
phRAIDER: Pattern-Hunter based Rapid Ab Initio

Detection of Elementary Repeats

Carly E. Schaeffer,1,† Nathaniel D. Figueroa,1,† Xiaolin Liu2 and

John E. Karro1,2,3,4,*

1Department of Computer Science and Software Engineering, 2Department of Cell, Molecular, and Structural

Biology, 3Department of Microbiology and 4Department of Statistics, Miami University, Oxford, OH, USA

*To whom correspondence should be addressed.
†These authors contributed equally to this work.

Abstract

Motivation: Transposable elements (TEs) and repetitive DNA make up a sizable fraction of

Eukaryotic genomes, and their annotation is crucial to the study of the structure, organization, and

evolution of any newly sequenced genome. Although RepeatMasker and nHMMER are useful for

identifying these repeats, they require a pre-compiled repeat library—which is not always avail-

able. De novo identification tools such as Recon, RepeatScout or RepeatGluer serve to identify TEs

purely from sequence content, but are either limited by runtimes that prohibit whole-genome use

or degrade in quality in the presence of substitutions that disrupt the sequence patterns.

Results: phRAIDER is a de novo TE identification tool that address the issues of excessive runtime

without sacrificing sensitivity as compared to competing tools. The underlying model is a new defin-

ition of elementary repeats that incorporates the PatternHunter spaced seed model, allowing for

greater sensitivity in the presence of genomic substitutions. As compared with the premier tool in the

literature, RepeatScout, phRAIDER shows an average 10� speedup on any single human chromosome

and has the ability to process the whole human genome in just over three hours. Here we discuss the

tool, the theoretical model underlying the tool, and the results demonstrating its effectiveness.

Availability and implementation: phRAIDER is an open source tool available from https://github.

com/karroje/phRAIDER.

Contact: karroje@miamiOH.edu or

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transposable elements (TEs) are genomic sequences that had (or

have) the capacity to insert themselves, or copies of themselves, into

other genomic locations. Present in almost every higher order genome,

and covering as much as 45% of the human genome and 90% of the

maize genome (Lander, 2001; SanMiguel et al., 1996), TEs have

proved an important source of data in numerous studies of genomic

structure (Arndt and Hwa, 2005; Karro et al., 2008; Mugal et al.,

2008). They are also frequently a source of noise that needs to be

masked. Unfiltered TEs can disrupt annotation tools, resulting in large

false positive rates when subjected to automated gene finding tools, as

well as inflated runtimes for the annotation tools (Jiang, 2013).

The most commonly used tools for repetitive DNA identifica-

tion, such as RepeatMasker and nHMMER (Smit et al., 2015;

Wheeler and Eddy, 2013), use precompiled descriptions of se-

quences in the family (e.g. an ancestral sequence or profile HMM)

to aid in the identification of more instances of that family. But

much like the question ‘How does the snow plow driver get to

work?’ (Pratchett, 2006), we might ask how these libraries are com-

piled. RepeatMasker requires these libraries to work, but we cannot

use RepeatMasker to generate them.

Initial libraries were compiled as a result of wet-lab work, using

TEs identified through sequencing and biological study

(McClintock, 1950; Sanger and Coulson, 1975). In the era of

Bioinformatics, we would prefer an automated solution. When first

examining a newly sequenced genome we can frequently rely on a li-

brary already compiled for a closely related genome, if such a gen-

ome has already been sequenced and annotated. Within mammals

this works well, as such genomes are usually available. In plants we

are less likely to find a well-sequenced organism of sufficiently close

evolutionary distance to be of use. For example, a rice-based TE li-

brary will only lead to the identification of 25% of the TEs in the

VC The Author 2016. Published by Oxford University Press. i209

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i209–i215

doi: 10.1093/bioinformatics/btw258

ISMB 2016

https://github.com/karroje/phRAIDER
https://github.com/karroje/phRAIDER
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
Deleted Text: .
Deleted Text:)
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://www.oxfordjournals.org/

maize genome (Jiang, 2013). Thus the need for tools which do not

require pre-compiled libraries to perform the initial analysis, or de

novo TE identification tools.

The de novo TE identification tools in the literature are described

and compared in both Saha et al. (2008) and Jiang (2013).

Approaches to the problem vary, but generally fall into the following

categories: k-mer searches [e.g. ReAS and RepeatScout (Li et al.,

2005; Price et al., 2005)], self-alignment techniques [e.g. RECON and

PILER (Bao and Eddy, 2002; Edgar and Myers, 2005)], and variants

of DeBrujin Graphs (RepeatGluer; Pevzner et al., 2004; Zhi et al.,

2006). In their testing, both Saha et al. (2008) and Jiang (2013) found

RepeatScout to be the best tool overall for assembled genomes, and

we will thus use it as the basis for comparison in assessing our tool.

1.1 Elementary repeats
Zheng and Lonardi approached the de novo identification problem

using elementary repeats (Zheng and Lonardi, 2005). Similar to the

RepeatGluer domains, elementary repeats are decompositions of

TEs into basic ‘building blocks’. Although it is notoriously difficult

to mathematically model TEs (Bao and Eddy, 2002), elementary re-

peats allow for an exact formal description. Specifically:

Definition 1 (Z&L). For given integer parameters l and f, a se-

quence q is an elementary repeat with respect to l and f in genome G

if it conforms to the four requirements:

• Structure: q is at least length l.
• Frequency: There are at least f copies of q properly contained in

G.
• Minimality: There is no proper substring of q of at least length l

that appears in G independently of q.
• Maximality: There is no string such that every instance of q in

the genome is contained in an instance of.

In short: an elementary repeat has no (sufficiently) long substrings

that appear independently in the genome, and is not itself a compo-

nent of any larger sequence meeting the requirements.

Zheng and Lonardi (2005) developed an identification algorithm

with a runtime quadratic in the size of the scanned genome. This

was refined to linear time by both He (2006) and by Huo et al.

(2009) using suffix tree variations, but these approaches are limited

in their ability to handle changes in the sequence that have occurred

over time from accumulated substitutions and other changes at the

base level.

Our goal is to (i) devise an elementary repeat identification algo-

rithm that is both faster and more robust to base changes; and (ii)

demonstrate the utility of elementary repeats in TE identification.

Our initial tool, RAIDER, was a prototype that improved speed with

mixed results in its effect on quality (Figueroa et al., 2013; Figueroa,

2013). Here we discuss phRAIDER, a new version of RAIDER which

improves sensitivity by incorporating the PatternHunter spaced seed

concept (Li et al., 2004) into its identification algorithm. The resulting

algorithm maintains a 10� speedup on human chromosomal se-

quences, dropping the runtime on human chr. 1 from 70min using

RepeatScout to 8 min for phRAIDER.

2 Approach

In this section, we define a model for elementary repeats in the con-

text of PatternHunter spaced seeds, a formalization of the ideas first

proposed by Figueroa et al. (2013) and Figueroa (2013). Following

this, we describe our algorithm, defined in detail in our

Supplementary appendix, and evaluate its effectiveness in identify-

ing TEs in the following section.

2.1 Spaced seeds
A spaced seed is a binary string used to specify a ‘match pattern’ (Li

et al., 2004; Ma et al., 2002). Recall that when BLASTing (Altschul

et al., 1997) a nucleotide sequence against a database, the first step

is to find all sequences in the database that share a substring of a

fixed length with the query sequence. The insight of Ma et al. under-

lying PatternHunter is that sensitivity can be improved, without a

significant increase in runtime, by looking for a longer common sub-

string with mismatches allowed at certain specified positions. For

example, instead of looking for an exact shared substring of length

12, we might look for a substring of length 13 that was allowed to

mismatch in the seventh base—represented by the ‘match string’, or

seed, 1111110111111. (Indicating six required matches, an ignored

base and six required matches.) Any binary pattern can specify a

seed, and with the right seed (or set of seeds), Ma and Li (2007) and

Ma and Yao (2009) have shown that the number of false negatives

is significantly reduced without a major effect on false positives.

However, working with seeds is a computationally challenging

problem in terms of seed evaluation and optimal seed selection.

2.2 Model
Our goal is to redefine the concept of TEs to accommodate a spaced

seed strategy. We will start here with a sketch of our theoretical

model, and include a more detailed description in the Supplementary

appendix. But we first need to introduce some terminology:

• A sequence descriptor is a string over the alphabet, where *

serves as a wild-card character. A nucleotide sequence g is con-

sistent with a sequence descriptor r of the same length if g

matches r in all positions where r does not have a *. A seed s is

consistent with a sequence descriptor r of the same length if s has

a 0 at all positions in which r has a * character.
• Given a seed s of length l and a sequence descriptor r of length

� l, we can decompose r w.r.t. s if we can break r into a set of

overlapping length l substrings such that every substring is con-

sistent with s and every base position of r is included in at least

one of the substrings.
• The sequence decomposition of r w.r.t. s is created by taking the

substrings of r covered by s, replacing those bases that match to a

0 with a *, and creating a set of the results. (The decomposition

is undefined if r cannot be decomposed w.r.t. s.)

For example, given the seed s¼11011:

• If r= AAAAA*GGGGG, then the decomposition of r w.r.t. s is

{AA*AA, AA*GG, GG*GG}.
• If r= AAAAA**GGGGG, then it is not decomposable with re-

spect to s, as there is no substring consistent with s that contains

either of the * characters.

We can now modify the previous definition of elementary re-

peats as follows:

Definition 2 (Seeded Elementary Repeats). Given a genomic se-

quence G, an integer f, and a spaced seed s, a sequence descriptor q

describes an elementary repeat if it meets the four (modified) re-

quirements of an elementary repeat:

• Structure: q can be decomposed with respect to s.

i210 C.E.Schaeffer et al.

Deleted Text:)
Deleted Text: Saha <italic>et<?A3B2 show $146#?>al.</italic> and Jiang (
Deleted Text:)
Deleted Text: (
Deleted Text:)
Deleted Text:))
Deleted Text: (
Deleted Text: (
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text: (
Deleted Text:)
Deleted Text:))
Deleted Text:)
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: While
Deleted Text: transposable element
Deleted Text:)
Deleted Text: (<xref ref-type=
Deleted Text: (<xref ref-type=
Deleted Text: 1
Deleted Text: 2
Deleted Text:)
Deleted Text:)
Deleted Text: (
Deleted Text:)
Deleted Text: utes
Deleted Text: utes
Deleted Text: ;
Deleted Text:
Deleted Text:)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
Deleted Text: S
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: Ma <italic>et<?A3B2 show $146#?>al.</italic> (2002);
Deleted Text:)
Deleted Text:)
Deleted Text: 7
Deleted Text: t
Deleted Text: &hx2013;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: Ma <italic>et<?A3B2 show $146#?>al.</italic>
Deleted Text: (<xref ref-type=
Deleted Text: transposable element
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1

• Frequency: There are at least f substrings of G that are consistent

with q.
• Minimality: For every string t in the decomposition of q w.r.t. s, t

appears in the genome only as a part of a string consistent with q.
• Maximality: There is no sequence descriptor of q that both contains

q as a proper substring and satisfies the previous three conditions.

Given a sequence descriptor q describing an elementary repeat,

the elementary repeat family is the set of substrings in G that are

consistent with q. The new definition encompasses the old, as shown

by the theorem proved in the Supplementary appendix:

THEOREM 1. When the seed s has no 0 characters, this definition of

elementary repeats is equivalent to the Z&L definition where l is the

length of the seed.

A proof for this theorem is presented in the Supplementary

appendix.

3 Methods

3.1 phRAIDER algorithm
The phRAIDER algorithm takes a genome G and a single fixed seed

s of length l and performs a one-pass scan of G (with an optional

preliminary pass to reduce memory requirements). While scanning,

we maintain the following data structures:

• H: A (hash-table) mapping of sequence descriptors to the coord-

inate positions at which they have been seen.
• Q: A queue containing potential families we have encountered in

the last l bases.
• A family structure holds an ordered list of sequence descrip-

tors that comprise the decomposition of some sequence descrip-

tor r w.r.t. s. At the end of the algorithm the set of families will

exactly describe the elementary repeat elements in G.

A pseudocode-form version of our algorithm is contained in the

Supplementary appendix, and here we give a high level description.

In our scan, when we reach coordinate i we do the following:

1. Knock off the front family in Q if its last seen sequence descrip-

tor starts more than l bases before i.

2. Take the length l substring at Gi, seed it (replace bases matching

to a 0 in s with a *) to create v, and update the hash table entry

H[v] to add i to the list of coordinates at which v begins.

3. Now we consider what effect v has on our list of putative families:

• If this is the first occurrence of v, it is not yet known to be

part of a family.
• If this is the second occurrence of v, either it overlaps a fam-

ily, or it is potentially the start of a new family:
• If v overlaps the family F in Q and has the same offset from

the start of the second instance of F that the first instance of v

has from the first instance of F’s first l-mer, then mark it as a

part of the (potential) family.
• Otherwise, create a new family consisting only of l-mer v—

the first l-mer in this family—and add it to Q.
• If v has been seen three or more times, then either:

� v is the next l-mer in a family F we are currently expand-

ing: create F and add it to the back of Q.

� v is the first l-mer in some family: add F to the back of Q.

� v is a member of some family: but not the first l-mer. Our

putative family F violates maximality, and needs to be

split into two families.

We end with a cleanup step to eliminate families that do not

meet the frequency threshold. That is, do not occur at least f times

in the genome.

THEOREM 2. For a genome G, a seed s and a frequency threshold f,

the phRAIDER algorithm will identify all sequences corresponding

to any elementary repeat family (w.r.t. to s) in G.

A proof is outlined in the Supplementary appendix. We also de-

rive a worst-case runtime bound of O(n � s), where n is the size of

the genome and s is the size of the seed. Since the seed is generally

both short (<100 bases) and fixed, this leaves the algorithm as linear

in the size of the genome—consistent with our empirical result from

Figure 1.

4 Results

In this section we both explore the response of phRAIDER to

changes in seed (Fig. 3), and compare the performance of

phRAIDER against that of RepeatScout, using chromosomes se-

lected from Caenoharbditis elegans, arabidopsis, mouse, dog and

human. Performance is measured in terms of resource usage: run-

time and memory consumption, which are illustrated in Figures 1

and 2. We then measure result quality based on the metrics

described below. Figure 3 shows response to seed change, and Table

1 compares result quality against other tools.

4.1 Resource usage
We assessed phRAIDER against RepeatScout (Price et al., 2005),

designated the leading TE identification tool by Saha et al. (2008)

and Jiang (2013). We found that phRAIDER gives significant run-

time speedup over RepeatScout: an average 10� speedup for indi-

vidual human chromosomes, dropping runtime from 70 to 8 min on

human chr. 1 and completing a whole-genome run in 3 h 7 min.

RepeatScout could not complete a whole-genome run on the human

genome due to a memory error—a problem acknowledged in the

RepeatScout documentation (Price et al., 2005).

All testing was done on chromosome sequences obtained from

the UCSC Genome Browser (Kent et al., 2002) for C. elegans,

mouse, dog and human, and the TAIR browser (Berardini et al.,

2015) for arabidopsis. Figure 1 illustrates runtime and memory

usage for RepeatScout (� symbols), phRAIDER (þ symbols), and a

memory-efficient version of phRAIDER (D symbols). RepeatScout

was run using default parameters, while phRAIDER used one of the

selected seeds from the next section. phRAIDER is clearly memory

intensive, which is primarily due to the necessity of storing every

genomic coordinate in the hash table. We can alleviate this with a

preliminary pass over the genome that allows us to filter out unique

sequence descriptors without changing our results. We see that while

this adds a small amount of runtime, both versions are significantly

faster than RepeatScout, and the memory-efficient version is com-

parable to RepeatScout in memory usage.

In Figure 2 we see the effect of varying seed length and density

on resource usage; the results are unsurprising.

4.2 Quality metrics
We evaluate the quality of tool results using two methods:

i. Masking metric: We tested the ability to selectively mask out re-

peat sequences. This is vital for the accurate performance of

other genomic analysis tools. The sensitivity of each tool was

determined by BLASTing (Altschul et al., 1997) the consensus

Pattern-Hunter based rapid ab initio detection of elementary repeats i211

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
Deleted Text: A
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
Deleted Text: &hx2013;
Deleted Text: &hx2013;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1
Deleted Text: &hx003C;&hx2009;
Deleted Text: &hx2013;
Deleted Text: <italic>c</italic>
Deleted Text: <italic>.</italic>
Deleted Text: ,
Deleted Text: U
Deleted Text:)
Deleted Text: ;
Deleted Text:
Deleted Text:)
Deleted Text: minutes
Deleted Text: utes
Deleted Text: ours
Deleted Text: seven
Deleted Text: utes
Deleted Text: &hx2013;
Deleted Text:)
Deleted Text:)
Deleted Text: ,
Deleted Text:)
Deleted Text:
Deleted Text: M
Deleted Text: <bold>M</bold>
Deleted Text:)

50 100 150 200 250

0
10

00
20

00
30

00
40

00

Runtime: phRAIDER v. RepeatScout

Genome size (Mb)

R
un

tim
e

(s
ec

on
ds

)

●

●

●

●

●

●●
●●●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●●
●

●
●

●
●●

●

●

●
●

●

●●
●

●

●

● RepeatScout
phRAIDER
phRAIDER.LM

50 100 150 200 250

0
5

10
15

20
25

30

Memory: phRAIDER v. RepeatScout

Genome size (Mb)

M
em

or
y

re
qu

ire
d

(G
b)

●●
●

●
●

●●
●●

●
●

●

● ●●●●●
●

●
●●

●

●
●

●
●

●●

●
●●●

●

●●●●
●

● ●●

●

●●●●●
●

●

●

●●●

●●●
●●●

●

●

●

●●

●●
●●

●
●

●

●

●

●

●
●

●
● ●

●●●
●

●

●
●●●●●

●●

●

●

Fig. 1. Runtime and memory usage for each tool, shown as a function of genome size for all autosomes from human, dog, mouse and C. elegans. All runs were

on a single core of a 12 core Intel Xeon x5650 CPU with 48 GB memory on equipment at the Ohio Supercomputer Center (Center, 1987). On the full human gen-

ome phRAIDER.LM (which reduces memory requirements with a preliminary scan of the genome) required 3 h 7 min; RepeatScout was unable to complete due

to a documented memory error

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

● ●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

20 40 60 80 100

35
40

45
50

55
60

runtime v. seed length

r^2 = 0.610
Seed length (density = 1)

R
un

tim
e

(s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

40
45

50
55

runtime v. seed density

r^2 = 0.095
Seed density (weight = 40)

R
un

tim
e

(s
)

●●

●●●●

●●●●●●

●

●

●●●
●●●●●●

●●●●●●●

●●●●●

●

●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●●

20 40 60 80 100

4.
5

5.
0

5.
5

6.
0

memory v. seed length

r^2 = 0.970
Seed length (density = 1)

M
em

or
y

(G
b)

●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●
●

●●●●●●●●● ●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●●●●●●●● ●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●
●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

4.
60

4.
70

4.
80

4.
90

memory v. seed density

r^2 = −0.982
Seed density (width = 40)

M
em

or
y

(G
b)

Fig. 2. Effect of seed weight and length on resource usage. We see seed weight (number of 1 characters) has significant effect on both runtime and memory,

while density has a small effect on memory. The stepped nature of the memory-to-length plot is an effect of the use of the Cþþ standard template library un-

ordered map data structure, and its strategy of occasionally increasing the table size by large amounts

i212 C.E.Schaeffer et al.

sequence constructed from identified repeat against repeats listed

in RepBase (Jurka et al., 2005).

ii. RepeatMasker metric: We tested the utility of the toolit output

as a library for RepeatMasker, allowing more comprehensive

detection of TEs for those interested in TE sequences themselves.

The sensitivity of each tool was determined by comparing the

RepeatMasker output against the RepBase identified repeat

sequences.

20 40 60 80 100

0.
65

0.
70

0.
75

density = 1
seed length

S
en

si
tiv

ity

●

●

●
●
●●

●●●●
●●●

●●●●●●●●●●
●●

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
66

0.
70

0.
74

0.
78

weight = 32
seed density

S
en

si
tiv

ity

●

●
●
●●
●●●●●●●
●●●●
●
●●●●●
●

●
●●

●
●
●●
●●
●
●●●●●●●●
●●●
●
●●●

●

●●●
●●●●
●●●
●●●●
●●
●●
●●
●
●●
●
●
●

●
●●●
●
●●●●
●
●
●
●●
●●
●

●
●
●
●●
●●●●●

●
●●
●
●●●●●
●
●
●
●●
●

●
●●
●
●
●
●●
●●

●●●●●●●
●
●●●●●
●●●●●●●●
●
●●●●●●●●●●

●
●●●●
●
●
●●
●
●●
●
●●●
●●●

●
●●●●
●
●●
●●●●●●●●●●●
●●●●

●●●
●●●
●
●●
●
●
●
●
●
●

●●●
●●●●●
●●●

●●●
●
●●
●●
●
●●●●●
●●●●●●●
●●●

●
●
●
●●
●●●●●●●●●
●
●●●●
●●●●●●●

●
●●
●●●
●●●●●●
●
●●
●
●
●
●
●
●●●●●

●●
●●●
●●●●●
●●●
●●
●
●●●●
●
●●●●●●●

●
●●
●●
●●●●●
●
●●●●
●●●●
●●

●
●●●●
●●
●●●
●●●
●●●●●

●●●●●●●●●
●●
●●
●
●●●
●●
●
●●●●●●●●●●●
●

●
●●●●●●●
●

●
●
●
●●
●●●●●●●●●
●●

●
●
●●●
●
●●●
●●●●●●●●
●●
●●●
●●●

●
●
●
●
●
●
●●●
●
●●
●
●●●●●●

●
●●
●●●

●●●●●●●
●
●●●
●
●●
●●●●
●●●●●
●●

●
●
●
●
●
●
●
●
●

●●
●●●

●

●●
●●●
●●●●
●

●●●●●
●
●
●●●●●●●●
●●●●●●●●●
●

Sensitivity as a function of seed length and density
(c. elegans chr. V)

Fig. 3. Variation in sensitivity due to seed length and seed density on (simulated) C. elegans chromosome 5. Specificity is near perfect (�98%) in all cases, and

not shown here. Triangles represents the masking metric, circles the RepeatMasker metric and horizontal lines the RepeatScout results fore each metric

(dotted¼masking, dashed¼RepeatMasker). Length is the number of characters in a seed; weight is the number of 1s in a seed. Density is the weight-to-

length ratio. For seeds with density <1, weight was fixed at 32, with seeds chosen randomly within that constraint

Table 1. Improvement of RAIDER over RepeatScout as measured by masking-based sensitivity, as well as RepeatMasker-based sensitivity

Seed Organism Simulation Simulation Masking RM-based phRaider RptScout Speedup

index basis size Sensitivity Sensitivity runtime runtime

(Mb) (v. RS) (v. RS) (seconds) (seconds)

Seeds selected to optimize Masking Sensitivity

537 arabidopsis chr5 2.91 0.51 0.06 1 26 260

516 C. elegans chrI 4.01 0.11 �0.11 1 120 1201

545 C. elegans chrII 3.18 0.12 �0.04 2 73 730

489 C. elegans chrIII 3.75 0.11 �0.13 1 114 1143

536 C. elegans chrIV 3.63 0.11 �0.09 1 117 1179

480 C. elegans chrV 4.90 0.14 �0.02 1 252 2522

512 human chr22 22.94 0.04 �0.02 41 474 114

545 mouse chr19 32.15 0.01 �0.05 47 2319 491

Seeds selected to optimize RepeatMasker sensitivity

537 arabidopsis chr5 2.99 0.08 0.06 1 26 260

154 C. elegans chrII 3.21 0.08 �0.02 1 73 730

154 C. elegans chrIV 3.66 0.07 �0.05 1 117 1175

70 C. elegans chrIII 3.75 0.04 �0.1 1 114 114

262 C. elegans chrI 4.03 0.08 �0.09 1 120 1209

262 C. elegans chrV 4.90 0.12 0.01 1 252 2521

508 human chr22 37.96 0.04 �0.01 29 474 164

262 mouse chr19 42.25 �0.02 �0.04 57 2319 401

537 human chr18 43.11 0.03 �0.07 71 1412 191

Single seed picked for balance on all organisms

262 arabidopsis chr5 2.99 0.04 0.04 1 26 260

262 C. elegans chrII 3.21 0.1 �0.02 1 73 730

262 C. elegans chrIV 3.66 0.08 �0.06 1 117 1176

262 C. elegans chrIII 3.75 0.08 �0.11 1 114 1141

262 C. elegans chrI 4.03 0.08 �0.09 1 120 1209

262 C. elegans chrV 4.90 0.12 0.01 1 252 2521

262 human chr22 37.96 0.03 �0.02 37 474 124

262 human chr18 42.25 0.01 �0.08 85 1412 161

262 mouse chr19 43.11 �0.02 �0.04 57 2319 401

Specificity is near identical (�98%) in all cases. The seed index is an arbitrarily assigned index of the seed (see Supplementary appendix). Seeds were chosen by

using the best from a small random sampling over a range of weights and lengths.

Pattern-Hunter based rapid ab initio detection of elementary repeats i213

Deleted Text:)
Deleted Text: <bold>M</bold>
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw258/-/DC1

Note that, as RepBase annotations are a collection of results

from many studies (Jurka et al., 2005), it is not realistic to expect

any one tool to find a large portion of the results; sensitivity will not

be high. What is important is the relative performance of the two

tools—indicating which will do better on the first pass over a newly

sequenced, or poorly studied, genome. Further, the applications of

RepeatMasker for result analysis were computationally intensive,

limiting the feasible size of test benchmarks. The problem is at least

in part due to the large number of overlapping elementary repeats

produced, and is one we expect to be alleviated with an assembly

tool we currently have under development.

In all analyses we report only sensitivity. Specificity is near per-

fect (�0.98%) using both tools on all data sets in all cases. In short:

it is very easy to avoid false positives in this problem. The challenge

is to avoid false negatives.

4.3 Synthetic chromosomes
For resource testing we used full, unaltered chromosome sequences.

For quality testing we removed all TEs that occur only once, as no

tool can identify them as repeats. We left all other TEs intact, and

replaced inter-TE sequences with 1000 bp sequences generated using

a fifth-order Markov chain derived from the actual chromosomal se-

quence. This method of generating simulated sequences, used by

Saha et al. (2008), removes unannotated repeat sequences which

could incorrectly increase our false positive count, and reduces input

size while still requiring the tool to search for actual TEs. The result

is a ‘semi-synthetic’ sequence: one that is reduced in size, but still ac-

curately reflects the important characteristics of an actual sequence.

4.4 Quality of results
Although phRAIDER is significantly faster than RepeatScout,

that is only of value if the quality of the results is at least compa-

rable with that of alternative tools. There is also the question of

the effect of the spaced seed selection on result quality—do they

make a difference, and if so, what are the optimal values? In the

following we use a C. elegans chr. V-based synthetic chromosome

to investigate the effect of parameter modification, then compare

the output of phRAIDER against RepeatScout on selected

chromosomes from C. elegans, arabidopsis, mouse and human.

Although phRAIDER is fast enough to allow for large-scale test-

ing on real chromosomes, the runtime required for the

RepeatMasker analysis of the results precluded this approach on

a chromosome scale—forcing us to use smaller semi-synthetic

sequences.

In PatternHunter, choice of seed has a significant effect on result

quality in homology-based search. Li et al. (2004) report that in one

case, the choice of seed can improve hit rate from under 30% to

over 80%. However, finding the optimal seed is a computationally

challenging problem (Ma and Li, 2007). Our first goal is to verify

that seeds are also useful in de novo identification, and that their

structure had an impact on the results. We characterize our seeds

with three variables: length l is the number of characters in a seed,

weight w is the number of 1 characters in a seed, and density

d ¼ w
l ;with 0 � d � 1, where d¼1 indicates a seed with no wild-

card characters.

In Figure 3 we see the effect of varying seed length when density

is held at 1 (that is, no zero characters), as well as the effect of vary-

ing density while holding weight at 32 (using a small number of ran-

domly picked seeds at each density). In each case, triangles

represents our masking metric, circles our RepeatMasker metric,

and the horizontal lines indicate RepeatScout performance using

default parameters (dotted is masking, dashed is RepeatMasker).

We see from these results that seeds do impact result quality. It is

also evident that while length and density are factors in determining

a good seed, they are not sufficient in themselves to find optimal

seeds. Due to the runtime constraints of our analysis software we

were limited to randomly exploring a minuscule portion of the seed

space, leaving significant potential for improvement. Finding good

seeds will require greater resources or the development of an ana-

lytic approach, which is beyond the scope of this work, and cur-

rently under development in our lab.

Table 1 displays the results from our random exploration of the

seed space. In the first section of the table we see the best seed for

each tested chromosome, based on a sample of a few hundred ran-

domly picked seeds, shown in terms of their improvement over the

RepeatScout baseline tool (e.g. on ce10 chrV phRAIDER sensitivity

is 14% higher than RepeatScout). In this table we see that results are

somewhat dependent on seed choice. But in general we see an im-

provement in the ability to mask, a range of results in using the out-

put as a RepeatMasker library, and a speedup of several orders of

magnitude.

5 Conclusion

phRAIDER is a new tool for the de novo identification of genome

repeat elements that is applicable to assembled genomes. We have

empirically demonstrated that it is orders of magnitude faster than

the premier tool in the literature (RepeatScout) yet still improves on

that tool’s ability to mask out TEs and other genomic repeats.

Specifically: we have developed a formal mathematical model com-

bining the concept of spaced seeds with that of elementary repeats;

in addition we have implemented a tool around this model, and we

have used that tool to demonstrate that:

i. The identification of elementary repeats is useful in the context

of de novo repeat masking.

ii. The introduction of spaced seeds improves results without sig-

nificant adverse effects on runtime.

iii. The resulting tool produces results of a quality on par with the

leading tool in the literature but works at a speed significantly

faster (with an average 10� speedup over RepeatScout for the

human chromosome).

We have produced a freely available implementation of

phRAIDER distributed from https://github.com/karroje/phRAIDER

under the GNU General Public License (version 3). All code is imple-

mented in Cþþ and tested on OS X and various flavors of Linux.

The tool will provide a list of elementary repeats with the coordin-

ates of each instance, and will optionally produce a masked genomic

sequence.

phRAIDER is the first step towards a full identification tool

for TEs and repetitive DNA, but leaves considerable room for im-

provements. The use of multiple spaced seeds has been highly suc-

cessful in other applications and we are in the process of

implementing this—but doing so requires modifications to both

the algorithm and the underlying theoretical model, and is beyond

the scope of this work. We are also developing tools to aid in seed

selection, and to assemble elementary repeats into contiguous

TEs—thus implicitly addressing the problems with indels as well.

Preliminary tests indicate that this last improvement, while not

significantly increasing computation time, will considerably im-

prove phRAIDER’s performance in generating RepeatMasker

libraries.

i214 C.E.Schaeffer et al.

Deleted Text:)
Deleted Text: &hx2013;
Deleted Text: (Saha <italic>et<?A3B2 show $146#?>al.</italic> (2008))
Deleted Text: transposable element
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: R
Deleted Text: While
Deleted Text:
Deleted Text: ,
Deleted Text: While
Deleted Text: &hx2013;
Deleted Text: &hx2019;
Deleted Text: transposable element
https://github.com/karroje/phRAIDER
Deleted Text: transposable element
Deleted Text: &hx2013;
Deleted Text: transposable element
Deleted Text: &hx2013;
Deleted Text: &hx2019;

Acknowledgements

We would like to thank Laura Tabacca, Luke Skon, Craig Lovell and Greg

Gelfond for their help with manuscript preparation.

Funding

This research was conducted under funding from the National Science

Foundation grant 0953215.

Conflict of Interest: none declared.

References

Altschul,S. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucleic Acids Res., 25, 3389.

Arndt,P.F. and Hwa,T. (2005) Identification and measurement of neighbor-

dependent nucleotide substitution processes. Bioinformatics, 21, 2322–2328.

Bao,Z. and Eddy,S.R. (2002) Automated de novo identification of repeat se-

quence families in sequenced genomes. Genome Res., 12, 1269–1276.

Berardini,T.Z. et al. (2015) The arabidopsis information resource: making

and mining the “gold standard” annotated reference plant genome. Genesis,

53, 474–485.

Center,O.S. (1987). Ohio supercomputer center. http://osc.edu/ark:/19495/

f5s1ph73.

Edgar,R.C. and Myers,E.W. (2005) PILER: identification and classification of

genomic repeats. Bioinformatics (Oxford, England), 21, i152–i158.

Figueroa,N. (2013). RAIDER: Rapid Ab Initio Detection of Elementary

Repeats. Master: RThesis, Miami University, Oxford, Ohio.

Figueroa,N. et al. (2013). RAIDER: Rapid Ab Initio Detection of Elementary

Repeats. In Advances in Bioinformatics and Computational Biology, pp.

170–180. Springer International Publishing, Cham.

He,D. (2006). Using suffix tree to discover complex repetitive patterns in

DNA sequences. Conference proceedings: . . . Annual International

Conference of the IEEE Engineering in Medicine and Biology Society. IEEE

Engineering in Medicine and Biology Society. Annual Conference, vol. 1,

pp. 3474–3477.

Huo,H. et al. (2009). An Adaptive Suffix Tree Based Algorithm for Repeats

Recognition in a DNA Sequence. 2009 International Joint Conference on

Bioinformatics, Systems Biology and Intelligent Computing. Shanghai,

China, pp. 181 –184.

Jiang,N. (2013) Overview of repeat annotation and de novo repeat identifica-

tion. Methods Mol. Biol., 1057, 275–287.

Jurka,J. et al. (2005) Repbase Update, a database of eukaryotic repetitive

elements. Cytogenet. Genome Res., 110, 462–467.

Karro,J.E. et al. (2008) Exponential decay of GC content detected by strand-

symmetric substitution rates influences the evolution of isochore structure.

Mol. Biol. Evol., 25, 362–374.

Kent,W.J. et al. (2002). The human genome browser at UCSC. Genome, 12,

996–1006.

Lander,E.S. et al. (2001) Initial sequencing and analysis of the human genome.

Nature, 409, 860–921.

Li,M. et al. (2004) Patternhunter II: highly sensitive and fast homology search.

J. Bioinformatics Comput. Biol., 2, 417–439.

Li,R. et al. (2005) ReAS: Recovery of ancestral sequences for transposable

elements from the unassembled reads of a whole genome shotgun. PLoS

Comput. Biol., 1, e43.

Ma,B. and Li,M. (2007) On the complexity of the spaced seeds. J. Comput.

Syst. Sci., 73, 1024–1034.

Ma,B. and Yao,H. (2009) Seed optimization for i.i.d. similarities is no easier

than optimal Golomb ruler design. Inform. Process. Lett., 109, 1120–1124.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.

McClintock,B. (1950) The origin and behavior of mutable loci in maize. Proc.

Natl. Acad. Sci. USA, 36, 344–355.

Mugal,C.F. et al. (2008) Transcription-induced mutational strand bias and its

effect on substitution rates in human genes. Mol. Biol. Evol., 26, 131–142.

Pevzner,P.A. et al. (2004) De novo repeat classification and fragment assem-

bly. Genome Res., 14, 1786–1796.

Pratchett,T. (2006). Hogfather: A Novel of Discworld. HarperPrism, New

York.

Price,A.L. et al. (2005) De novo identification of repeat families in large gen-

omes. Bioinformatics, 21, i351–i358.

Saha,S. et al. (2008) Empirical comparison of ab initio repeat finding pro-

grams. Nucleic Acids Res., 36, 2284–2294.

Sanger,F. and Coulson,A.R. (1975) A rapid method for determining sequences

in DNA by primed synthesis with DNA polymerase. J. Mol. Biol., 94,

441–448.

SanMiguel,P. et al. (1996) Nested retrotransposons in the intergenic regions of

the maize genome. Science), 274, 765–768.

Smit,A.F.A. et al. (2015). RepeatMasker Open 4.0. 2013–2015. http://www.

repeatmasker.org.

Wheeler,T.J. and Eddy,S.R. (2013) nhmmer: DNA homology search with pro-

file HMMs. Bioinformatics, 29, 2487–2489.

Zheng,J. and Lonardi,S. (2005). Discovery of Repetitive Patterns in DNA with

Accurate Boundaries. Fifth IEEE Symposium on Bioinformatics and

Bioengineering (BIBEame), pp. 105–112

Zhi,D. et al. (2006) Identifying repeat domains in large genomes. Genome

Biol., 7, R7.

Pattern-Hunter based rapid ab initio detection of elementary repeats i215

http://osc.edu/ark
http://www.repeatmasker.org
http://www.repeatmasker.org

	btw258-TF1

