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ABSTRACT: Sarcopenia is a common geriatric disorder characterized by decreased muscle strength, low muscle 

mass and poor physical performance. This aging-related skeletal muscle deterioration leads to adverse outcomes 

and severely impairs the quality of life of patients. The accumulation of dysfunctional mitochondria with aging is 

an important factor in the occurrence and progression of sarcopenia. Mitochondrial quality control (MQC) 

fundamentally ensures the normal mitochondrial functions and is comprised of four main parts: proteostasis, 

biogenesis, dynamics and autophagy. Therefore, any pathophysiologic factors compromising the quality control 

of homeostasis in the skeletal muscle may lead to sarcopenia. However, the specific theoretical aspects of these 

processes have not been fully elucidated. Current therapeutic interventions using nutritional and pharmaceutical 

treatments show a modest therapeutic efficacy; however, only physical exercise is recommended as the first-line 

therapy for sarcopenia, which can ameliorate skeletal muscle deficiency by maintaining the homeostatic MQC. In 

this review, we summarized the known mechanisms that contribute to the pathogenesis of sarcopenia by impairing 

normal mitochondrial functions and described potential interventions that mitigate sarcopenia through improving 

MQC. 
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1. Introduction 

 

Senescence is a natural process of aging associated with 

degeneration of physical functions. The gradual loss of 

muscle mass, strength and function is one of the most 

important hallmarks of aging. Muscle mass starts to 

slightly decline from the age between 30 to 40 years of 

age along with a reduction in muscle function [1]. The 

reduction of muscle mass is more serious in populations 

with an inactive or sedentary lifestyle. The loss of muscle 

mass probably reaches 1 to 2% per year from 50 to 60 

years and 3% to 5% per year at older ages [1]. In these 

people, 30% to 50% of the muscle mass may lose from 40 

to 80 years totally [1]. Some of the cases may reach the 

diagnostic criteria of sarcopenia. 

The term sarcopenia was coined by Irwin Rosenberg 

in the 1980s to describe an age-dependent decline in 

muscle mass and its adverse effects on human health [2]. 

In 2019, the European Working Group on Sarcopenia in 

Older People 2 (EWGSOP2) launched the latest 

diagnostic criteria for sarcopenia, including low muscle 

strength, decreased muscle quantity/quality or poor 
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physical performance [3], highlighting the fundamental 

role of low muscle strength in the pathogenesis of 

sarcopenia. As a multifaceted geriatric disease 

characterized by progressive and generalized loss of 

skeletal muscle mass and function [4-6], the occurrence 

and progression of sarcopenia is always concomitant with 

various negative outcomes, including falls [7], fractures 

[8], loss of locomotion [9] and even mortality [10]. At the 

cellular and molecular levels, a constellation of latent 

mechanisms have been shown to participate in the 

sarcopenia, such as mitochondrial dysfunction[11], 

insulin resistance [12], inflammation [13], oxidative stress 

[14], adipose tissue infiltration [15] and neuromuscular 

impairment [16]. Notably, an increasing number of 

studies have indicated that dysfunctional mitochondria 

may play a central role in the pathogenesis of sarcopenia. 

Mitochondria have strong impacts on the 

maintenance of cellular viability, including ATP 

production, oxidative phosphorylation (OXPHOX) 

homeostasis, calcium buffering and apoptosis. Therefore, 

healthy quality control is crucial for the preservation of 

intracellular homeostasis of muscle cells with aging. The 

MQC includes mitochondrial proteostasis, biogenesis, 

dynamics and autophagy [17, 18]. Orchestrated 

mechanisms contain several cellular factors and signaling 

pathways to ensure the integrity of mitochondria. 

Mitochondrial biogenesis is responsible for the generation 

of new mitochondria through the synergistic interaction of 

the nuclear and mitochondrial genes [19]; mitochondrial 

dynamics is achieved by continual transformation 

between fusion and fission to eliminate the accumulation 

of unhealthy mitochondria [20]; mitochondrial autophagy 

(mitophagy) is a process of selective removal of the 

hypofunctional and damaged mitochondria [21]. Adverse 

alternations in the quality control mechanisms may lead 

to mitochondrial dysfunction, which can further 

contribute to muscle wasting and even sarcopenia [22-25]. 

The incidence rate of sarcopenia in the mid-life and 

elderly population varies according to different age, 

operational definitions, regions and ethnicities [26-31]. A 

number of epidemiological studies have shown that the 

prevalence of sarcopenia gradually increases with age. It 

is conservatively estimated that 5%-13% of elderly 

individuals aged 60-70 years are suffering from 

sarcopenia. The numbers increase to 11%-50% among 

those aged 80 or above [32]. Since the number and 

proportion of the global aging population is rapidly 

growing, the socio-economic burden of individuals and 

society may increase due to higher prevalence of 

sarcopenia. Sarcopenia has been formally recognized as a 

disease with an ICD-10-CM (M62.84) code in 2016 [33, 

34], which attracted additional attention for this 

degenerative disease. Physical activity is recommended as 

the primary treatment for sarcopenia to improve muscle 

strength and mass [35], although no specific drugs have 

been developed with therapeutic effects in sarcopenia. In 

this review, we summarized the potential mechanisms of 

mitochondrial dysfunction with an emphasis on promising 

therapeutic interventions to prevent and ameliorate 

sarcopenia during aging. 

 

2. Mitochondrial Quality Control in Sarcopenia 

 

Mitochondrial quality control is an elaborate and 

complicated network in eukaryocytes for maintenance of 

mitochondria homeostasis in eukaryotes by means of four 

core processes: mitochondrial proteostasis, biogenesis, 

dynamics and autophagy. Mitochondrial dysfunction 

amplified by defective quality control processes is 

gradually regarded as the major pathophysiologic 

mechanism of sarcopenia (Fig. 1). 

2.1 Mitochondrial Proteostasis 

Mitochondrial proteostasis plays an essential role in 

retaining the dynamic balance between new protein 

synthesis and impaired protein degradation. Imbalanced 

proteostasis leads to the accumulation of unnecessary and 

defective proteins, which further adversely impacts 

multiple physiological functions, including skeletal 

muscle activity [36]. 

An intricate mechanism for the removal of misfolded 

and dysfunctional proteins is present in muscle 

mitochondria. The ubiquitin-proteasome system (UPS) 

and autophagy-lysosome system (ALS) are two 

predominant pathways to selectively eliminate damaged 

mitochondrial proteins [37, 38]; UPS mainly eliminate 

single and unfolded proteins under the tight regulation of 

AMP-activated protein kinase (AMPK) and the Forkhead 

Box O (FoxO) transcription factor family [37, 39]. FoxO3 

can decrease skeletal muscle mass directly by activating 

the downstream muscle-specific ubiquitin ligases, the 

Muscle RING Finger 1 (MuRF1) and the Muscle Atrophy 

F-box (MAFbx), that are considered as the key regulators 

of protein turnover contributing to muscle atrophy [40, 

41]; FoxO3 can also act indirectly through inactivating the 

mammalian target of rapamycin complex 1 (mTORC1), a 

pro-anabolic regulator of protein production [42]. On the 

other hand, diverse mitochondrial stress conditions 

associated with the aging process stimulate the 

mitochondrial unfolded protein response (UPRmt) that 

serves as a central node to restore proteomic homeostasis 

[43, 44]. When nascent polypeptides are perturbed during 

the import and fold processes, mitochondria-specific 

chaperones, mitochondrial proteases (mitoproteases) and 

the UPRmt are initiated to repair these “errors”. 

Chaperones assist with protein import into mitochondria 

and are responsible for folding of unfolded or misfolded 
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proteins [45, 46], while mitoproteases form the first line 

of defense against cellular stress responses by degrading 

irreversibly damaged proteins [47]. Intriguingly, 

numerous stress responses simultaneously activate the 

UPRmt and mitophagy [48]. In this scenario, UPRmt 

serves as the basal folding and degradation mechanism to 

counteract mitochondrial protein dyshomeostasis, and 

mitophagy can completely eliminate the unsalvageable 

mitochondria suggesting that UPRmt-dominated protein 

degradation and mitophagy are complementary processes 

[48]. 

 

 

 

 

 

 

 

Figure 1. The potential mechanisms of 

mitochondrial quality control (MQC) 

dyshomeostasis in sarcopenia. Impaired 

mitochondrial proteostasis, biogenesis, 

dynamics and autophagy have been regarded 

as the major molecular mechanisms in 

mitochondrial dysfunction, which could lead 

to the onset and progression of sarcopenia. 

(PIK3: phosphoinositide 3-kinase; Akt: 

protein kinase B; mTOR: mechanistic target 

of rapamycin; FoxO: Forkhead Box O; 

MAFbx: muscle atrophy F-box; MuRF-1: 

muscle RING finger protein 1; PGC-1α: 

peroxisome proliferative activated receptor-γ 

coactivator-1α; Nrf-1 and 2: nuclear 

respiratory factor-1 and -2; ERRα: estrogen-

related receptor alpha; Tfam: mitochondrial 

transcription factor A; NEMPs: nuclear-

encoded mitochondrial proteins; mtDNA: 

mitochondrial DNA; Opa1: optic atrophy 1; 

Mfn1 and 2: mitofusin 1 and 2; Fis1: fission 

protein 1; Drp1: dynamin-related protein 1; 

Mff: mitochondrial fission factor; NIX: BCL2 

interacting protein 3 like; BNIP3: BCL2 

interacting protein 3; FUNDC1: FUN14 

domain containing 1; PINK1: PTEN induced 

putative kinase 1; p62: sequestosome 1; LC 3: 

microtubule-associated protein light chain 3). 

 

The synthesis of new and properly functioning 

proteins is an important part of protein turnover in 

mitochondria. An increasing number of extensively 

studied regulators of protein synthesis in skeletal muscle 

are likely to be associated with the pathogenesis of 

sarcopenia. Akt is the key element of the 

PI3K/Akt/mTOR signaling pathway and acts as a pivotal 

mediator in the homeostasis of muscle mass through the 
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mTOR/p70S6K and FoxO3/MuRF-1 and MAFbx 

pathways to regulate protein synthesis and degradation, 

respectively [49]. Moreover, AMPK can abrogate the 

protein synthesis in skeletal muscle by suppressing the 

mTOR signaling pathway and activating the FoxO-

dependent degradation pathway [50]. Furthermore, 

peroxisome proliferative activated receptor-γ coactivator-

1α (PGC-1α) and its variants can stimulate protein 

synthesis and mitigate muscle protein degradation by UPS 

through repressing the activities of nuclear factor κB (NF-

κB) and FoxO3 activity [51-53]. PGC-1α knockout mice 

manifested a failure of skeletal muscle function partially 

due to UPRmt dysregulation [54]. 

Protein dyshomeostasis may induce muscle mass and 

strength insufficiency in sarcopenia. UPRmt-related 

genes were significantly decreased in the muscle of 

sarcopenia patients, including those encoding 

mitochondrial heat shock proteins (HSP) and proteases 

[25]. In addition, mTOR signaling pathway, an important 

hallmark of mitochondrial protein anabolism, was 

restrained in sarcopenic participants as well [25]. In the 

skeletal muscle of senescence-accelerated mouse (SAM) 

prone 8 (SAMP8), a canonical sarcopenia model, protein 

synthesis-related markers (Akt, mTOR and p70S6K) were 

reduced; however, the protein degradation-associated 

markers (FoxO3, MuRF-1 and MAFbx) were elevated 

indicating during advancing process of aging, protein 

turnover has a pro-degradation trend that leads to muscle 

atrophy which contributes to the occurrence of sarcopenia 

[55]. A study indicated that the activation of FoxO and 

proteolytic systems was not involved in sarcopenia, but 

mTORC1 overactivity was found in aged mice [56, 57]. 

However, these results were not remarkably observed in 

human individuals. In addition, rapamycin, an inhibitor of 

mTORC1, ameliorated sarcopenic symptoms, including 

less age-related loss of muscle mass and improved muscle 

functions [57]. Therefore, the functional roles of FoxO 

and mTORC1 in sarcopenia are controversial and need 

further investigations. Imbalanced mitochondrial 

proteostasis significantly reduces the muscle mass and 

compromises mitochondrial biogenesis resulting in the 

dysfunction of mitochondria and skeletal muscle. 

However, the extent of associations of imbalanced 

mitochondrial proteostasis in senescent muscle with 

sarcopenia requires additional investigations. 

2.2 Mitochondrial Biogenesis 

Mitochondrial biogenesis is a multistage process that 

generates new mitochondria [19]. Mitochondrial proteins 

are encoded by the nuclear and mitochondrial genomes. 

The nuclear genome encodes most of proteins involved in 

mitochondria genesis, whereas mitochondrial DNA 

(mtDNA) encodes a small number of crucial subunits of 

the electron transport chain (ETC) complexes. 

Mitochondrial biogenesis mainly comprise three steps: 

transcription of nuclear genes, import of nuclear-encoded 

mitochondrial proteins (NEMPs), and transcription and 

replication of mtDNAs [58]. PGC-1α is the main factor in 

regulating mitochondrial biogenesis in the cooperation 

with downstream nuclear transcription cofactors [38, 59], 

such as nuclear respiratory factor-1 and -2 (Nrf-1 and Nrf-

2) and estrogen-related receptor alpha (ERRα) [59]. Once 

activated, Nrf-1 and Nrf-2 cofactors bind to the target 

nuclear genes and promote the expression of NEMPs and 

mitochondrial transcription factor A (Tfam), which can 

directly bind to target mtDNA and activate the replication 

and transcription of the corresponding regions of mtDNA 

[58, 60]. 

Mitochondrial biogenesis and its regulators 

collectively participate in the pathophysiologic changes in 

sarcopenia. In an interethnic study of human sarcopenia, 

it was demonstrated that expression profiles of PGC-1α, 

ERRα and other coactivators were reduced in sarcopenic 

individuals [25]. PGC-1α, Nrf-1 and Tfam are 

downregulated in SAMP8 mice during the onset and 

development of sarcopenia [55]. Moreover, a pronounced 

decline in muscle mass, muscle performance and frailty 

was observed in old Nrf-2 knockout (Nrf-2 KO) mice with 

decreased expression levels of PGC-1α, Nrf-1 and Tfam, 

suggesting that knockout of Nrf-2 may exacerbate skeletal 

muscle frailty and sarcopenia through compromising 

mitochondrial biogenesis [61]. In addition to prototypical 

cofactors of mitochondrial biogenesis, Zhou and 

colleagues [62] demonstrated that deficiency of high-

temperature requirement protein A2 (HtrA2/Omi) 

protease is involved in the development of sarcopenia by 

negatively regulating mitochondrial biogenesis. 

HtrA2/Omi is a quality control protease that mainly 

localizes in the intermembrane space of the mitochondria 

[63]. HtrA2 mnd2 (-/-) mice manifested low muscle mass, 

poor physical function and sarcopenia phenotypes. 

Intriguingly, HtrA2 apparently regulates mitochondrial 

biogenesis in sarcopenia via the differential expression of 

Nrf-1/2, but not PGC-1α. 

PGC-1α is a critical regulator that maintains muscle 

homeostasis and has attracted considerable attention due 

to the studies of its potential effects in aging-associated 

diseases [17]. In mammalian cells, PGC-1α serves as a 

nuclear-mitochondrial hub in mitochondrial biogenesis 

[64] by translocating from the cytosol to the nucleus and 

mitochondria [64, 65]. Muscle atrophy and poor exercise 

performance combined with reduced PGC-1α levels in 

skeletal muscle have been detected in the elderly 

population [66], and the mRNA and protein expression 

levels of PGC-1α were considerably decreased in the 

soleus muscle of old rats, indicating that PGC-1α 

downregulation may participate in the course of aging 
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[67]. The expression levels of PGC-1α, Tfam and Nrf-1 

were decreased in the muscle of old SAMP8 mice [55] 

and elderly individuals [66, 68]. In contrast, PGC-1α 

overexpression can counteract the loss of muscle mass 

[69] and muscle atrophy [52] through regulating the 

homeostatic mechanisms of MQC, although it has not 

been found in the process of muscle aging. Notably, three 

prominent metabolic regulators (AMPK, PGC-1α and 

SIRT1) apparently cooperate to hinder the progression of 

sarcopenia. AMPK plays a crucial regulatory role in 

mitochondrial biogenesis [70, 71] and its biological 

activity in mitochondrial biogenesis declines with aging 

[72]. Activation of the AMPK/PGC-1α pathway 

facilitates mitochondrial biogenesis in skeletal muscle 

[73-75]. Moreover, silent mating type information 

regulation 2 homolog sirtuin 1 (SIRT1), an NAD+-

dependent deacetylase [63], can directly deacetylate and 

activate PGC-1α in the cytoplasm. SIRT1 colocalizes with 

PGC-1α in the mitochondria and serves as a downstream 

regulator of AMPK in response to exercise and fasting 

[76]. It has been shown that the AMPK/SIRT1/PCG-1α 

pathway protects the heart from aging and stress [77]. In 

sarcopenia patients, the NAD+ levels was reduced [25], 

while AMPK can elevate NAD+ levels and thus activate 

NAD+-dependent SIRT1 [25, 78]. Moreover, activated 

SIRT1 deacetylates PCG-1α and induces its expression to 

enhance mitochondrial synthesis, assembly, growth and 

antioxidant capability in the heart [77]. It is thus 

reasonable to suggest that AMPK, PGC-1α and SIRT1 

form an integrated and coordinated pathway to attenuate 

impaired mitochondrial biogenesis associated with aging. 

Considering the important role of PGC-1α in MQC, the 

pathway may become a promising target for the 

prevention and treatment of sarcopenia. 

2.3 Mitochondrial Dynamics 

 

Mitochondria are highly dynamic organelles that 

constantly fuse with surrounding mitochondria and split 

into daughter mitochondria [79]. Mitochondrial dynamics 

involves two processes (fusion and fission) [20] that are 

indispensable for mitochondrial maintenance [79]. Fusion 

and fission enable the efficient distribution and exchange 

of mitochondrial contents to meet the local demands of 

the cells [80]. Mitochondrial fusion is a complementary 

process that mixes the contents of damaged mitochondria 

under multiple stress conditions, and mitochondrial 

fission is a divisive process that results in the production 

of new mitochondria and contributes to the homeostasis 

of MQC by removing malfunctioning mitochondria and 

promoting apoptosis [81]. A family of conserved large 
GTPases are essential for the regulation of mitochondrial 

dynamics, such as mitofusins 1 and 2 (Mfn1, Mfn2) and 

optic atrophy 1 (Opa1) for mitochondrial fusion, and 

dynamin-related protein 1 (Drp1), mitochondrial fission 

factor (Mff) and fission protein 1 (Fis1) for mitochondrial 

fission [82-84]. Mitochondrial dynamics can repair mild 

damage to mitochondria and is associated with autophagy 

to thoroughly eliminate impaired mitochondria, especially 

through mitochondrial fission [81]. Imbalanced 

mitochondrial dynamics is a common hallmark of 

senescence [85] that can lead to mitochondrial swelling, 

decreased cristae production and defective respiratory 

function [86] thus severely affecting cellular homeostasis. 

Several proteins that mediate mitochondrial 

dynamics are found to be dysregulated in skeletal muscle. 

For instance, Drp1 knockdown was found to induce 

muscle atrophy [87, 88]. Currently, the great majority of 

researches demonstrated that mediators relevant to 

mitochondrial dynamics are decreased or deficient in aged 

muscle. Paucity of Mfn2 [89] and deletion of Opa1 and 

Drp1 [90] have been shown to lead to skeletal muscle 

atrophy in mice of advanced age. Mitochondrial fusion- 

and fission-related proteins are differentially expressed in 

mice and humans with sarcopenia or sarcopenic 

symptoms. Decreased mRNA expression levels of Mfn1, 

Mfn2 and Opa1 were detected in the skeletal muscle of 

elderly mice with sarcopenic phenotypes [91]. In another 

study, the expression levels of Mfn2, Fis1 and Opa1 were 

downregulated in sarcopenic muscle, suggesting that 

mitochondrial dynamics participates in the pathogenesis 

of sarcopenia [25]. Similarly, mitochondrial fusion genes 

(Mfn2 and Opa1) were substantially downregulated in old 

SAMP8 mice and demonstrated a downward trend during 

the whole progression of sarcopenia [55]. In sarcopenia 

patients, Opa1 expression was reduced during senescence 

[92]. Mfn2 protein expression was also markedly 

decreased in hip-fractured patients with sarcopenia [93]. 

It is universally appreciated that mitochondrial fission 

plays an indispensable role for the elimination of impaired 

mitochondria by mitophagy, whereas some studies have 

shown that the mitochondrial dynamics is shifted toward 

fusion in sarcopenia. Intriguingly, fusion-related proteins 

(Mfn1/Mfn2) were significantly upregulated in older wild 

type (WT) mice due to the downregulation of fission 

protein Fis1 [94], which is consistent with the results 

obtained in some hip-fractured patients of advanced age 

with sarcopenia [95]. In addition, Huang et al. [61] 

identified that mitochondrial fusion-related factors (Mfn1, 

Mfn2 and Opa1) and mitochondrial fission-related factor 

(Drp1) were decreased in old Nrf-2 KO mice with 

sarcopenia, suggesting that loss of Nrf-2 can aggravate 

sarcopenia by disrupting balanced mitochondrial 

dynamics and that mitochondrial biogenesis and 

dynamics may be associated with each other. 

These aforementioned studies demonstrated the 

prominent role of abnormal mitochondrial dynamics in 

muscle aging and sarcopenia (Table 1); however, the 
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mechanisms of these processes remain poorly understood. 

The alternations in mitochondrial fusion and fission per se 

are closely associated with mitophagy and mitobiogenesis 

to form a finely tuned network that prevents and repairs 

mitochondrial damage. Therefore, investigation of the 

molecular mechanism of this process is needed, and 

effective interventions to delay and even reverse the 

progression of sarcopenia should be developed. 

 
Table 1. Mitochondrial dynamics-related factors in sarcopenia. 

 
 Key Regulators Biofunction Expression in 

Sarcopenia 

Reference 

Mitochondrial 

Fusion 

Mfn1, Mfn, and Opa1 Mixing the contents of impaired mitochondria Downregulated [55, 61, 92, 

93] 

Mitochondrial  

Fission 

Drp1, Mff, and Fis1 Generating daughter mitochondria, removing 

damaged mitochondria and promoting 

apoptosis 

Downregulated [61, 94, 95] 

 

2.4 Mitochondrial Autophagy 

 

Entire mitochondrion can be degraded by 

autophagosomes with a fused lysosome through an 

intricate catabolic process termed autophagy. Mitophagy 

is an exceptional type of macroautophagy that primarily 

mediates the selective removal of the damaged or 

superfluous organelles and protein aggregation to 

maintain mitochondrial homeostasis [96, 97]. 

Traditionally, the activation of the ULK1-Atg13-FIP200 

complex is considered as the canonical initiator of 

autophagy that culminates in the generation of a double-

membrane autophagosome, engulfment of cellular 

proteins and organelles and fusion with lysosomes [98, 

99]. Recently, the PINK1/Parkin pathway has been 

recognized as one of the most important signaling 

pathways that regulates ubiquitin-dependent mitophagy 

[100]. When the membrane potential of damaged 

mitochondrion is depolarized, the import of PINK1 into 

IMM is inhibited and the protein accumulates on the outer 

mitochondrial membrane (OMM) inducing the 

recruitment of Parkin from the cytosol to the OMM [96, 

101-103]. Parkin is an E3 ubiquitin ligase, and its activity 

is triggered by the PINK-dependent phosphorylation 

[104, 105]. Then, activated Parkin ubiquitinates outer 

membrane proteins, generating ubiquitin (Ub) and poly-

ubiquitin (poly-Ub) chains. Poly-Ub chains are 

subsequently phosphorylated by PINK1 and serve as an 

autophagic signal. Ubiquitin-binding adaptor proteins, 

including p62, optineurin (OPTN) and nuclear dot protein 

52 (NDP52), recognize phosphorylated poly-Ub chains 

on mitochondrial proteins and recruit damaged 

mitochondria to the isolation membrane through their 

interaction with microtubule-associated protein light 

chain 3 (LC3) [96, 103]. Finally, the damaged 

mitochondrion is engulfed by an autophagosome that can 

further fuse with a lysosome to form an autolysosome thus 

eliminating the entire mitochondrion. In addition to the 

PINK1/Parkin pathway, important mitophagy receptors 

(NIX [106], BNIP3 [107, 108] and FUNDC1 [109]) can 

localize to OMM and directly bind to LC3 to recruit 

autophagosomes and facilitate mitochondrial elimination 

as well [103].  

Biological aging adversely affects mitophagy 

homeostasis in various organs and systems [110-112] and 

impaired mitophagy plays a crucial role in the loss of 

normal mitochondrial functions [111]. Certain 

alternations in numerous mitophagy regulators have been 

reported in senescent animals and humans [94, 113] to 

lead to mitophagy deficiency and subsequent 

accumulation of malfunctional mitochondria in skeletal 

muscle with aging [114, 115]. The accumulation of 

damaged mitochondria causes the dysfunction of skeletal 

muscle cells accompanied by muscle wasting and muscle 

strength reduction [116, 117]. Therefore, insufficient 

mitophagy potentially plays a causative role in 

sarcopenia. During the course of sarcopenia progression 

in SAMP8 mice, elevated Atg13 and LC3-II levels were 

associated with the accumulation of p62 and lysosome-

associated membrane protein 1 (LAMP1), suggesting that 

poor fusion between autophagosomes and lysosomes and 

impaired mitophagy in sarcopenic mice [55]. In another 

premature aging model with sarcopenia, old WT mice had 

lower expression levels of beclin-1 and p62 than those in 

young mice, indicating an autophagic dysfunction in 

aging muscle [94]. The downregulated expression of the 

autophagy mediator, LC3B, has also been detected in 

muscle from elderly hip-fractured patients with 

sarcopenia as well [93]. Recently, many studies have 

demonstrated that Parkin deletion results in inadequate 

muscle mass and poor physical performance in old 

individuals and mice [114, 118], whereas Parkin 

overexpression has a protective effect on skeletal muscle 

[118]. Similarly, Leduc-Gaudet el al. [119] have 

demonstrated that Parkin overexpression can ameliorate 

the reduction in muscle mass and strength during 

senescence. The authors demonstrated that after 

intramuscular injection of adeno-associated virus (AAV) 

vectors for encoding Parkin induced the upregulation of 

Parkin expression and attenuated the loss of skeletal 
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muscle mass and strength in old mice versus those in the 

control group. Moreover, mitochondrial derived vesicles 

(MDVs) function as important mediators in the vesicle 

transport between mitochondria and lysosomes, which 

was regarded as an Drp1-independent mitophagy pathway 

[120]. And MDV-derived nicotinamide adenine 

dinucleotide may become a novel biomarker for 

sarcopenia [121]. 

Additionally, mitochondrial autophagy, dynamics 

and biogenesis are closely associated with each other. 

Mitophagy and mitochondrial dynamics are interrelated 

because the conversion between fusion and fission is a 

prerequisite for mitophagy [79]. PINK1 can indirectly 

activate Drp1 to promote the degradation of defective 

mitochondria [122]. Parkin induces the proteasomal 

degradation of mitofusins thus shifting the mitochondrial 

fusion/fission balance towards fission to suppress 

mitochondrial fusion and induce segregation of 

malfunctioning mitochondria from the healthy 

mitochondrial network [123]. Besides, Parkin is 

positively associated with mitochondrial biogenesis due 

to proteasomal degradation of Parkin-interacting substrate 

(PARIS), a zinc-finger protein that inhibits the synthesis 

and secretion of PGC1α and blunts the activation of its 

target cofactors and genes [124]. These findings indicate 

that mitophagy may contribute to sarcopenia through a 

complex MQC network. Considering multiple roles of 

mitophagy in quality control, it is deserved to expect that 

Parkin or other important regulators of mitophagy may 

become novel targets for the prevention and attenuation 

of sarcopenia during aging. 

In summary, the maintenance of homeostatic MQC is 

attributed to the synergistic regulation of mitochondrial 

proteostasis, biogenesis, dynamics and autophagy in 

senescence. Disruption of quality control homeostasis 

results in accunulation of dysfunctional mitochondria that 

negatively affects skeletal muscle health in older 

individuals and may even lead to sarcopenia. 

 

3. Potential Interventions for Sarcopenia 

 

3.1 Exercise Therapy 

 

Physical activity, especially resistance exercise training, 

has been recommended as the first-line intervention to 

manage sarcopenia according to the evidence-based 

clinical practice guidelines [35].  

 

3.1.1 Resistance exercise for sarcopenia 

 

Physical activities that set off skeletal muscle contraction 

against resistance can be defined as resistance exercise. 

Resistance exercise increases muscle mass, elevates 

muscle strength and improves the performance of 

physical exercise in elderly sarcopenia patients [35, 125, 

126]. Several studies have shown that resistance exercise 

promotes mitochondrial protein synthesis and thus plays 

a role in amelioration of mitochondrial dysfunction [127, 

128] to improve muscle mitochondrial biofunctions in 

human skeletal muscle [129]. Resistance exercise has 

been shown to optimize mitochondrial functions, 

particularly by improving mitochondrial biogenesis. 

Specific molecular mechanisms mainly include the 

AMPK/SIRT1/PGC-1α or FoxO1 axis as regulators of 

mitochondrial biogenesis in response to physical exercise 

of skeletal muscle [76]. In such a scenario, exercise 

training activates AMPK due to an increase in the 

AMP/ATP ratio [130] which directly phosphorylates 

PGC-1α. Subsequently, activated PGC-1 translocates 

from cytosol into the nucleus and coactivates the 

transcription factors and nuclear receptors to enhance 

mitochondrial biogenesis [65, 131]. Besides, long-term 

moderate exercise positively regulates mitochondrial 

biogenesis through coordinated interactions of AMPK, 

SIRT1 and PGC-1α in the skeletal muscle of older mice 

[132]. In addition to the effects on mitochondrial 

biogenesis, several studies have demonstrated that 

exercise training also contributes to mitochondrial 

homeostasis by preserving mitophagy in skeletal muscle, 

which may potentially benefit patients with sarcopenia 

[133, 134]. Interestingly, voluntary resistance wheel 

exercise (RWE) has been warranted as an effective way 

to prevent sarcopenia in old C57BL/6J mice [135]. 

Exercised sarcopenic mice manifested improved 

mitophagy (increased LC3II/I ratios) and mitochondrial 

functions (higher mitochondrial density and better 

oxidative capacity) compared to those in 23-month-old 

sedentary controls, and the differences were not sex-

specific. 

 

3.1.2 Endurance training for sarcopenia 

 

In addition to resistance-based exercise, endurance 

training is involved in the maintenance of MQC in skeletal 

muscle as well, including mitochondrial protein synthesis 

[127, 136, 137], mitophagy [138, 139] and also general 

functions [137], which likely contribute to the prevention 

and management of sarcopenia during aging. Endurance 

exercise promoted the clearance of impaired proteins in 

skeletal muscle in addition to the prosynthetic effects of 

physical activity [140]. But the clinical significance of 

endurance exercise on managing sarcopenia requires 

further investigation. 

Current studies indicate that physical exercises 

enhance muscle performance and relieve sarcopenic 

manifestations, in part due to optimized MQC. Currently, 

consistent recommendation of specific physical exercise 

for sarcopenia patients is not available; however, exercise 
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plans should correspond to patient abilities and 

rehabilitation goals to achieve the best therapeutic effect. 

3.2 Nutritional and Pharmacological Interventions 

 

Certain limitations for physical exercises in patients with 

sarcopenia include increased risk of fractures and falls in 

older adults and poor adherence to long-term training 

programs [141]. Therefore, valid nutritional and 

pharmacological interventions have to be identified to 

ameliorate sarcopenia in a more easily available fashion. 

Currently, clinically approved drugs for specific treatment 

of sarcopenia are unavailable; however, a few medicines 

are undergoing phase I and II clinical trials [4]. The 

supplementary nutrients mainly include protein, vitamin 

D, antioxidants, myostatin inhibitors and anabolic 

hormones [4, 35, 142]. Nutritional manipulations 

demonstrated certain efficacy in the improvement of the 

symptoms of sarcopenia; however, none of these 

manipulations are recommended as conventional methods 

for therapy of sarcopenia, except protein intake, which is 

conditionally recommended [35].  

Recently, several bioactive compounds or drugs have 

been identified as latent and potent options to prevent and 

delay the progress of sarcopenia through ameliorating 

mitochondrial dysfunction. Melatonin (N-acetyl-5-

methoxytryptamin, aMT) is a pineal hormone that is 

ubiquitously present in most organs and tissues, including 

skeletal muscle [143]. Melatonin coordinates 

physiological adaptations to the light/dark cycle and 

seasonal alterations and has a number of other 

biofunctions, such as recovery of aging-related 

mitochondrial dysfunction of muscle in senescence-

accelerated mice [143-145]. Notably, a protective effect 

of melatonin in sarcopenia is mediated by the modulation 

of mitochondrial changes in aging. Sayed et al. [146, 147] 

demonstrated that oral melatonin treatment of early-aged 

(12 months) mice with sarcopenia resulted in relatively 

normal muscle structures, increased number of muscle 

fibers, decreased frailty index (FI) and improved physical 

performance. Additionally, melatonin supplementation 

promoted lactate production and diminished tubular 

aggregate formation and nuclear apoptosis. These results 

indicated that melatonin plays the prophylactic role in 

sarcopenia during aging, which should probably be used 

in clinical therapy in the near future. In addition to 

endogenous hormones, 5,7-dimethoxyflavone (DMF), a 

major flavone detected in Kaempferia parviflora, was 

demonstrated to serve as a natural ingredient to delay 

sarcopenia [148]. In this study, oral administration of 

DMF considerably increased muscle mass, strength, and 
physical ability and three basal evaluation indexes of 

sarcopenia compared to those in the aged controls. At the 

molecular level, DMF regulated protein synthesis by 

stimulating the PI3K-Akt axis and mTOR pathway and 

restraining the FoxO pathways and enhanced 

mitochondrial biogenesis by upregulating the mRNA 

expression of PGC-1α, Nrf-1, and Tfam. Another natural 

substance, oligonol, has been demonstrated to increase 

muscle mass and strength by optimizing the quality 

control of mitochondria in SAMP8 mice [149]. Oligonol 

is extracted from flavanol-rich lychee and can regulate 

metabolism [150, 151]. After 8 weeks of oligonol 

administration, SAMP8 mice in the experimental group 

had higher skeletal muscle mass and strength versus those 

in the control animals. At the molecular level, oligonol 

positively regulated mitochondrial proteostasis 

(stimulation of Akt/mTOR/p70S6K and inhibition of 

FoxO3a/MuRF1 and MAFbx signaling), mitochondrial 

biogenesis (elevated PGC-1α and Tfam), mitochondrial 

dynamics (increased Mfn2 and Opa1) and mitophagy 

(upregulation of PINK1, a reduction in Atg13, LC3-II, 

and p62, and a decrease in autophagosomes and 

lysosomes), indicating that oligonol can play a role in the 

correction of mitochondrial dysfunctions thus preventing 

sarcopenia. Notwithstanding, the underlying mechanisms 

derived from aging-accelerated mice may differ from 

normally senescent mice. Additionally, 5-aminolevulinic 

acid (ALA), a basic compound in porphyrin synthesis, 

was demonstrated to reduce the loss of muscle mass and 

improve physical performance in old mice through 

facilitating protein synthesis in mitochondria [152]. The 

decreased level of NAD+ was detected in sarcopenia, 

cardiovascular aging and neurodegenerative diseases [25, 

78, 153]. Nicotinamide, an NAD+ precursor, has been 

shown to promote mitophagy and suppress cardiac aging 

through activating Sirtuins [154, 155]. Therefore, 

targeting NAD+ may become a novel strategy for 

alleviating sarcopenia. Moreover, urolithin A, as one of 

the end-products of ellagitannins (ETs) and ellagic acid 

(EA), was also found to induce mitophagy and improve 

muscle functions in aged mouse, which probably becomes 

a promising nutritional supplementation for sarcopenia 

[156]. However, all of these bioactive compounds or 

drugs are carried out in animal models, and none of them 

are tested in clinical trials. 

Overall, the combination of physical exercise and 

protein supplementation is the most effective 

countermeasure for sarcopenia. However, nutritional and 

pharmacological interventions are more applicable for the 

majority of sarcopenia patients. Several potential 

therapeutic agents have been demonstrated to mitigate 

mitochondrial malfunction for the prevention and 

treatment of sarcopenia. Furthermore, gene therapy 

probably become a novel strategy for alleviating 

sarcopenia. METTL21c acts as a bone-muscle pleiotropic 

gene for sarcopenia. Although METTL21c’s biofunction 

is achieved by NF-κB signaling pathway, its potential role 
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in quality control mechanisms of mitochondria deserves 

more investigation [157]. Additionally, some mitokines 

potentially function as biomarkers for the diagnosis of 

sarcopenia, such as growth differentiation factor 15 

(GDF15) and fibroblast growth factor 21 (FGF21) [158, 

159]. Therefore, an increasing number of studies are 

needed to confirm the effectiveness of the present findings 

and to explore novel countermeasures and diagnostic 

methods for sarcopenia, which may greatly improve the 

quality of life of elderly patients.  

 

4. Conclusion 

 

Sarcopenia is a prevalent and degenerative skeletal 

muscle disease that leads to poor quality of life in patients, 

particularly elderly individuals. Numerous 

pathophysiological alterations contribute to a progressive 

decline in muscle strength, muscle mass and physical 

performance, which are the predominant hallmarks of 

sarcopenia. Dyshomeostasis of mitochondrial quality 

control is one of the primary factors for the initiation and 

progression of sarcopenia. MQC requires coordination of 

mitochondrial proteostasis, biogenesis, dynamics and 

autophagy. Alterations in mitochondrial quality control 

exacerbate muscle atrophy and reduce muscle strength 

during aging concomitant with restricted locomotive 

function. The important regulators and signaling 

pathways in MQC may be involved in the etiology of 

sarcopenia and are comprehensively summarized in this 

review. Physical exercise, the most recommended 

therapeutic intervention for sarcopenia, improves skeletal 

muscle quantity and quality partially by facilitating the 

restoration of malfunctional mitochondria. Additionally, 

nutritional and pharmaceutical treatments ameliorate 

sarcopenia to a certain degree, although compelling 

evidence and mechanisms remain to be identified. 

Overall, dysfunctional MQC plays a causative role in 

sarcopenia and revealing latent mechanisms may shed 

light on efficient preventive and intervention strategies for 

patients with sarcopenia. 
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