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Abstract

Background: Meningiomas are common brain tumours that are usually defined by benign clinical course.
However, some meningiomas undergo a malignant transformation and recur within a short time period regardless
of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can
discriminate between benign and malignant meningioma courses.

Methods: We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour
specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered
with the AutoPipe algorithm.

Results: We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan
metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-
free survival was significantly longer in the glycine/serine cluster.

Conclusion: Our findings suggest that alterations in glycine/serine metabolism are associated with lower
proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases
proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations,
which may support histological classifications to predict the clinical outcome of patients with meningiomas.
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Background
Meningiomas are common brain tumours in adults; they
account for 13–26% of all intracranial tumours [1]. The
2016 World Health Organization (WHO) classification
divided meningiomas into three histological grades (I to
III) and described 16 histopathological subtypes [2].
These WHO grades have presented a significant correl-
ation with clinical outcomes in several recent studies.
The majority of meningiomas are benign tumours (90%)

that are mainly treated by surgery, followed by an inno-
cent clinical course [1]. Atypical meningiomas (WHO
grade II) reveal a worse clinical outcome due to higher
recurrence rates of up to 30–40% [2]. In addition, a
small subset of meningiomas (1–2.8%) is classified as an-
aplastic; they show a particularly aggressive clinical
course and a recurrence rate of nearly 100% [1].
A few benign meningiomas (WHO grade I) can trans-

form into an aggressive growth pattern and recur after a
short period of time. To address the variety of clinical
outcomes within the WHO grade I group, multiple re-
search groups have investigated the genetic landscape of
meningiomas and have shown region-specific genomic
alterations [3]. The authors have identified five genetic
subgroups based on transcriptional similarity and
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associated mutational patterns. Meningiomas most fre-
quently contained an NF2, SMARCB1 (Group1), TRAF7/
KLF4 (Group2), and PI3K (Group3) mutation, which
drive WNT pathway activation. In another group, there
was Hedgehog pathway activation detected by transcrip-
tional profiles and mainly based on mutations in genes
such as SMO [4]. The last subgroup comprised meningi-
omas that showed a distinct mutation in the POLR2A
gene followed by dysregulated RNA synthesis [3, 5].
others suggested that malignant meningiomas have dif-
ferent DNA methylation patterns than other types of
meningiomas and that the differently methylated genes
could serve as diagnostic biomarkers for malignant
transformation [6]. The importance of TERT promoter
mutations and their potential use as biomarkers to iden-
tify meningiomas at risk of malignant transformation
was also reported [7].
Besides genomic alterations, tumour metabolism has

recently been described as a hallmark driver of malig-
nancy and tumour development. Different tumour en-
tities, including brain and other solid tumours, have
shown numerous metabolic alterations. A strong associ-
ation between altered tumourmetabolism and chromo-
somal instability has been reported [8]. These metabolic
alterations were detected independently of the WHO
grade [9, 10]. Serna et al. [11] showed that metabolic ag-
gressiveness is driven by alterations in the expression of
IGF1R (insulin-like growth factor 1 receptor), which is
involved in the regulation of glycolysis. Following the
hypothesis of altered glycolysis in meningiomas, re-
searchers have shown that different components of gly-
colysis are transformed, including phosphofructokinase
(PFK) and lactate dehydrogenase (LDH), both of which
were significantly increased in anaplastic meningioma
compared with other histological subtypes. In addition,
there were alterations in tryptophan metabolism, a
phenomenon that forced the immune-escape mechanism
to increase kynurenine pathway activity [12, 13]. Today,
increased opportunities in bioinformatics and metabolic
profiling have allowed detecting associations between
metabolic networks and clinical parameters to predict
metabolic patterns and associated clinical outcomes.
Our aim was to identify benign and potentially malig-
nantly transformed meningiomas within the defined
WHO grade I by metabolic profiling and computational
analysis.

Methods
Contact for reagent and resource sharing
Further information and requests for resources, raw
data, and reagents should be directed to and will be ful-
filled by DH Heiland (dieter.henrik.heiland@uniklinik-
freiburg.de). A full table of all materials is given in the
supplementary information.

Ethical approval
For this study, we included 43 patients who underwent
surgery at the Department of Neurosurgery of the
University Medical Center Freiburg. The local ethics
committee of the University of Freiburg approved
data evaluation, imaging procedures, and the experi-
mental design (protocols 100,020/09 and 5565/15).
The methods were carried out in accordance with the
approved guidelines. Written informed consent was
obtained from each patient. The studies were ap-
proved by an institutional review board.

Imaging, tissue collection, and histology
Tumour tissue was sampled from the meningioma core,
snap-frozen in liquid nitrogen immediately after resec-
tion, and processed for further metabolic analysis. Rep-
resentative tissue from all samples were fixed using 4%
phosphate-buffered formaldehyde and embedded in par-
affin following standard procedures. Hemotoxylin and
eosin (H&E) staining was performed on 4 μm paraffin
sections using standard protocols. This staining con-
firmed the correct sampling.

Metabolite extraction and hydrogen nuclear magnetic
resonance (1H-NMR) analysis
Metabolites were extracted with 400 μL ice-cold 80%
methanol and 400 μL ice-cold water, homogenized with
a tissue grinder (VWR, Radnor, PA, USA), sonicated at
1 °C, then centrifuged at 15,000 g for 20 min to remove
protein. Extracts were dried by lyophilization and re-
suspended in 650 μL deuterated water as described by
Beckonert et al [14] Six-hundred microliters of the
suspension was transferred to NMR tubes for the
subsequent NMR procedure. 1H-NMR spectra were
collected at the Institute of Physical Chemistry of the
University of Freiburg with a Bruker Avance III HDX
600-MHz NMR spectrometer (Bruker, Rheinstetten,
Germany), equipped with a PABBO BB/19F-1H/D Z-
GRD probe head. Each individual spectrum was recorded
with two dummy scans and 32 scans with 64 k points in
the time domain. The sweep width was set to 16.02 ppm
with an offset of 4.691 ppm. This resulted in an acquisition
time of 3.4 s for each scan and a dwell time of 52 micro-
seconds. The relaxation delay was set to 2 s for acquisi-
tion, and the water signal was suppressed by an excitation
sculpting scheme [15].

Postprocessing of metabolic data
To adjust the spectra from multiple batches, spectra
were manually aligned by setting the peak of L-lactic acid
at 1.310 ppm. All acquisition and processing of the spec-
tra were performed with TopSpin 3.2 patch level 6. A
detailed description of the methods was given in a re-
cently published study by Heiland et al [16] All spectra
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were analyzed with the software package “batman,” an
R-software-based tool for metabolite detection in com-
plex spectra [17]. This tool fits a predefined list of me-
tabolites by a Bayesian approach. Hao et al. [17]
provided a detailed description of the batman algorithm.
Normalization of the spectra was performed by the
pseudo-counted quantile (pQ) normalization algorithm
integrated in the KODAMA package. Further processing
of metabolic data is described in the subsequent
subsections.

Cluster analysis
Normalized metabolic data were processed with AutoP-
ipe (https://github.com-/heilandd/AutoPipe), a software
package for automated unsupervised clustering. First,
the number of subgroups was computed by the Parti-
tioning Around Medoids (PAM) algorithm (Cluster
number k = 2–12). To identify the optimal number of
clusters, we calculated the mean silhouette width of each
cluster composition. Next, to identify the core samples
of each cluster, we removed samples with a negative sil-
houette width from further analysis. We then used either
the PAMR algorithm [18], a machine-learning-based
method, or a generalized linear model [19] to identify
characteristic up- or downregulated metabolites of each
subgroup.

Weighted correlation network analysis (WCNA)
WCNA is a robust tool for integrative network analysis
and has been used in recent studies [20–22]. It is based on
a scaled-topology-free-based network approach and uses
the topological overlapping measurement to identify cor-
responding modules. These modules were analyzed by
their eigengene correlation to each metabolite. The correl-
ation of the intramodular connectivity (kME) and metabo-
lites was used as input for a “Cluster of Clusters Analysis.”
This analysis integrates expression modules and metabo-
lites, which presents equal correlation values (kME and
metabolite intensity values). A detailed description of
WCNA is given in a previous publication [23].

Functional analysis
Metabolic data was processed by pathviewer, an R
package that includes Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway maps [24]. Expression
data (as described above) and normalized, log2-
transformed, and median-centered metabolic data
were integrated in the pathviewer algorithm. Enrich-
ment analysis of metabolic data was performed with
the DOSE package and the web-based tool MetaboA-
nalyst 3.0 (www.metaboanalyst.ca).

Survival analysis
Progression-free survival analysis was conducted using
Kaplan-Meier analysis, with the betweed-cluster differ-
ences analyzed using a log-rank test.

Results
Meningiomas revealed two distinct metabolic clusters
We started our investigation by purifying metabolites
from 43 meningiomas localized at different anatomical
regions, including the convexity in 12 cases (27.9%), the
falcine site in 6 cases (13.9%), the sphenoid ridge in 6
cases (13.9%), the frontobasal region in 9 cases (20.9%),
the petroclival region in 2 cases (4.6%), the spinal site in
3 cases (6.9%), and 5 cases at other regions. The histo-
pathological analysis showed 28 patients with WHO
grade I meningiomas (65.1%), 12 with WHO grade II
meningiomas (27.9%), and 3 patients with WHO grade
III meningiomas (6.9%). Two patients with a WHO
grade II meningioma and 3 patients with a WHO grade
III meningioma showed a tumour recurrence within 1
year. Twenty-four (55.9%) patients had a proliferation
index (MIB-1) below 5% and 19 (44.1%) patients had a
proliferation index (MIB-1) above 5%. A gross total re-
section (Simpson grade 1 + 2) was achieved in 37 pa-
tients and a subtotal resection (Simpson grade 3 + 4) was
achieved in 6 patients. A detailed overview of all param-
eters can be found in Table 1.
Metabolites were analyzed using NMR and processed

by a comprehensive computational analysis (Fig. 1). Rep-
resentative MRI and histological staining’s are illustrated
in Fig. 1b-c. We first conducted an unsupervised cluster
analysis of the top 100 most variable metabolites by
PAM clustering. The optimal number of clusters was de-
fined by maximal mean silhouette widths (Fig. 2a, b).
The analysis revealed two distinct clusters. In the first
cluster, named Metabolic Cluster I, we found upregu-
lated glycine/serine metabolism with the major signature
metabolites glycine, serine, and arginine. Patients in this
cluster were exclusively histological grade I and showed
a significantly lower rate of edema (p < 0.05) and a low
proliferation rate (mean 1.2, interquartile range [IQR]
0.3, p < 0.05) compared to cluster II. The second cluster
(Metabolic Cluster II) was easily separable into two sub-
clusters by PAM clustering. One subcluster contained
patients with a medium proliferation rate of 2.1 (IQR
0.7) and increased edema compared with Cluster I (p <
0.05; Fig. 2a, b). The pathway that separated the clusters
was choline metabolism. For the second subcluster, we
found increased tryptophan metabolism and also a
strong activation of the choline pathway. Furthermore,
the proliferation rate was massively increased (mean
11.7, IQR 4.3, p < 0.05), and there was edema in most of
the patients compared to patients in cluster I. We found
a high incidence of meningioma WHO grade II (n = 12)

Masalha et al. BMC Cancer          (2021) 21:211 Page 3 of 9

http://www.metaboanalyst.ca


and III (n = 3) but also meningioma WHO grade I (n =
13) (Fig. 2a, b). Kaplan-Meier analysis showed a signifi-
cant longer progression-free survival in favour of cluster
I (p = 0.0083), suggesting that metabolic alterations may
reflect the clinical course of the disease, Fig. 3.

WCNA of metabolic profiles in Meningiomas
We aimed to characterize the metabolic pathways in de-
tail and performed a WCNA of metabolic profiles. There
were five metabolic modules (Fig. 2c). Three modules
showed a strong association with the WHO grade based

on a logistic model that included WHO grade and mod-
ule eigengene. From that model, we considered module
GI (associated with WHO grade I, R = 0.25, padj = 0.05),
module GII (associated with WHO grade II, R = 0.26,
padj = 0.05), and module GIII (associated with WHO
grade III, R = 0.28, padj = 0.01) for further analysis. The
other modules failed to achieve a significant correlation
with the WHO grade. First, we analyzed the correlation
between the GI module eigengene and clinical features
(Figure S1A). We found a significant negative correlation
between module GI and perifocal edema (R = − 0.3,

Table 1 Patients data

Parameter Cluster 1
N = 15

Cluster 2
N = 28

Significance level (p)

Sex (N,%)

Male (N = 10) 2 (14.2%) 8 (28.5%) 0.45****

Female (N = 33) 13 (86.6%) 20 (71.4%)

Age (mean, SD) 62.3 ± 13.1 64.4 ± 12.8 0.62*

Size (cm3) (mean, SD) 48.3 ± 51.8 88.6 ± 103.3 0.09*

Peritumoral edema (N, %)

high 4(26.6%) 18(64.3%) 0.02***

low 11(73.4%) 10(35.7%)

Location (N, %)

falx 3(20%) 3(10.7%) 0.64****

convexity 2(13.3%) 10(35.7%) 0.16****

frontobasal 4(26.6%) 5(17.8%) 0.69****

sphenoid wing 2(13.3%) 4(14.2%) 1***

petroclival 1(6.6%) 1(3.5%) 1****

spinal 2(13.3%) 1(3.5%) 0.11****

others 1(6.6%) 4(14.2%) 0.64****

Simpson grade (N, %)

Grade 1 5(33.3%) 7(25%) 0.74****

Grade 2 9(60%) 16(57.1%) 1***

Grade 3 0(0%) 3(10.7%) 0.54****

Grade 4 1(6.6%) 2(7.1%) 1****

Preoperative KPS (median, 95% CI) 80% CI(70–80%) 70% CI(%60–80%) 0.01**

Postoperative KPS (median, 95% CI) 90% CI(80–90%) 70% CI(50–90%) 0.007**

Proliferation index (N, %)

MIB1 < 5% 15(100%) 9(32.1%) 0.01****

MIB1 > 5% 0(0%) 19(67.9%)

Pathology (N, %)

WHO grade I 15(100%) 13(46.4%) 0.001****

WHO grade II + III 0(0%) 15(53.6%)

SD standard deviation
CI confidence interval
KPS Karnofsky score
* T-test
**Wilcoxon test
***Chi-squared test
****Fisher’s exact test
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padj = 0.01) and the histologically defined atypical men-
ingiomas (R = − 0.38, padj = 0.03), which confirmed our
NMR findings. Meningiomas with a module GI signature
were mostly observed in the convexity (R = − 0.32, padj =
0.04). The histological subtype of a “transitional men-
ingioma” was highly significantly associated with the GI
signature (R = − 0.41, padj = 0.001). Next, we examined
the enrichment of metabolic pathways in each module.
A metabolite set enrichment analysis (MSEA) showed a
significant upregulation of the glycine/serine pathway
(Enrichment Score = 1.75, p = 0.0067) and glutamate me-
tabolism (Enrichment Score = 1.52, p = 0.047) (Figure
S1B). We computed a network based on the metabolites
of module GI. Connections within the network were
based on intramodular connectivity. From that network,
we identified the amino acids serine and glycine and the
metabolite creatine as key metabolic players in grade I
meningiomas.
In the next step, we examined the correlation between

the GII module eigengene and clinical features (Figure
S2A). There was a significant correlation between module
GII and perifocal edema (R = 0.25, padj = 0.05) and the his-
tologically defined atypical meningioma (R = 0.41, padj =
0.02). There was no correlation between localization and

the module eigengene. The metabolic network of module
GII identified tryptophan and kynurenic acid as hub me-
tabolites (Figure S2B). In line with the network findings, a
metabolic pathway analysis uncovered upregulation of the
tryptophan metabolism pathway (Enrichment Score =
1.83, p = 0.0093; Fig. 2c). To characterize module GIII, we
examined the correlation between module eigengene and
clinical features (Fig. S2D). No clinical feature was associ-
ated with this module, except the WHO grade (R = 0.28,
padj = 0.01). In addition, there was no correlation between
localization and module eigengene. We next computed a
network of metabolites for module GIII. Choline, iso-
leucine, and sphingosine were hub metabolites, (Figure
S2E). In line with the network findings, a metabolic path-
way analysis uncovered an upregulation of the choline me-
tabolism pathway (Enrichment Score = 1.06, p = 0.0014).

Discussion
Due to a favorable clinical course, most meningiomas
are classified as benign. Nevertheless, 20% of patients
within this subgroup present a tumour recurrence, even
after gross total resection [1, 25]. These tumour subtypes
are difficult to identify and challenging for future treat-
ment. To better predict their clinical outcome, researchers

Fig. 1 a Workflow of metabolite extraction, identification of metabolite and bioinformatical analysis. The extracted specimens are analyzed by
NMR analysis. Metabolite are fitted and further analyzed by unsupervised clustering and network analysis. b T1-weighted MRI images with
contrast are illustrated. c Representative H&E stainings of WHO grade I-III (upper panel) and KI-67 immunostainings (bottom panel) of WHO
grade I-III
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have performed metabolic analysis by high resolution
magic angle spinning (HR-MAS) and reported a correl-
ation between metabolic and WHO graduation of

meningiomas [9]; however, these findings were limited by
a small number of observed metabolites. We aimed to in-
vestigate a global metabolic profiling to identify specific

Fig. 2 a In the upper plot, the silhouette widths of both clusters are shown ordered by different cluster subgroups. In the middle panel, a
heatmap illustrate the metabolic intensity of the top ranked metabolites. At the bottom panel, the information on clinical properties is available.
These are color-coded and explained in the side panel. b In the upper panel, the plot illustrates the optimal number of clusters. The optimal
number of clusters was achieved by PAM clustering from 2 to 10 number of clusters by calculating the mean silhouette widths. In the bottom
panel, a network analysis of the metabolic pathways highly enriched in cluster 1 and 2 respectively is given. c A weighted correlation network
analysis (WGNC) was performed to explore the associated clinical features and molecular/metabolic, further detailed interpretation of all identified
modules is given in the supplementary data
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subgroups that are driven by unique metabolic alterations
and associated with WHO grades. We performed ex vivo
metabolic profiling by NMR spectroscopy of meningioma
specimens, including all WHO grades (I, II, and III),
followed by computational detection of metabolites and
cluster analysis.
Our cluster analysis identified two major metabolic

clusters, of which one cluster was divided into two
subclusters of meningiomas based on the top 100 most
variable metabolites. The first metabolic cluster was
highlighted by serine and glycine metabolism, which
provides a basis for synthesis of other amino acids, pro-
teins, and lipids. Their metabolism could increase the
antioxidative capacity and reduce cellular reactive oxy-
gen species (ROS). In particular, the glycine cleavage sys-
tem fuels mono-carbon metabolism within a complex
cellular network based on folate compound reactions,
which play a central role in cellular redox balance over
modulation of the NADP+/NADPH-ratio [26]. This net-
work is also an essential component of methylation reac-
tions that may be relevant for the maintenance of the
cellular epigenetic status [27]. In our study, serine and
glycine metabolism was associated with benign meningi-
omas (WHO grade I) and a significantly low prolifera-
tion index (p = 0.01). This cluster was also accompanied
by significantly lower edema based on magnetic reson-
ance imaging (p = 0.02; Fig. 2, Table 1) compared with
higher grades. The role of glycine in meningiomas has

been controversially discussed. While some authors have
reported a complete absence of glycine in aggressive
meningioma [28], others have shown a significantly in-
creased glycine/alanine ratio. Furthermore, a signifi-
cantly increased ratio of glycine to glutamine/glutamate
in rapidly recurrent meningiomas and an increased
glycine value in benign meningioma has been observed
[29, 30]. By contrast, Monleon and colleagues found in-
creased glycine levels in atypical meningiomas due to
hypothesized increased angiogenesis [9]. These discrep-
ancies with regard to glycine levels suggest the existence
of more complex subgroups within the pathological de-
lineation of grade I meningiomas. In line with published
data, we detected altered glycine/serine metabolism in a
subgroup of benign meningiomas. Other clusters also
contain grade I tumours, which results in inaccurate in-
dividual metabolic levels within grade I meningiomas.
The second metabolic cluster was defined by choline

and tryptophan metabolism. Choline is an important
component of the cell membrane. Higher choline con-
centrations are usually present in brain tumours com-
pared with normal brain tissue. Thereby, choline acts as
a brain tumour marker [31]. Elevated choline peaks can
also be detected in regions with high tumour cell dens-
ity, in which the tissue is not necessarily anaplastic [32].
The increased rate of proliferation, which we observed
in tumours of the second cluster, consequently drives
the choline metabolism due to increased demand of
membrane components. Previous findings have sug-
gested that choline levels are significantly increased in
benign meningioma with an aggressive clinical course [9,
11]. Further, Mishra and colleagues reported high cho-
line levels in malignant meningioma [33]. By contrast,
others have reported a prominent choline level in WHO
grade I meningioma. While they did not observe differ-
ences in choline concentrations within all WHO grades,
they only included a small number of WHO grade II +
III meningiomas in their study [29]. We further identi-
fied altered tryptophan metabolism; this amino acid is
mainly metabolized by three pathways: the serotonin (5-
hydroxytryptamine [5-HT]) pathway, the kynurenine
(KYN) pathway, and the tryptamine pathway [34]. Re-
searchers have reported that an overexpression of the
tryptophan catabolizing enzymes indoleamine 2,3-dioxy-
genase 1/2 or tryptophan 2,3-dioxygenase are associated
with tumour progression. These two enzymes convert
tryptophan into kynurenine [35, 36], which is involved
in the immune escape mechanism [37, 38]. This indicates
that the tryptophan and the kynurenine pathways play an
important role in tumour progression and immune re-
sponse. Researchers have confirmed the increased trypto-
phan metabolism in high-grade meningiomas [12, 13]. In
line with the reported findings, we confirmed the increased
tryptophan metabolism in high-grade meningiomas (grade

Fig. 3 Kaplan-Meier Kurve for Prgression-free survival based on
different Clusters (Cluster 1 in yellow vs Cluster 2 in blue)
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II and III) but also identified benign meningiomas with up-
regulated choline and tryptophan metabolism. These tu-
mours were significantly associated with a shorter PFS in
our study (p = 0.0083) (Fig. 3). This insight provides a pos-
sible rationale suggesting that some benign classified men-
ingioma manifest a less favorable course than others.
Taken together our findings suggest an important role

for tumour metabolism in meningiomas that only partially
overlaps with respect to their histological grading. We ad-
dressed the questions as to how metabolic changes in
meningiomas can provide a possible explanation for dif-
ferent clinical features within these histologically classified
tumours. Our metabolic profiling revealed distinct sub-
groups marked by different activated metabolic programs.
Patients with predominant activation of glycine/serine me-
tabolism showed favorable grading and a low proliferation
index. The second metabolic subgroups were marked by
upregulated choline and tryptophan metabolism; it mainly
contained high-grade meningiomas but also some lower-
grade tumours. The current study is limited by the rela-
tively low number of enrolled patients and the short
follow-up time. However, although WHO grade II and III
meningiomas are rare, we were able to include 15 patients
in this study. A re-evaluation with a longer follow-up
should be carried out to confirm these results.

Conclusion
In summary, our results suggest that tumour malignancy
is reflected by metabolic alterations that can support
histological classifications in order to predict the clinical
outcome of patients with meningiomas. In our study, we
investigated choline as a metabolic marker to predict
early recurrence and reduced PFS, which is a well-
detectable metabolite in in-vivo MR spectroscopy.
Further studies are needed to validate this potential cor-
relation in a larger cohort, which would provide a clin-
ical implication for MR spectroscopy in meningioma.
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Metabolic set enrichment analysis (MSEA) of module GII and KEGG
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features. E) Network analysis of module GIII, nodes and edges were

defined by correlation coefficients between all metabolites. F) Metabolic
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