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Abstract

Hybridization has been repeatedly put forward to explain the invasiveness of Rhodo-
dendron ponticum L. in the British Isles. The present study investigates the pattern of
ecotypic differentiation and hybridization among native North American R. cataw-
biense and R. maximum, native R. ponticum from Georgia and Spain, and invasive
R. ponticum from Ireland and aims to assess the contribution of hybridization for
Rhododendron invasion in the British Isles. Six populations per taxon were analyzed
with AFLP markers for genetic dissimilarity, subjected to germination and growth
experiments, and tested for frost hardiness. We assessed variation in morphological
and ecological characteristics to identify traits displaying evidence of hybridization,
thus, promoting invasiveness. Molecular marker analyses revealed a clear distinc-
tion between North American R. catawbiense and R. maximum on the one hand,
and all R. ponticum populations on the other hand, displaying a complete intermix-
ture of native Spanish and invasive Irish populations. Multivariate analyses of traits
revealed leaf length–width ratio, relative growth rates (RGRs) in leaf length, root
biomass, and shoot–root ratio to significantly discriminate between the different
taxa and unequivocally assigned invasive Irish R. ponticum to the Spanish pheno-
types. While the Irish R. ponticum had similar growth traits as conspecific native R.
ponticum provenances, germination and biomass allocation were more similar to
North American R. catawbiense and R. maximum. Hybridization did not contribute
to explaining invasiveness of R. ponticum in Ireland. The similarity in germination
and biomass allocation of invasive Irish R. ponticum and North American species
has evolved independently and can more probably be attributed to an independent
shift within the Ponticum cluster in Ireland.

Introduction

Invading populations often experience evolutionary changes
and many of these have been attributed to altered selection
pressure in the new range (Mooney and Cleland 2001; Lee
2002; Stockwell et al. 2003; Lambrinos 2004; Maron et al.
2004; Barrett et al. 2008; Beckmann et al. 2009). Most fre-
quently, such shifts have become evident in larger sizes and
higher growth rates in invasive populations compared to na-
tive situations (see Bossdorf et al. 2005 for review). Com-
mon explanations for such patterns, for example, include
the hypothesis of evolution of increased competitive abil-

ity (EICA) in the absence of enemy load in the new range
(Blossey and Nötzold 1995; Müller–Schärer et al. 2004). As
an alternative, but not necessarily exclusive suggestion, the
evolution of increased growth has also been attributed to
the absence of competition in a new range as was shown in a
multispecies common garden experiment by Blumenthal and
Hufbauer (2007). The authors conclude that the biotic release
into environments with reduced competition, in particular,
in high-resource environments, can favor the evolution of
traits related to rapid growth and high net reproductive al-
location. The evolution of more competitive phenotypes can
be expressed in maximized growth and reproduction (Leger
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and Rice 2003) as well as in shifts in allocation patterns, for
example, from decreased aboveground to increased below-
ground competition in the new range (Barney et al. 2009).
While such differentiation in phenotypes can be quantified at
the trait level in common garden attempts, more mechanis-
tic explanations need to refer to hypotheses at the molecular
level. The maintenance of high genetic diversity during in-
vasions is a precondition for selection being able to act on
(Hedrick 2005). Besides polyploidy, in particular, hybridiza-
tion can augment genetic novelty and has been suggested to
be an important driver promoting evolutionary change in the
introduced range (Abbott 1992; Ellstrand and Schierenbeck
2000; Blum et al. 2007; Rieseberg et al. 2007; Prentis et al.
2008).

Invoking hybridization in invasion biology is attractive,
since consequences of hybridization, such as fixed heterosis
in new allopolyploids, can already have immediate impact
on the invasive potential in early stages of plant expansion.
Hybridization might also be important in later stages of estab-
lishment and spread if adaptive introgression and transgres-
sive segregation aid in the colonization of new environments.
An example for recent hybrid speciation is given by Senecio
squalidus in the British Isles, a recombinant hybrid of S. aeth-
nensis and S. chrysanthemifolius (James and Abbott 2005).
Both parental species were introduced into botanical gardens
in Britain in the 18th century, and until now, the hybrid
descendant has become widespread throughout the country.
Hybrids can exhibit traits that are novel or extreme relative to
those of either parental line (Arnold and Hodges 1995) and
can differ remarkably in growth rates, phenology, or traits
of defense (Vilà et al. 2000). However, hybridization can also
cause adaptive trait introgression, through which alleles are
transferred from one species to another (Schweitzer et al.
2002). There are several examples that provide evidence for
hybrid advantages in fitness-related traits, for example, medi-
ated by increased lifetime fecundity or increased survivorship
and higher fruit production for invasive hybrid-derived pop-
ulations (Campbell et al. 2006; Ridley and Ellstrand 2009).
Accordingly, information on demographic characteristics,
in particular germination and survival, are important data
to assess the species’ susceptibility to novel trait transgres-
sion (Hooftman et al. 2005). There is increasing evidence
of intrataxon hybridization preceding the evolution of in-
vasiveness (Schierenbeck and Ellstrand 2009). In particular,
for ornamental plants or species of horticultural interest,
hybridization between cultivars and native counterparts is
increasingly drawing the researchers’ attention (Culley and
Hardiman 2008; Ross and Auge 2008).

Many of the hypotheses raised above have also been con-
sulted to explain Rhododendron ponticum L. invasion in the
British Isles. Rhododendron ponticum is an Ericaceae shrub
species that naturally occurs along the Black Sea coasts of
Georgia (Caucasus) and Turkey, as well as in the southern part

of the Iberian Peninsula, and was introduced to the British
Isles in 1763 (Elton 1958) and used in gardens and estates
as an ornamental plant (Dehnen–Schmutz and Williamson
2006). Many Rhododendron species from Asia, but also from
North America have been introduced to Botanical Gardens
in the United Kingdom, mainly for horticultural purposes,
and much effort was put into breeding ambitions to make R.
ponticum hardier by natural and artificial selection and by in-
tended hybridization with related species (Dehnen–Schmutz
and Williamson 2006). In addition, it was directly brought to
habitats with suitable conditions, and naturalization in the
wild seems to have occurred all over Britain until the mid of
the 19th century (as summarized in Dehnen–Schmutz and
Williamson 2006). Flowering starts early in the species’ life cy-
cle, after 10–12 years (Cross 1975), which is a relatively short
interval for a woody, long-lived plant and, thus, provides
ample opportunity for contemporary evolution. In compar-
ison to their native provenances, invasive Irish populations
of R. ponticum exhibit both higher germination success and
higher growth rates than native ones from Georgia and Spain
(Erfmeier and Bruelheide 2005), and these traits have been
identified as key factors for establishment and spread in the
field (Erfmeier and Bruelheide 2004). Hybridization as a key
factor underlying the evolution of invasiveness has repeatedly
been suggested for explaining the colonization success of R.
ponticum in the British Isles (Milne and Abbott 2000; Abbott
et al. 2003; Rieseberg et al. 2007). Milne and Abbott (2000)
used restriction fragment length polymorphisms of cpDNA
and rDNA to study naturalized accessions of R. ponticum in
the British Isles and detected a mainly Iberian provenance of
these invasive occurrences with 99% of Iberian haplotypes.
In addition, for both genetic and morphological markers, the
authors found evidence of introgression from North Ameri-
can congeneric species of the Pontica subsection of the genus
(Milne and Abbott 2000). In their study, introgression from
North American R. catawbiense was remarkable, particularly,
in eastern Scotland; therefore, the authors suggest that hy-
bridization had induced cold tolerance that enabled south-
ern Iberian R. ponticum provenances to spread into northern
climates. However, in their study, the comparison of British
and North American taxa included small sample sizes of the
North American R. catawbiense and R. maximum. In addi-
tion, marker systems applied referred to plastid DNA that is
maternally inherited and, thus, does not reflect effects of re-
combination. Thus, the question as to which mechanism has
contributed to this differentiation encountered among the
provenances remains a fundamental issue for explaining R.
ponticum invasion. In particular, it is still unresolved whether
hybridization might have contributed to this differentiation.

The present study aims to address the question of hy-
bridization with North American R. catawbiense and/or R.
maximum for explaining the invasive spread of R. ponticum
in Ireland on the basis of both molecular marker profiles and
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quantitative traits of germination success and further ecolog-
ical and morphological traits. We carried out a field sampling
campaign including six populations each from European in-
vasive and native R. ponticum in Ireland, Georgia, and Spain,
respectively, and six populations each from North Ameri-
can R. catawbiense and R. maximum to gain seed and leaf
material according to a common design and to test for simi-
larities in genetic and quantitative markers. In particular, our
aims were to (1) identify patterns of phenotypic trait vari-
ation and differentiation among populations within native
and introduced Rhododendron taxa and (2) assess the relative
contribution of hybridization to explaining the encountered
patterns. Against this background, we discuss the evolution-
ary dimension of increased invasiveness of R. ponticum in
Ireland.

Material and Methods

Study objects

All species and origins included in our study belong to the
genus Rhododendron, section Pontica, within the Ericaceae
family (Milne 2004). Areas of primary distribution of most
Rhododendron species are SW China and the Himalayas.
However R. ponticum distribution is confined to southwest-
ern Eurasia, whereas R. maximum and R. catawbiense are
native to southeastern North America. Natural occurrences
of R. ponticum can be found mostly in forests on acid sub-
strate of the eastern Balkan Peninsula, along the Black Sea
Coast, and in riparian forests on the Iberian Peninsula, how-
ever, populations being in decline in that Iberian part of the
native range (Mejı́as et al. 2007). In its invasive range, in
the British Isles, R. ponticum has invaded forests, heathlands
and bogs, and requires enormous control efforts and eradica-
tion attempts (Dehnen–Schmutz et al. 2004). Rhododendron
catawbiense is a typical species of open woodlands and scrub
at higher elevation in the Appalachian Mountains, USA. In
contrast, R. maximum is preferably found in moist and wet
forests in eastern North America. Although there is very lit-
tle agreement between geographic location and phylogenetic
position within the subsection Pontica (Milne 2004), there
are nonetheless similarities among these species with respect
to morphological traits. Leaf characteristics, for example, leaf
apex and leaf base, are quite similar for R. ponticum and R.
maximum. In contrast, R. ponticum and R. catawbiense are
much more alike in terms of leaf coloring and glabrous twigs
(Gleason and Cronquist 1963; Tutin et al. 1972; Clapham
et al. 1987; Weakley 2000).

In accordance with the disjunctive distribution, R. pon-
ticum in Turkey and in Georgia (Caucasus) is assigned to
ssp. ponticum (Tutin et al. 1972; Davis 1978); whereas oc-
currences from southern Spain and Portugal are taxonom-
ically addressed as ssp. baeticum (Boiss. & Reuter) Hand.-
Mazz. (Tutin et al. 1972; Davis 1978; Clapham et al. 1987;

Castroviejo et al. 1993). The taxonomic distinction between
the two subspecies is clearly apparent in leaf shape differences:
leaves of ssp. ponticum have a length of 12-18-(25) cm and
are 2.5–3.5 times as long as wide, while leaves of ssp. baeticum
are shorter with 6-12-(16) cm and have a larger length–width
ratio of 3–5 than ssp. ponticum.

Material and sampling design

For the experiments and the molecular analyses, we used
seed and leaf material from all three species; for R. ponticum,
we sampled native subspecies from Georgia (ssp. ponticum)
and from southern Spain (ssp. baeticum) as well as invasive
provenances from Ireland. For each species and provenance
(henceforth called taxa), six populations in the respective
area of distribution were chosen randomly with the inten-
tion to cover maximum variation. We only included Rhodo-
dendron stands within forests at sites with a northern aspect
and a slope of 10◦ to 20◦ to ensure comparability among
the countries. Seeds from native R. ponticum were collected
in Georgia (GEO) in August, from native R. ponticum in
Spain (ESP) in October, from invasive R. ponticum in Ireland
(IRE) in September, from native R. catawbiense (CAM) and
R. maximum (MAM) in the Appalachian Mountains in North
America in October, all in 2001. The exact locations of all 30
populations (five taxa with six populations each) sampled are
provided in Table 1. Further details on the selection mode are
described in Erfmeier and Bruelheide (2004).

Within each population, seeds were collected randomly
from at least 20 fruiting individuals with a minimum dis-
tance of 5 m. Only ripe racemes were harvested. Afterwards
released seeds were thoroughly mixed within each popula-
tion’s sample and stored in a dry, dark place at ambient tem-
peratures of 10◦C until further use. Accordingly, we collected
cuttings in each population for frost hardiness studies on
rerooted branches. For sampling and cultivation details, see
Erfmeier and Bruelheide (2005). Leaf material for molecular
genetic analyses was collected in each population according
to a systematic sampling scheme on the basis of a 16 × 16 m
grid with a mesh width of 4 m. Samples from the four cen-
tral individuals each were included in the molecular analyses.
Leaf material of all R. ponticum populations was collected in
winter 1999/2000; R. maximum and R. catawbiense popula-
tions were sampled in autumn 2001. All leaves were dried and
stored in silica gel prior to analysis.

Genetic analyses

From silica-dried leaves of a total of 120 individuals (i.e., four
individuals per population with six populations per taxon),
DNA was isolated with DNA Puregene cell and tissue Kit
(Gentra Systems, Minneapolis, MN, USA) using 30–40 mg of
dry leaf material. Genotyping was performed using the Am-
plified Fragment Length Polymorphism (AFLP) technique
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Table 1. Overview on populations sampled and location characteristics of the sites.

Taxon Country Population Location Elevation [m.a.s.l.] Latitude Longitude

GEO Georgia A Banis-Khevi 980 41◦53’ E 043◦21’
GEO Georgia B Keda-Akutsa 500 41◦35’ E 041◦57’
GEO Georgia C Dandalo 910 41◦38’ E 042◦07’
GEO Georgia D Botanical Garden, Batumi 85 41◦41’ E 041◦43’
GEO Georgia E Djarnali 175 41◦33’ E 041◦36’
GEO Georgia F Mtirala 960 41◦39’ E 041◦47’
ESP Spain G Garganta de Puerto Oscuro 790 36◦30’ W 005◦37’
ESP Spain H Garganta de Passada Llana 760 36◦30’ W 005◦35’
ESP Spain I Arroyo del Montero 660 36◦29’ W 005◦35’
ESP Spain K Garganta de Enmedio 445 36◦32’ W 005◦38’
ESP Spain L Llanos del Juncal 740 36◦06’ W 005◦32’
ESP Spain M Rio de la Miel 430 36◦06’ W 005◦31’
IRE Ireland N National Park Killarney, Torc Mnts. 60 52◦00’ W 009◦30’
IRE Ireland O National Park Killarney, Ladies View 35 51◦58’ W 009◦35’
IRE Ireland P Glengariff 35 51◦45’ W 009◦33’
IRE Ireland Q Galtee Mnts. 180 52◦22’ W 007◦58’
IRE Ireland R Knockmealdown Mnts. 220 52◦15’ W 007◦57’
IRE Ireland S Greenan, Wicklow Mnts. 120 52◦55’ W 006◦18’
MAM USA A Two Chimneys, Great Smokey Mnts. National Park 1075 35◦38’ W 083◦28’
MAM USA B The Sinks, Great Smokey Mnts. National Park 545 35◦40’ W 083◦39’
MAM USA C Mingus Mill, Great Smokey Mnts. National Park 605 35◦30’ W 083◦19’
MAM USA D Saunakee Village Viewpoint, Blue Ridge Parkway National Park 1365 35◦25’ W 083◦02’
MAM USA E Linville Falls, Blue Ridge Parkway National Park 1035 35◦56’ W 081◦55’
MAM USA F Green Know, Blue Ridge Parkway National Park 1390 35◦42’ W 082◦14’
CAM USA A Two Chimneys, Great Smokey Mnts. National Park 1120 35◦38’ W 083◦28’
CAM USA B Mt. Sterling, Great Smokey Mnts. National Park 1721 35◦42’ W 083◦06’
CAM USA C Waterrock Knob, Blue Ridge Parkway National Park 1815 35◦27’ W 083◦08’
CAM USA D Richland Balsam Summit, Blue Ridge Parkway National Park 1846 35◦21’ W 082◦59’
CAM USA E Craggy Gardens, Blue Ridge Parkway National Park 1725 35◦41’ W 082◦22’
CAM USA F Grandfather Mountain, Blue Ridge Parkway 1615 36◦05’ W 081◦49’

GEO = Rhododendron ponticum, Georgia; ESP = R. ponticum, Spain; IRE = R. ponticum, Ireland; MAM = R. maximum, North America; CAM = R.
catawbiense, North America.

according to Vos et al. (1995) with modifications as described
in Erfmeier and Bruelheide (2011). For each leaf sample, a to-
tal of three amplification procedures were run, including each
DNA of two separate extractions. Fluorescently labelled PCR
products were analyzed on an automated gel sequencer ABI
PRISM R© 3100 (Applied Biosystems, Foster City, CA, USA)
to infer sample specific fragment patterns. Fragments were
analyzed with the software GEN SCANNER as described in
Müller et al. (2005). The three replicates per individual were
combined, compared, and translated into a 0-1 matrix. For
recognition of presence and absence of peaks, in the three
parallel analyses, a peak was considered as being present if
the occurrence of peaks was provided in two or three of the
replicates of this individual. All other peaks were regarded as
error.

In order to identify traces of putative introgression, private
and common markers were counted for all combinations of
taxa. Assuming that hybrids should contain diagnostic alleles
from their parent taxa, we counted diagnostic markers of the

four potential parent taxa and tested for presence of these
specific peaks in the Irish taxon.

Germination experiment

Seeds from each of the six populations per taxon were sub-
jected to three different temperature regimes of 9/19◦C,
16/26◦C, and 23/33◦C (night/day) with a thermo- and pho-
toperiod of 16-h day length. Each 20 seeds were placed in
petri dishes on 70 g of sterilized sand (105◦C for 24 h), being
covered with paper discs (Schleicher & Schuell GmbH, Das-
sel, Germany; diameter 90 mm), and kept constantly moist
with deionized water. Petri dishes were regularly watered and
sprayed with 50% ethanol solution twice a week to suppress
mildew infection.

Each population was replicated three times at each tem-
perature level, yielding 270 petri dishes being randomly posi-
tioned in controlled environment cabinets (Heraeus Vötsch,
Vötsch Industrietechnik GmbH, Frommern, Germany).
The environment cabinets were equipped with white light
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providing 120–150 μE/m2/s on average. Germination suc-
cess was monitored every third day in the beginning and
in total 10 times during the whole experimental period of
70 days. Seeds were considered to have germinated when the
first radicle had emerged and were transferred at the cotyle-
don stage to pots (7 × 7 × 8 cm3) with 70%:30% sand–peat
substrate for further cultivation.

Growth experiment

Seedlings for the growth experiment were acquired from the
germination experiment and from additional seeds sown di-
rectly into pots. Seedlings from both cultivation attempts had
about 3–4 weeks after germination for establishing in their
pots before being exposed to growth treatments. In controlled
greenhouse cabinets, the plants were subjected to a daily al-
ternating temperature regime of either 9/19◦C, 16/26◦C, and
23/33◦C and a thermo- and photoperiod of 8/16 (night/day)
hours. Each cabinet was split into two layers of different
light regimes: with the upper layer having a light treatment
of 400 mE/m2/s and the layer underneath experiencing re-
duced light availability of 40 mE/m2/s. In addition, plants
were subjected to two soil water level treatments of 25% and
15% (of dry weight). The combinations of these experimen-
tal settings resulted in a total of 12 experimental environ-
ments, to which all of the 30 populations available (each six
populations by taxon) were assigned to. A total set of 360
individuals were randomly placed (within treatments) in the
cabinets.

Water levels of the pots were assessed gravimetrically and
readjusted every second day. At 3-week intervals, the pots
were fertilized with a 0.25� NPK fertilizer (Flory 1, EU-
FLOR GmbH, München, Germany); after 6 weeks, fertilizer
concentration was doubled for all pots to account for the
seedling’s increase in biomass. The seedling growth experi-
ment ran for about 12 weeks. We studied variables of growth
(increase in total plant height, number of leaves), variables
of allocation (above- and belowground biomass, shoot–root
ratio) and traits of leaf morphology (length and width of the
largest leaf). Monitoring of size- and growth-related vari-
ables occurred once in the beginning and subsequently every
3 weeks. Biomass data were assessed at the end of the experi-
ment by determining root and shoot dry weight. For variables
of increase, we calculated relative growth rates (RGRs) fol-
lowing Hunt (1989).

Frost hardiness

Frost hardiness was determined on cuttings that had been
harvested in autumn 2001 of all origins and taxa and that
had been cultivated in the greenhouse at temperatures of
12/17◦C (night/day) during the winter. For frost hardiness
testing, we selected individuals from all populations and taxa

at random and kept them for 7 d in a refrigerator of 4◦C
prior to the experiment for acclimation and hardening. From
these individuals, we sampled leaves that still corresponded
to plant material that had developed in the field. Exposure to
frost treatments of these leaves started in April 2002.

Frost hardiness was quantified using the electrolyte leak-
age method according to Murray et al. (1989), which relates
increasing tissue damage caused by frost to increasing rates
of electrolyte loss. The experiment was carried out with 11
2 × 1 cm2 leaf rectangles from each individual, each one
being assigned to one of 11 temperature levels applied, thus
representing connected samples that allow for calculating
nonlinear regressions across all temperature levels for ev-
ery individual (Kathke and Bruelheide 2011). The five taxa
with each six populations were represented by one individual
each, yielding a total of 330 leaf samples. Leaf samples were
subjected to freezing temperatures in a freezing chamber of
–6◦C, –9◦C, –12◦C, –15◦C, –18◦C, –21◦C, –24◦C, –27◦C, and
–30◦C, respectively, or to a nonfreezing control temperature
(+4◦C). We chose a fine resolution of temperature treatments
down to –30◦C to reveal taxa differentiation more precisely
and to grasp the full range of cold hardiness described for
R. ponticum in literature (Sakai et al. 1986). Each tempera-
ture level lasted for 2 h with a cooling period of 1 h between
levels. In addition, one leaf sample per individual was sub-
jected to a liquid N2 (–196◦C) treatment for 2 h to obtain
maximum frost damage. After experimental frost exposure,
leaf samples were put into tubes with 10-mL 3% iso-propanol
solution. The electrical conductivity of the solution was mea-
sured (LF 2000, WTW) immediately after immersing the disk
(C0) and subsequently repeated after 5 h, 19 h, 43 h, and 92 h
(Ct). At the end of the measurement series, the solution with
the leaf disk was boiled for 20 min, thus releasing all elec-
trolytes from the cells, and final conductivity was measured
as individual maximum reference (Cmax).

Each measurement was expressed as relative conductivity
(RC) according to Murray et al. (1989) to account for vari-
ation in total electrolyte content. All RC values of one time
series were fitted to a one-parameter nonlinear regression
(proc nlin SAS 9.1, SAS Institute Inc., 2000):

RC = Ct − C0

Cmax − C0
= 1 − e−k∗t .

The resulting parameter k indicates the rate of electrolyte
leakage and can be used for further analyses as a measure of
frost hardiness.

Statistical analysis

The presence/absence matrix of DNA fragments was ana-
lyzed with a cluster analysis based on unweighted pair group
method with arithmetic average (UPGMA).

Data on growth, biomass, and on leaf morphology in the
growth experiment were analyzed with general linear models
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(GLMs) for unbalanced data (type III sum of squares, proc
glm). Prior to analysis, all growth and germination data were
rank transformed as the majority of data lacked normal dis-
tribution (proc univariate; for appropriateness of rank trans-
formation, see Brunner and Puri 2001; Quinn and Keough
2002). Maximum germination success was tested for effects of
the taxon and the temperature applied, both considered fixed
factors and with populations as random factor nested within
taxon. Effects of taxon and temperature on germination ve-
locity were tested in repeated measures analysis of variance
(ANOVA; repeated statement in proc glm) with "time" as
additional factor. Since our data did not satisfy the assump-
tion of sphericity, numerator and denominator degrees of
freedom were adjusted before determining significance levels
according to Greenhouse–Geisser. In all growth analyses, we
tested for main and interaction effects of taxon, temperature
(both in germination and growth analyses), light and water
(in growth analyses) as fixed factors and with populations as
random factor nested in taxon (pop(tax)). Post-hoc tests were
realized with Ryan–Einot–Gabriel–Welsh (REGWQ) multi-
ple range tests.

For analysis of frost hardiness, we applied the same GLM
to test for taxon, temperature, and their interaction effects on
the rate of electrolyte leakage k. In addition, all variables were
also compared using contrasts of the control temperature of
+4◦C versus all other temperatures of the freezing treatment
separately by taxon (contrast and estimate statements, proc
glm, SAS 9.1; SAS Institute Inc. 2000). The temperature at
which 50% of the maximum k value occurred (LT50) was
calculated by fitting a four-parameter nonlinear regression
to the k values (Sigma Plot 9.0, Systat Software 2004) using
the following equation:

k = c + a

1 + e ( T−L T50
b )

,

with k the rate of electrolyte leakage; T the temperature to
which the leaf sample was exposed; and a, b, c, and LT50

as regression parameters. LT50 was calculated for each taxon
across all populations and temperature replicates.

All phenotypic data were summarized and analyzed by
discriminant analysis in order to assign invasive and putative
hybrid Irish phenotypes to one or more of the considered
parental taxa. We performed a stepwise discriminant analysis
(proc stepdisc) to select a subset of significant quantitative
variables to discriminate between the four native Georgian,
Spanish, and North American taxa. We applied a forward se-
lection procedure, using all variables of growth, morphology,
allocation, germination, and frost sensitivity, which consec-
utively entered the model according to the significance level
of an F-test. Forward selection began with no variables in the
model and stopped when no further variable could be added
at the significance level of P = 0.05. Based on the final set of

discriminating variables, we calculated the error probability
of incorrect assignment for each of the four classified taxa
by means of a discriminant procedure (proc discrim). In the
following, the resulting discriminant function was applied to
the Irish dataset to assign these invasive populations to either
one of the European Georgian or Spanish R. ponticum or
to the North American congeneric species R. catawbiense or
R. maximum.

Illustration of taxon separation was performed with linear
discriminant analysis (LDA) using R 2.10.1 based on the set
of discriminating variables only. Multivariate observations
were classified with lda (Mass package) and projected onto
the first two linear discriminants.

Results

Genetic relationships between
Rhododendron taxa

AFLP scores generated 478 polymorphic markers from three
primer pairs across all 120 samples analyzed. All individuals
had unique fragment combinations, thus, displayed discrete
genotypes. Private alleles were rarely encountered: 4.4% of all
alleles (i.e., 21 alleles) were present in all individuals, further
19.5% were shared by all populations (i.e., 93 alleles), and
50% were in common in all five taxa studied (i.e., 239 alleles;
data not shown). A total of 24 alleles were found to be exclu-
sive, that is, taxon-diagnostic, with 10 diagnostic alleles for
R. catawbiense, six alleles each for R. maximum and Georgian
R. ponticum, and each one diagnostic allele for Spanish and
Irish R. ponticum (see Appendix S1). Inter-taxa comparisons
between North American Rhododendron taxa with European
R. ponticum taxa displayed only few, exclusively common al-
leles: while R. catawbiense exclusively shared one allele with
Irish R. ponticum, the number of exclusively shared alleles
between R. maximum and Irish R. ponticum was three alle-
les. For the North American taxa, the number of diagnostic
markers shared with Georgian and Spanish R. ponticum was
at a similar height, with five and three alleles, respectively, for
R. catawbiense and with five and one alleles, respectively, for
R. maximum.

The level of dissimilarity among individuals was low, rang-
ing from 0.148 to 0.748. UPGMA analyses revealed a clear
distinction of the three Rhododendron species (Fig. 1), with
the major separation between a North American cluster in-
cluding R. maximum and R. catawbiense and a European
R. ponticum cluster. Within the North American cluster,
both species were clearly distinguished with only one sin-
gle R. maximum individual clustering among R. catawbiense.
Within R. ponticum, the Georgian taxa clustered separately
from the Iberian and Irish provenances. In contrast, individ-
uals of the Spanish and the Irish provenances were completely
intermixed and clustered together.
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Figure 1. Cluster analyses based on
unweighted pair group method with
arithmetic average (UPGMA) of AFLP
profiles of 24 genotypes each from
Rhododendron catawbiense (North
America), R. maximum (North America),
invasive Irish R. ponticum, native Spanish R.
ponticum, and native Georgian R. ponticum.

Germination characteristics

Maximum germination success differed clearly between the
Rhododendron taxa tested after 10 weeks of temperature
treatments (Table 2A; Fig. 2). We found the highest val-
ues for North American R. catawbiense and invasive Irish
R. ponticum, which differed significantly from native Spanish
R. ponticum. Maximum germination of native Georgian R.
ponticum and North American R. maximum was interme-
diate and neither differed significantly from invasive Irish

nor from native Spanish R. ponticum. Germination suc-
cess was significantly higher at the intermediate temperature
level compared to the lowest and the highest temperature
levels.

We found significant taxon effects for germination veloc-
ity, which was indicated by significant time × taxon interac-
tions: seeds from R. catawbiense and Irish R. ponticum ini-
tially responded much faster to the temperature treatments
than seeds from all other taxa (Table 2B). This pattern was
consistent for all temperature levels studied, as displayed by

Table 2. GLM results for germination tests of Rhododendron taxa: (A) Maximum germination success after 10 weeks; Germination data were rank
transformed prior to analysis. (B) Cumulative germination success expressed by repeated measures ANOVA with factor time. The mixed model was
performed with populations as random factor nested within taxon and three replicates each per temperature level (n = 270). P GG adj = P values for
Greenhouse–Geisser adjustment. Bold numbers indicate significant effects.

(A)
Source of variation df Type III SS MS F P

Taxon 4 78136 19534 3.93 0.013
Error (pop(taxon)). 25 124429 4974.3
Temperature 2 378100 189050 45.65 <0.001
Temperature × taxon 8 24615 3076.9 0.74 0.654
Pop(taxon) 25 124365 4974.6 1.2 0.239
Error 230 952522 4141.4

(B)
Source of variation df Type III SS MS F P pGGadj

Time 10 58595.2 5859.5 135.0 <0.001 <0.001
Time × temperature 20 30389.1 1519.5 35.0 <0.001 <0.001
Time × taxon 40 6118.3 153.0 3.5 <0.001 <0.001
Time × temperature × taxon 80 3188.6 39.9 0.9 0.681 0.543
Time × pop(taxon) 250 12809.7 51.2 1.2 0.034 0.203
Error(time) 2300 99813.1 43.4
Greenhouse–Geisser–Epsilon 0.185
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Figure 2. Germination success of
Rhododendron taxa’s seeds across three
temperature regimes (n = 270). Medians,
quartiles, minimum, and maximum refer to
six populations with three replicates each
per temperature (n = 18). Different letters
indicate significant differences according to
the REGWQ-test. CAM = North American R.
catawbiense; MAM = North American R.
maximum; IRE = invasive Irish R. ponticum;
ESP = native Spanish R. ponticum; GEO =
native Georgian R. ponticum. For statistical
details referring to rank transformed data,
see Table 2.

nonsignificant time × taxon × temperature interaction ef-
fects.

Seedling characteristics

After 12 weeks of the experiment, all variables of growth and
performance differed significantly between the five taxa (Ta-
ble 3). Growth traits most often showed highest magnitude
for the invasive Irish R. ponticum taxon, which had the largest
relative growth rates in height, in number of leaves as well
as in leaf length, and in width (Fig. 3A–C; Table 3). Relative
growth rates in height and leaf width did not differ signif-
icantly among all R. ponticum taxa (Fig. 3A; Table 3), and
for RGR in leaf length (Fig. 3C), both the Spanish and the
Irish taxon displayed highest growth rates. Apart from RGR
in number of leaves (Fig. 3B), we found a clear dissimilarity
in all growth traits for invasive Irish R. ponticum and the
American taxon R. catawbiense; the latter consistently dis-
played significantly lower growth rates than the invasive Irish
congeneric R. ponticum.

Leaf length and leaf-length-width ratio (Fig. 3D and F)
were significantly larger for Irish R. ponticum than for all
other taxa. Leaf width (Fig. 3E) and SLA (Table 3) did not
differ between the invasive Irish taxon and native R. ponticum
from Georgia and R. maximum. American R. catawbiense
differed significantly in all leaf traits analyzed from invasive
Irish R. ponticum (Table 3).

While the post-hoc test on root biomass revealed no sig-
nificant differences between taxa (Fig. 3H), highest shoot
biomass was encountered for invasive Irish and native Geor-
gian R. ponticum in common with R. catawbiense (Fig. 3G);
the Irish taxon displayed significantly higher aboveground
biomass than Spanish R. ponticum and R. maximum. The
shoot–root biomass ratio (Fig. 3I) was highest for the Amer-
ican Rhododendron taxa together with invasive Irish R. pon-
ticum. All three taxa differed significantly from native R.
ponticum taxa.

For most of the variables, we found some interaction ef-
fects indicating that the different taxa responded differently
to different temperature and light environments, respectively
(Table 3). RGR in number of leaves and shoot–root biomass
ratio, for example, showed differential increase at warmer
temperatures (see Appendix S2): in particular, North Amer-
ican R. catawbiense and R. maximum and the invasive Irish
R. ponticum were able to increase growth and shoot–root ra-
tios at warmer temperatures compared to native R. ponticum.
Taxa × light interactions for RGR in height indicate that the
invasive Irish R. ponticum and its native Spanish conspecific
and R. maximum, in particular, seemed to profit from higher
light conditions (Table 3; Appendix S2).

Frost hardiness

Tested across all taxa and compared to the control level,
the electrolyte leakage rate k was significantly larger at all
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Figure 3. Taxon effects on traits of growth (a–c), leaf morphology (d–f), and biomass allocation (g–i) of R. ponticum seedlings across three temperature,
two light, and two water regimes. (a) RGR in height, (b) RGR in number of leaves, (c) RGR in leaf length, (d) Leaf length, (e) Leaf width, (f) Leaf
length-width ratio, (g) Shoot dry biomass, (h) Root dry biomass, (i) Shoot-root biomass ratio. Medians, quartiles, minimum, and maximum refer to six
populations each as replicates across 12 treatments (n = 72). Different letters indicate significant differences according to the REGWQ-test. CAM =
North American R. catawbiense; MAM = North American R. maximum; IRE = invasive Irish R. ponticum; ESP = native Spanish R. ponticum; GEO =
native Georgian R. ponticum. For statistical details, see Table 3.

temperature levels of –18◦C or below this value, suggesting
general frost hardiness down to at least –15◦C (see Appendix
S3). The invasive Irish R. ponticum displayed the highest rates
of frost damage and differed significantly from all other taxa
(Fig. 4; Table 4). Damage was significantly different from the

4◦C control level for Irish and Georgian samples at –18◦C and
for Spanish samples at –24◦C, while for the North American
taxa, we found no significant differences compared to the
control. Frost hardiness expressed as LT50 values following
nonlinear four-parameter regression was highest for North
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Figure 4. Electrolyte leakage rate k for the
Rhododendron taxa at 10 different
temperature levels. CAM = North American
R. catawbiense; MAM = North American R.
maximum; IRE = invasive Irish R. ponticum;
ESP = native Spanish R. ponticum; GEO =
native Georgian R. ponticum. Stars indicate
significant differences according to
contrasts between the control temperature
of +4◦C versus all other temperatures
within each taxon. *P < 0.05, **P <0.01,
***P < 0.001.

Table 4. Summary of GLM analysis for frost sensitivity (rate of electrolyte leakage k) of Rhododendron taxa. Listed are effects of taxon, temperature
treatments, and their interactions as fixed effects. ANOVA was performed with populations as random factor nested within country (n = 330). Bold
numbers indicate significant effects.

Source of variation df Type III SS MS F P

Taxon 4 1.237446 0.309361 20 <0.001
Error (pop(taxon)) 25 0.386344 0.015454
Temperature 9 0.409223 0.045469 8.04 <0.001
Taxon × temperature 36 0.267416 0.007428 1.31 0.121
Pop (taxon) 25 0.386344 0.015454 2.73 <0.001
Error 225 1.272515 0.005656

American R. catawbiense and R. maximum with LT50 values
of –36.9◦C and –31.4◦C, respectively (Fig. 5). Among the
R. ponticum origins, frost hardiness decreased from native
Georgian (–24.0◦C) to native Spanish (–16.3◦C) and invasive
Irish (−14.3◦C) populations.

Assignment of invasive populations

Stepwise discriminant analysis revealed the variables RGR
leaf length (F = 28.09, P < 0.001), leaf length–width ratio
(F = 11.80, P < 0.001), root biomass (F = 9.14, P < 0.001),
and shoot–root ratio (F = 4.74, P = 0.015) to discriminate
significantly among the native Rhododendron taxa. The over-
all probability of misclassification was 8.3% (Table 5). Only
two of the six native Georgian R. ponticum populations were
misclassified as R. maximum; for all other populations of taxa,

posterior probability of membership in the correct taxon was
100% (Table 5). Application of this discriminant function to
the Irish dataset revealed 100% classification of the invasive
Irish populations to the native Spanish congeneric ones (Ta-
ble 5). Invasive Irish R. ponticum differed considerably from
both North American taxa as well as from Georgian R. pon-
ticum, and displayed closest relationship to the Spanish R.
ponticum (Fig. 6).

Discussion

In the present study, neither ecological nor morphological
traits bore a general resemblance of Irish R. ponticum with
North American R. catawbiense or R. maximum as reflected,
in summary, in the discriminant analysis. Consistently, the
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Figure 5. Estimation of the LT50 values for
all Rhododendron taxa referring to k values
and the corresponding temperature levels
of the freezing treatment. Regression
follows a four-parameter sigmoid function
k = c + a/(1+exp(–(T–LT50)/b)), where T is
the temperature to which the leaves were
exposed and a, b, c, and LT50 are
regression parameters. The regression was
applied to pooled data per taxon (n = 60).
CAM = North American R. catawbiense;
MAM = North American R. maximum;
IRE = invasive Irish R. ponticum; ESP =
native Spanish R. ponticum; GEO = native
Georgian R. ponticum. All regressions were
significant (P < 0.001) with the exception
of MAM. Vertical lines mark the LT50 values
as position of the inflection point on the
x-axis.

Table 5. Classification summary following linear discriminant analysis for calibration of the native taxa CAM, MAM, ESP and GEO, and the test taxon
IRE. Number of observations and percent classified into taxon.

From tax CAM MAM ESP GEO Total

CAM 6 0 0 0 6
100% 0 0 0 100%

MAM 0 6 0 0 6
0 100% 0 0 100%

ESP 0 0 6 0 6
0 0 100% 0 100%

GEO 0 2 0 4 6
0 33.3% 0 66.7% 100%

Total 6 8 6 4 24
25 33.3 25 16.7 1.0

Priors 0.25 0.25 0.25 0.25
Error counts estimates for taxon 0.083

From tax CAM MAM ESP GEO Total

IRE 0 0 6 0 6
0 0 100% 0 100%

CAM = North American Rhododendron catawbiense; MAM = North American R. maximum; IRE = invasive Irish R. ponticum; ESP = native Spanish
R. ponticum; GEO = native Georgian R. ponticum.

AFLP data displayed a clear distinction between all R. pon-
ticum taxa on the one hand and the two North American
species on the other hand. In contrast, the present findings
confirm the previously encountered high phenotypic simi-
larity between Spanish and Irish R. ponticum (Erfmeier and
Bruelheide 2005, 2010) as well as the Iberian provenance of
invasive occurrences (Milne and Abbott 2000; Erfmeier and
Bruelheide 2011) and, thus, suggest that mechanisms alter-
native to hybridization have to be considered.

Introgression and invasion

At the molecular level, we have to completely reject the hy-
pothesis of introgression, since diagnostic marker analysis
and cluster analysis displayed no evidence of gene transfer
across species. Our present analyses suggest that hypotheses
based on hybridization in invasive R. ponticum (Cox 1979;
Milne and Abbott 2000) do not apply for Ireland. In partic-
ular, Milne and Abbott (2000) found very convincing sup-
port for this hypothesis based on cpDNA and rDNA analyses
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Figure 6. Ordination plot of the first and second linear discriminant
functions of the six populations per Rhododendron taxon based on the
discriminating variables RGR leaf length, leaf length–width ratio, root
biomass, and shoot–root ratio. Proportion of explained variance for axis
LD1 = 87.76%, LD2 = 6.72%. C = North American R. catawbiense;
M = North American R. maximum; I = invasive Irish R. ponticum; E =
native Spanish R. ponticum; G = native Georgian R. ponticum.

conducted on 260 accessions throughout the British Isles. In
their analysis, 27 of their accessions had been introgressed
with genetic material from R. catawbiense and two further
accessions displayed introgression with R. maximum mate-
rial. In their study, the sampled R. catawbiense material was
much more frequently encountered within Scotland than in
the rest of the British Isles. However, Milne and Abbott (2000)
found no evidence of introgression in the 29 accessions sam-
pled at two locations in Ireland, which is, thus, in agreement
with our data for that particular region in Ireland. Milne
and Abbott (2000) suggested that the higher amount of in-
trogression encountered in eastern Scotland might reflect a
higher required cold hardiness than in other regions of the
British Isles. They concluded that the increased amount of
introgression might be the result of either directional hor-
ticultural selection of hardy hybrids or of natural selection
after naturalization favoring individuals with higher levels of
introgression from R. catawbiense in cold regions. Increased
frost hardiness has repeatedly been invoked as an example
of introgression preceding invasiveness (Cox 1979; Ellstrand
and Schierenbeck 2000). In their survey on cold hardiness in
the genus Rhododendron, Sakai et al. (1986) described that
the majority of the hardiest rhododendrons belongs to the
Ponticum series. On the basis of visual assessment of leaf
damage after experimental frost treatment and in accordance
with our results, Sakai et al. (1986) determined lowest sur-
vival temperatures of –60◦C for both R. catawbiense and R.
maximum, thus, ranking about the hardiest species in the

genus, whereas R. ponticum leaves survived down to –35◦C,
still showing considerable frost hardiness. However, in our
study, data on frost hardiness, in full accordance with the ge-
netic data, do not support the idea of frost gene introgression
into Irish populations. Given the mild temperatures and the
lack of frequent winter frost events in southern Ireland (see
Erfmeier and Bruelheide 2010), the need of an increased frost
resistance in that part of the range does not seem to have an
adaptive value. Without regularly haunting frost events the
effort of maintaining frost resistance does not make sense
from an evolutionary point of view (Agrawal et al. 2004). In
contrast, increased frost hardiness of invasive R. ponticum in
the northern part of the British range as assumed by Milne
and Abbott (2000) resulting from directional selection and,
possibly, also including introgression, is still a probable sce-
nario that calls for a concerted testing of both introgression
by means of nuclear markers and frost hardiness by means
of experimental determination on a large-scale sample of
populations across the British Isles.

Trait similarities and divergences across taxa

Despite a lack of evidence of hybridization with R. catawbiense
and R. maximum at the molecular level, we revealed higher
similarities in some of the phenotypic responses between
the invasive Irish R. ponticum and these North American
species. In many cases, molecular markers do not necessarily
reflect morphological traits or allozyme data (Hardig et al.
2000; Triest et al. 2000; Allendorf et al. 2001; Triest 2001). De
Cock et al. (2003), for example, found phenotypical distinc-
tion of the hybrid taxon Salix rubens var. basfordiana from
its parental taxon S. alba in morphological traits, although
AFLP fingerprints failed to distinguish these groups. In par-
ticular, maximum germination as well as germination veloc-
ity of invasive Irish R. ponticum differed significantly from
both conspecifics but resembled very much North American
R. catawbiense. The most probable explanation for the sim-
ilarities in germination features encountered in the present
study is that similar but independent processes or chance
effects have caused the observed genetic shifts. For invasive
R. ponticum, a genetic shift in germination has been sug-
gested before as adaptation to a more reliable environment in
Ireland, lacking extreme drought or frost events during estab-
lishment in springtime, if compared to native sites in Georgia
and Spain (Erfmeier and Bruelheide 2005). The relevance of
differences in germination timing as trait of invasion was
also demonstrated for other invasive plant species both in
comparison of native and invasive species (Perglovà et al.
2009) as well as in comparisons of native and invasive pop-
ulations (Kudoh et al. 2007; Hierro et al. 2009; Beckmann
et al. 2011). These differences in germination traits have been
shown to be heritable and to affect fitness (Leger et al. 2009),
and also to be adaptive. For R. ponticum, a more precautious
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germination is of evolutionary advantage in cold regions of
the native Caucasus range or under dry conditions on the
Iberian Peninsula and might have been lost because of a re-
laxed selection pressure. Such a process can be enhanced by
populations of hitherto separated origins that meet and mix
(Lavergne and Molofsky 2007; Dlugosch and Parker 2008).
In Irish R. ponticum populations, a high genetic diversity was
shown to be maintained (Erfmeier and Bruelheide 2011),
thus, these populations did not suffer from bottleneck effects
but represent melting pot situations of increased genetic ex-
change. Verhoeven et al. (2011) pointed out that the benefit
of admixtures is higher in the new range than at home sites
because of a change in selection regime. In their review, the
authors emphasize the importance of the shifted balance in
costs and benefits of admixtures, and they consult a heterosis
benefit as fitness boost in newly admixed populations con-
tributing to an increased colonization success. Irrespective of
inter-specific hybridization, such a heterosis effect based on
admixed populations alone can account for the observed su-
perior fitness of invasive populations (Keller and Taylor 2010;
Verhoeven et al. 2011).

Relaxed selection regimes, probably supported by among
population heterosis, would also explain the allocation and
increased growth patterns found for Irish R. ponticum. The
higher proportional investment in aboveground biomass is a
beneficial strategy in a new, benign environment and allows
for a more efficient occupancy of space, conferring a supe-
rior fitness in the face of novel habitats (Arnold and Hodges
1995). However, besides favorable abiotic conditions, the un-
derlying cause of evolution of increased growth can also be
an adaptation to open, noncompetitive environments. Blu-
menthal and Hubauer (2007) argue that such noncompetitive
environments tend to select for traits such as rapid growth
and high reproductive allocation in high resource environ-
ments. A release from competitive stress might also apply to
Irish R. ponticum seedlings, indicated by an increased rela-
tive investment in shoot compared to root biomass. However,
deciding about the relative importance of these explanations
would require experimental testing of native and invasive R.
ponticum origins in settings with different intensity levels of
nutrient availability and competition.

Conclusions on invasiveness

In the present study, we found no evidence that introgres-
sive hybridization was involved in the evolution of invasive-
ness in Irish populations. In contrast, the study confirms
the invasiveness due to increased germination and effective
aboveground growth of Irish R. ponticum, suggesting that the
observed phenotypic differentiation between taxa must be at-
tributed to other driving factors. Both molecular analyses and
trait analyses of seedlings revealed a 100% congruence be-
tween Irish and Spanish R. ponticum populations. Given the

common genetic basis of Irish R. ponticum with its Spanish
ancestors and the only moderate differentiation between Irish
and Spanish seedlings in growth characteristics, the Iberian
genotypes might have a similar potential of becoming in-
vasive, too, once appropriate environmental conditions are
being provided.
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