’s r of 0.51 and 0.69, p-values< 3.2e-2 and 1.6e-3) (S2 Fig).

In summary, the variance in molecular measurements for the steady-state genetic perturba-

tion experiments is more strongly influenced by the growth rate than the measurements per-

formed in the dynamical perturbations. For the steady-state conditions, the gene-expression

changes are the molecular changes, confounded mostly by the growth rate.

For the subsequent association analyses we tested the impact of removing the growth rate

from each data-set to rule out any confounding effects it may have on the identification of

direct functional interactions. To this end, we regressed-out growth rates from the original

metabolite measurements and estimated TFs and K/Ps activities using linear regression models

and growth as a covariate.

Estimating metabolic changes from transcription-factors, kinases and

phosphatases activities

Next we explored the correlations between TFs and K/Ps enzymatic activities and metabolic

changes for each of the three experiments: genetic, nitrogen metabolism and salt/pheromone

perturbations. To identify the relationships we used linear regression models that consider the

estimated activities as features and metabolite fold-changes as observations (S1 Fig). Consider-

ing the low number of samples available, specifically for the time resolved experiments, a

cross-validation procedure of leave-one-out (LOO) was used (see Methods). This allowed us to

understand how much information can be transferred within each experiment to predict the

metabolite variations in an independent testing sample. Thus, for each experiment and each

metabolite, independent training and test data-sets were generated leaving one sample out at a

time for test, i.e. single KO or time-point, and thereby generating a complete metabolomics

matrix with estimated fold-change values (Fig 3A). The analysis was performed using TFs and

K/Ps activities independently. In each experiment four different types of input matrices are

used to predict each metabolite, i.e. K/P or TF activities with and without growth normalisa-

tion, with the exception of the dynamic experiment with NaCl and pheromone for which nei-

ther growth rate nor transcriptomics measurements were available. To minimize possible

effects of over-fitting while training the linear models an Elastic Net feature regularisation

approach was used (Methods).

Firstly, we considered the genetic perturbations and assessed the capacity of TFs and K/Ps

activities to predict the changes of a given metabolite across the panel of knockouts (Fig 3B,

metabolites). This would be, for example, changes in concentration of glutamine across the

knockout conditions. We evaluated the capacity of the models by correlating the indepen-

dently predicted fold-changes to the observed ones. This procedure was performed for each

metabolite and the results were summarized as correlation distributions. The metabolite varia-

tion across the different conditions were generally poorly predicted using either the TFs or K/

P activities, displaying median correlations close to zero (Fig 3B). This did not change when

we used the growth corrected data. We then measured how well the models predict the

changes in all metabolites in a given condition (Fig 3B, conditions). This tests the capacity to,

for example, predict the changes of all metabolite changes in HOG1 knockout. Overall, we

obtained similar results as with the metabolites analysis, one difference is the improvement in

Transcriptional and Post-transcriptional Regulation of Metabolism
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predictive power considering K/Ps activities. However, this increase is mostly lost when we use

the growth corrected data.

A similar analysis as with genetic perturbations was applied to the dynamic experiments to

estimate the metabolic variation. The trained models displayed in general higher predictive

power than the genetic perturbations (Fig 3C). Overall, in the dynamic nitrogen experiments,

TFs displayed better agreement between measured and predicted metabolite fold-changes

than K/Ps, across metabolites (Fig 3C, metabolites) and across conditions (Fig 3C, conditions).

Also, models trained with growth normalised activities obtained similar results to non-nor-

malised data-sets. The metabolic changes in the salt and pheromone experiment could be rea-

sonably explained using the K/P activities across metabolites (Pearson’s r = 0.32) (Fig 3C,

metabolites) and conditions (Pearson’s r = 0.41) (Fig 3C, metabolites). These were generally

worse than the nitrogen experiment, and could be a consequence of the lower number of sig-

nificantly changing metabolites when compared to the nitrogen experiments.

The predictive difference between growth normalised and non-normalised K/Ps activities

in the genetic perturbations (Fig 3B, conditions) suggest that associations important to predict

a new condition are generally dependent on global growth effects, and thereby likely to be

indirect. Furthermore, the different predictive power between TFs and K/Ps on the dynamic

nitrogen experiments suggest that changes in TF activities are more predictive of metabolic

Fig 3. Computational framework for finding associations between protein and metabolites. (A) Diagram of the analysis. For each metabolite

measured a multilinear regression analysis was performed using leave-one-out cross-validation. Changes in activity for kinases/phosphatases and

transcription factors were used independently to estimate the metabolite fold-change. Independently predicted metabolite fold-change matrices were then

correlated metabolite and condition wise with the measured values. Distributions of the correlation values between predicted and measured metabolite fold-

changes for the (B) genetic perturbations and for the (C) time-resolved experiments.

doi:10.1371/journal.pcbi.1005297.g003
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changes. Nevertheless, one needs to consider that very different technologies are used to mea-

sure the underlying data-sets, i.e. transcriptomics and phosphoproteomics and this may

impact the predictive power of the data-sets.

Inferring putative regulatory protein-metabolites interactions

Considering that the metabolic predictions based on time-resolved experiments partially cir-

cumvented indirect effects and displayed the best predictive power (Fig 3B and 3C) we decided

to focus only on these data-sets, covering a total of 26 different conditions, for the inference of

protein-metabolite regulatory interactions. Moreover, since growth has been shown to possi-

bly act as a confounding effect (Fig 3B) we only used the data-set with growth normalised

for the nitrogen metabolism experiments. We also considered TFs and K/Ps separately and

searched for putative regulatory associations with the metabolite changes.

We started by investigating the capacity of the TFs activities to estimate the metabolites

fold-changes in each nitrogen related perturbation. To this end, we used a learning procedure,

analogous to the one used before, but instead of LOO, a three-fold cross-validation was used to

leave each of the environmental perturbations out at a time (see Methods). This was performed

independently for each metabolite and the agreement between the measured and predicted

values was calculated using Pearson correlation coefficients (Fig 4A). Consistently with the

previous analysis, a large fraction of the metabolites were well predicted in downshift and rapa-

mycin conditions. The best performances are obtained in the nitrogen downshift and the rapa-

mycin experiments with similar median correlations. This could be expected since these are

related conditions and the relationships learned from one may more readily apply to the other.

Then, we considered only the best predicted metabolites (S3A Fig) and explored putative pro-

tein-metabolite associations using all the three nitrogen conditions together with bootstrapped

linear regression models (see Methods). The associations were estimated 20 times with 80% of

the samples randomly selected, therefore generating 20 coefficients for each TF-metabolite

association. The average of the TF-metabolite coefficients represents a confidence score on the

association (Fig 4B).

From the reported associations, LEU3 involved in the biosynthesis of leucine is positively

associated with several metabolites involved in the biosynthesis of amino-acids, e.g. L-gluta-

mine, L-citrulline, ornithine [43,44]. Recent work showed that gene deletion of LEU3 in yeast

leads indeed to decreased L-glutamine abundance [45]. Also, the involvement of PUT3 in the

proline utilisation pathways and its positive association with L-proline is captured by the linear

model coefficients [46–48]. These results seem to confirm that the regulatory interactions

found are biologically relevant, although they can be a result of direct or indirect associations.

For example, a direct interaction can occur if a TF regulates the expression of metabolic

enzymes and thereby controls directly metabolite concentration. The association can occur in

the opposite direction where metabolites can directly regulate the activity of TFs. In contrast,

indirect associations can be established, for instance, if metabolite changes are a consequence

of downstream effects of TFs or if a cell state results in changes of both TF activity and metabo-

lite concentration independently. In order to study this, we firstly identified the enzymes that

use or produce each measured metabolite and considered a list of known TF-target proteins

(from our assembled TF regulatory network), TF-gene genetic interactions (from BioGRID

[49–51]) or TF-gene functional interactions (from STRING [52]) (see Methods). We then

searched for enrichment of known TF-target, TF-gene genetic and functional associations

among the top predicted TF-enzyme-metabolite interactions (S4A Fig). No significant associa-

tion was found. We also note that the variation in TFs activities are almost fully explained by

the first PC that captures 85.6% of the total variance in the data (S2 Fig). Furthermore, TFs

Transcriptional and Post-transcriptional Regulation of Metabolism
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activities showed similar profiles within TOR1 inhibition conditions, nitrogen downshift and

rapamycin, and opposing profiles in TOR1 activation condition, nitrogen upshift. Hence, this

shows lack of specificity in the gene expression response and can partially explain the limited

capacity to identify direct associations with metabolites. However, regressing-out the first

principal component from the TFs activity scores and from the metabolomics measurements

did not improve the enrichment in direct TF-target associations. These findings support the

idea that although the TFs activities are predictive of metabolic changes these relationships are

likely to be indirectly due to changes in cellular states or via transcriptional regulation of genes

that are not those immediately in the vicinity of the associated metabolites.

For the K/P-metabolite associations we used all five dynamic perturbations: nitrogen

upshift, nitrogen downshift, rapamycin, NaCl and pheromone (Fig 4C). With the exception of

the pheromone the other conditions showed similar median correlations between the mea-

sured and predicted metabolites fold-changes. However, the performance is overall lower than

Fig 4. Overview of the putative protein-metabolite regulatory interactions. (A) Distribution of the metabolite predicted and measured correlations using

3-fold cross-validation leaving each condition out at a time using the TFs activities scores. (B) Heatmap of the TFs-metabolites associations where values

represent the averaged coefficients. (C) Correlation distributions between predicted and measured using K/P activities with 5-fold cross-validation leaving

each condition out at a time. (D) Heatmap of the K/Ps-metabolites associations where values represent the averaged coefficients. Coefficients distributions

are calculated using a bootstrap cross-validation randomly leaving 20% of all the samples out. This procedure is performed twenty times and the coefficients

are then averaged. Asterisks (*) identify significant, FDR < 5%, Pearson correlations between the activity profiles and the metabolite fold-change across all

conditions.

doi:10.1371/journal.pcbi.1005297.g004
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for the leave-one-out test (Fig 3C), as would be expected from a more stringent evaluation.

The top predicted metabolites were selected (S3B Fig) and an analogous approach used for the

TFs was used to identify K/P-metabolite associations (see Methods) (Fig 4D).

RIM15 and TPK1 displayed the strongest associations with the metabolites and these play a

key role in the regulation of the cellular growth and their adaptation to nutrient availability

[53–55]. TPK1 inhibits the activity of RIM15 to regulate cell cycle, thus this justifies that both

display opposite associations (Pearson’s r -0.92, p-value< 8.6e-6). Furthermore, RIM15 is

inhibited by TOR1 [55,56] and considering that L-proline is a poor nitrogen source leading to

decreased TOR1 activity, this is consistent with the positive association between RIM15 and L-

proline, and that TPK1 displays the inverse. Of note, TOR1 and RIM15 display similar metab-

olite relationships despite their inverse biological association, this happens because TOR1

activity is wrongly estimated due to lack of robustly measured targets. This is emphasised with

the non-significant negative correlation between TOR1 and RIM15 activity scores (Pearson’s r

-0.17, p-value< 3.98e-1). CKB1 and CKB2 positive associations with L-proline are confirmed

by an independent study where gene deletions of these kinases are associated with depletion of

L-proline [45]. Moreover, we could validate the negative association between YAK1 and L-

asparagine, where knocking out YAK1 leads to an increase of L-asparagine [45]. The associa-

tions may be direct causal K/P-enzyme-metabolite relationships, but they could also be indi-

rect or in the opposite direction where a metabolite change impacts kinase activity. We

performed an enrichment analysis similar to the one described before, but now considering

from BioGRID genetic and physical interactions. For each K/P-gene network we tested for

enrichment of true interactions in the top-predicted K/P-enzyme-metabolite associations

(S4B Fig). We observed a significant but weak enrichment for functional interactions

(AROC = 0.63, S4B Fig) and direct K/P-target relationships (AROC = 0.61, S4B Fig). This

significant enrichment in known K/P-target associations contrasts to the inferred TF-

metabolites associations above. Specifically, from 16 functional interactions reported in

STRING overlapping in our set of inferred associations half of those displayed a positive abso-

lute coefficient. These results suggest that the retrieved associations contain some direct K/P-

target relationships.

TFs-metabolites and K/Ps-metabolites associations can also be taken together to elucidate

associations between K/Ps and TFs. For example, TPK1 kinase inhibits the activity of TF

ADR1 [54] and these have inverse associations considering the five top predicted metabolites

that they share (Pearson’s r -0.92, p-value< 2.6e-2). Also, YAK1 is required for full activation

of MSN2/4 TFs [55] and this association is visible, although not significant, between MSN4

and YAK1 metabolites associations (Pearson’s r 0.8, p-value< 1.1e-1), for example, both have

negative associations with dUDP and positive associations with L-Proline. However, this type

of analysis is limited to the number of metabolites that can be well predicted with the TFs and

K/Ps activities.

In summary, the estimated activity of TFs and K/Ps were capable of building predictive

models to infer the metabolic adaptations of previously unseen conditions across different

dynamic experiments. Specifically, TFs activities provided better predictive power than K/Ps,

although K/Ps-metabolite associations are more likely to represent previously reported

interactions.

Discussion

Signal transduction is an important cellular mechanism that allows cells to sense and respond

to environmental cues. These mediate intracellular adaptations by regulating a variety of bio-

logical processes, including metabolism and gene expression. Thereby interactions among
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different biological processes occur and are very important to coordinate the whole phenotype

of the cell. Nevertheless, the systematic identification and functional annotation of these regu-

latory interactions is still a challenge. Experimental data-sets covering different omics in

similar conditions are becoming more available and it is likely that analyses like the one we

propose here will be useful to systematically explore these regulatory events.

The key novelty of the approach proposed here is that regulatory interactions are inferred

from estimated activity of TFs and K/Ps, which are difficult to measure directly. This provides

the possibility of considering the activity profile of regulatory proteins important for the exper-

imental conditions at hand which has not been considered in previous studies of metabolism

using phosphoproteomics and transcriptomics.

Our results show that it is possible to use K/Ps and TFs activities to predict changes of sev-

eral metabolites in time-resolved experiments. However, the predictive power does not extend

to all conditions. For example, the models trained with K/Ps activities showed limited capacity

in the pheromone perturbation experiment. This can arise from the higher technical variability

in the data obtained and also be due to lower number of regulated metabolites. Additionally,

the regulatory interactions are often condition specific. As such, if the proteins that are impor-

tant to regulate the nitrogen or osmotic related conditions are not used for the pheromone

response, then the associations learned cannot be predictive of the pheromone induced meta-

bolic changes. Interestingly, protein-metabolite interactions inferred from the genetic pertur-

bations experiment displayed poor predictive power to estimate the metabolic changes of a

new condition, in contrast to the dynamic experiments (Fig 3B and 3C). This suggests that

time-resolved experiments provide a more efficient design to infer regulatory associations by

circumventing general confounding effects that can be seen in the steady-state.

Nevertheless, while the protein-metabolite interactions that we infer provide reasonable

power to predict metabolic changes (Fig 4A and 4C) of unseen conditions the predicted regu-

lator-enzyme-metabolite interactions are not strongly enriched in previously regulatory inter-

actions. Some features, particularly kinases or phosphatases activities, such as RIM15 and

TPK1, were important features to estimate metabolite fold-changes. This reassuringly assesses

that the estimated protein activity profiles are biologically relevant and useful for inferring

metabolic adaptation in novel conditions. The time-resolved metabolomics experiment under

salt and pheromone resulted in only moderate metabolic changes, when compared to the

nitrogen conditions. This smaller variation may explain the lower power in identifying regula-

tor-metabolite associations in these conditions. We believe that this emphasises the impor-

tance of designing experiments that adequately perturb both signalling and metabolism,

without possible confounding effects, such as CDC28 inhibition. Another possible limitation

of this approach is that, while we used comprehensive resources, we only considered prior

knowledge of reported K/Ps-substrate and TFs-gene regulatory interactions. Furthermore, the

lack of missing values in transcriptomics data-sets provides increased robustness to TFs activi-

ties when compared to K/Ps activities. Nevertheless, both protein activity profiles showed com-

parable predictive power, thus partially guaranteeing that the existing bias does not penalise

greatly the K/Ps.

The increasing number of recorded interactions for regulators will provide important infor-

mation to expand the coverage of TFs and K/Ps for which it is possible to estimate activities

and increase the robustness of the estimated activity. The generic characteristic of the approach

used to infer regulatory interactions allows it to be easily expanded to integrate other types of

information and thereby augment its predictive power to infer causal and direct protein-

metabolite interactions. For example, to account for other confounding effects, such as cell

cycle as a covariate and thereby remove it as a possible source of interactions. Furthermore,

other types of biological measurements can also be integrated, for example, protein abundance.

Transcriptional and Post-transcriptional Regulation of Metabolism
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This can provide information into other regulatory mechanisms but also provide information

to possible associations between the different regulatory processes, for instance, phosphopro-

teomics measurements are intrinsically dependent on protein abundance.

In this study we demonstrated the utility of phosphoproteomics and transcriptomics data-

sets to estimate the enzymatic activity of K/Ps and TFs, respectively. The estimated activities

recapitulated several previously expected regulatory events, such as HOG1 and PBS2 responses

to osmotic stress, and RIM15 and MSN2/4 activation under TOR1 inhibition. This results

emphasise the usefulness of this approach to explore functional implications in regulatory pro-

teins. Our results also showed that activity profiles are informative features to estimate metab-

olite changes in dynamic experiments. Interestingly, the same was not visible across a large

panel of K/Ps knockouts, supporting the idea that time-resolved experiments are a better

experimental design for the identification of causal regulatory interactions. We expanded on

previous work by developing a novel and rigorous framework to identify regulatory associa-

tions between the estimated activities and metabolite changes. Rigorous analysis of the putative

TFs-metabolite and K/Ps-metabolite associations occurring in the dynamic experiments

revealed that despite their regulatory implication these are most likely indirect. Further confir-

mation of these results with the integration of other experimental data-sets will provide deeper

insights into the regulatory events mediating the metabolic phenotype.

Materials and Methods

Strain, growth and sample preparation

The Saccharomyces cerevisiae strain used for the salt and pheromone dynamic experiments

was BY4741 as in Vaga et al. [22,23], this strain is provided with a CDC28-as allele that can be

directly inhibited by means of 1-NA-PP1, the ATP analog “PP1 analog 8”. Cells were grown in

500-ml shake flasks at 30˚C in 50 ml SD medium to an OD600 of 0.6. The ATP analog was

added to a final concentration of 10μM. One hour after CDC28 inhibition cells were perturbed

with NaCl to a final concentration of 0.4M or pheromone to a final concentration of 1 μM.

Cells were extracted by vacuum-filtering culture aliquots on a 0.45 μm pore size nitrocellulose

filter (Millipore). The filter was immediately transferred to 3 ml 2:2:1 MeOH/AcN/ddH2O

precooled at -30˚C. Samples for LC-MS/MS were supplemented with 200 μl uniformly-labeled

13C E. coli extract as internal standard and dried completely in a vacuum centrifuge (Christ-

RVC 2–33 CD plus, Kuehner AG, Birsfelden, Switzerland). The dried extracts were resus-

pended in 100 μl MilliQ water before analysis.

Acquisition of intracellular metabolite levels

Targeted metabolomics was performed by LC-MS/MS as described before [24]. The mass-

spectrometer was operated in negative mode. Data acquisition and peak integration were per-

formed with the Xcalibur software version 2.07 SP1 (Thermo Fisher Scientific) and in-house

integration software. Metabolite peak areas were normalized to uniformly-labeled 13C internal

standards. Samples were supplemented with 54 carbon labeled extracts for which both the

labeled and unlabeled spectral mass peaks were manually identified and curated. The manual

quality assessment of the peaks lead us to retain 26 metabolites which could be reliably identi-

fied from the sample spectra.

Untargeted metabolomics was performed by direct flow double injection of extracts on an

Agilent 6550 series quadrupole TOF MS operated in negative mode. In total 11,190 ions were

detected across all samples. The detected ions were then mapped against an existing ion mass

library of metabolites generated from the yeast genome-scale model iMM904 [26]. 452 out of

647 ion entries in the library were identified in our data-set and these were kept for the
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downstream analysis. Considering that natural modifications can occur and change metabolite

mass we used a rigorous annotation of the detected ions to only consider deprotonated metab-

olites, therefore reducing the number of detected and annotated ions to 196. These filtering

steps allowed us to consider only highly confident annotated ions, which mapped to 270 yeast

metabolites (S1 Table). The overall performance of the untargeted metabolomics was com-

pared to the targeted metabolomics (Fig 1D). High concentrations of salt in the NaCl perturba-

tion experiment resulted in a strong effect on the ion matrix in the QTOF-MS measurements.

To prevent this matrix effect from affecting data analysis we normalised the data to the second

time-point (25 seconds) instead of the 0 seconds timepoint.

Statistical significance of the ion fold-changes for the QTOF-MS measurements was esti-

mated with a two-sided t-test followed by multiple hypothesis correction with false-discovery

rate. The list was then filtered and only ions with and an absolute fold-change higher than 1

were considered, resulting in 33 ions.

Compendium of yeast data-sets

For K/Ps knockouts in yeast, a total of 3,011 transcripts were measured across 1,484 deletion

mutants, comprising approximately 26.4% of all protein-coding genes in yeast [57]. Phospho-

proteomics profiles of 125 K/P knockouts, as compared to a wild-type strain, were acquired

using label free mass-spectrometry (LC-MS/MS) measuring 4,263 unique single phosphory-

lated phosphosites in at least one condition. Intracellular measurements of metabolites were

obtained during the exponential growth phase and analyzed using non-targeted direct injec-

tion and time-of-flight mass-spectrometry (QTOF-MS). In total, 1,698 unique ions were

detected across 118 kinases/phosphatases knockouts. Metabolomics and phosphoproteomics

data-sets overlap in 115 knock-out conditions, and metabolomics intersects the transcrip-

tomics in 45 knock-out conditions.

Dynamic perturbations to nitrogen metabolism and TOR signalling were captured in a

time frame from 0 to 79 minutes, where 0 minutes represents the unperturbed state. Tran-

scriptomics measurements covered 5,620 transcripts across all the time-points of the condi-

tions. Phosphoproteomics captured the profile of 1,660 single phosphorylated phosphosites

(84.8% serines, 14.2% threonines and 1.0% tyrosines) over the same time-points. Given the

lack of complete coverage, only 50.8% of the whole matrix is measured. Intracellular metabolo-

mics were acquired with QTOF-MS and quantified a total of 146 ions, after quality filtering,

across all conditions and time-points.

Activity inference method

Kinases/phosphatases and transcription factor activities were estimated using GSEA approach

[36] and statistical significance was calculated against a null hypothesis generated by rando-

mising 1000 times the regulator reported targets [36]. Activity scores were calculated using the

log10 of the empirical p-value and signed according to the direction of the enrichment, for

example, regulators enriched towards negative fold-changes have a negative score. K/Ps target

phosphosites were extracted from PhosphoGrid [34]. Specificities for a total of 177 transcrip-

tion factors were collected in form of a position weight matrices (PWMs) from JASPAR [58].

Weight matrices were trimmed to remove consecutive stretches of low information content

(<0.2) on either end. The log-scoring scheme defined in [59], was used to score potential tar-

get sequences against weight matrices. The log score is normalised to the best and worst

matching sequence to the weight matrix, resulting in a value that lies between 0 and 1, where 1

denotes strong binding to the matrix and 0 denotes no binding. Genome wide gene expression

profiles for 837 gene-knockout strains were collected from three studies [5,60,61], of which
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148/837 were a known transcription factor with a defined specificity weight matrix. Studies

provided either a Z-score or p-value for each gene as a measure of over or under-expression,

relative to the distribution of values for all genes. Two-tailed p-values were computed from Z-

scores when a p-value was not provided [61]. In cases where TF knockout was repeated

between studies, the lowest p-value for each gene was used. ChIP-ChIP tracks for 355 proteins

were collected from four studies [62–65], via the Saccharomyces genome database [66]. 144/

355 of proteins were transcription factors with a defined specificity weight matrix. The TF-

gene network was then defined as all TF-gene pairs with a p-value below 0.01 and contained a

ChIP-ChIP region upstream of the regulated gene, which scored highly against the weight

matrix of the TF (normalised logscore>0.9).

Linear regression methods for estimating metabolic changes

Python module Sklearn [67] version 0.16.1 was used to perform linear regression analysis and

default parameters were used unless stated otherwise. Linear models with combined L1 and L2

regularization, Elastic Net, was used with the l1_ratio of 0.5. Elastic net regularization simpli-

fies the complexity of the model by removing the least important features, similar to Lasso reg-

ularisation, but also considering a L2 regularization, similar to Ridge, to avoid random feature

elimination when collinearity exists among the features.

To infer the predictive power within each data-set across all the measured ions (Fig 3B), for

each metabolomics data-set, ions displaying low variation across the samples were discarded

by considering only those that showed a standard deviation higher than 0.4. KPs activities

were filtered to only consider kinases or phosphatases with an activity score estimated in at

least 75% of the samples of each data-set, the remaining missing values were replaced with

zeros for the machine learning approaches. For the Elastic net regressions different alphas

were tested and an alpha of 0.01 obtained the best overall performance, therefore this was used

in all the models. For each metabolite a leave-one-out cross-validation was used, thus all but

one sample were used to train the linear regression model and then the test sample was used to

estimate the metabolite fold-change. Performing this systematically across all metabolites and

conditions generated a predicted matrix for which each value is estimated independently. The

agreement between the measured and predicted ions fold-changes was calculated with Pearson

correlation coefficients across rows (ions) and columns (conditions).

Linear regression models to predict K/Ps-metabolites and TFs-

metabolites associations

Protein-metabolite associations were inferred only using the time-resolved metabolomics

data-sets. For the TFs activities only the nitrogen metabolism perturbations were used consid-

ering that no transcriptomics data was available for the NaCl/Pheromone perturbations. For

this analysis no filtering was applied in the metabolomics data-sets and K/Ps activities were fil-

tered as before to consider only those consistently measured and estimated across 75% of the

conditions. The capacity of predicting each ion fold-change in each condition was tested using

k-fold cross-validation, where each fold corresponds to the time-points measured in each con-

dition, thus 3 and 5 folds were used for the TFs and KPs activities, respectively. Elastic net

models were used and the alpha was estimated using a bootstrap approach of ten iterations

leaving out 20% of the samples. A range of 100 alphas was considered as default by the Sklearn

python module [67]. Train and test features, TFs and KPs activities, were standardised, and

the observed variables, metabolomics, were centered before training the linear model. The pre-

dictive power of each ion in each condition was estimated by using the k-fold models, inferring

the agreement between predicted and measured in the left-out condition using Pearson
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coefficient and coefficient of determination metrics. The top predicted ions were those that

displayed a Pearson correlation p-value lower than 0.05 and an coefficient of determination

higher than zero.

For the top predicted ions the feature importance was estimated using all the conditions

together with two bootstraps. The first bootstrap was 20 iterations and leaves out 20% of the

samples out, for each iteration an inner bootstrap with 10 iterations leaving out another 20%

of the data is performed to estimate the alpha of the Elastic net. This estimates 20 coefficients

for each feature-metabolite association. As before, train features and observations are stan-

dardised and centered. The most important features per ion are estimated by taking the

median of the coefficients and the Pearson correlation between the protein activity and the ion

fold-change.

Data and analysis code availability

All data analysis was performed in Python (v 2.7.10) and all the code, preprocessed data-sets

and generated plots are openly available in github under the GNU general public license ver-

sion 3 in the following URL https://github.com/saezlab/yeast_phospho. All plotting was per-

formed using Python modules Matplotlib version 1.4.3 [68] and Seaborn version 0.7.0 [69].

Supporting Information

S1 Fig. Overlap of the features measured across the three different data-sets, i.e. genetic

perturbations, nitrogen metabolism and NaCl + pheromone. a) identifies the overlap

between the TF activities, b) between the K/P activities and c) between the metabolite ions

measured. For the overlap it was considered only TFs and K/Ps for which it was possible to

estimate their activity in at least 75% of the samples in each data-set.

(TIF)

S2 Fig. Principal component analysis of data-sets and correlation with relative growth

rate. The principal component with higher absolute correlation coefficient was picked and

plotted.

(TIF)

S3 Fig. List of top predicted metabolites using a) TFs activities and b) K/Ps activities. List

of metabolites that displayed a positive coefficient of determination and significant Pearson

correlation between the measured and predicted fold-changes across the different conditions.

(TIF)

S4 Fig. ROC-curve analysis of the average feature coefficients. True-positive tables were

built considering the specified resources.

(TIF)

S1 Table. Salt and pheromone metabolomics experiments in yeast and metabolites annota-

tion.

(XLSX)

S2 Table. Kinases/phosphatases and transcription factor activity scores.

(XLSX)

S3 Table. Protein-metabolites interactions betas.

(XLSX)
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