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Regulation of hematopoietic stem cell release, migration, and homing from the bonemarrow (BM) and of themobilization pathway
involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells.
The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs) cells has
important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients
with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms
underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a) the
role of different factors, such as stromal cell derived factor-1 (SDF-1), granulocyte colony-stimulating factor (G-CSF), and vascular
cell adhesion molecule-1 (VCAM-1), among other ligands; (b) the stem cell count in peripheral blood and BM and influential
factors; (c) the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs
mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d) the effects of this mobilization on BM-
derived stem/progenitor cells in clinical trials of patients with different diseases.

1. Introduction

For many decades, bone marrow (BM) transplantation was
the only viable method for transplanting hematopoietic stem
cells, although their presence had been demonstrated in
peripheral blood. Peripheral bloodwas not used for twomain
reasons: the number of circulating stem cells that could be
gathered by available methods was thought to be inadequate
for their autologous and allogeneic transplantation; and the
number of contaminated T cells was considered too high for
safe allogeneic transplantation [1].

Under steady-state conditions, a small amount of
hematopoietic stem cells constantly leave the BM and
penetrate tissues, returning to the BM or peripheral niches
via the blood or lymphatic system [2]. A niche is a subgroup
of tissue cells and extracellular substrates that can indefinitely

harbor one or more stem cells and control their self-renewal
and progeny in vivo [3]. The BM niche is strategically placed
and organized to support the continuous and balanced
production of hematopoietic cells through the strict control
of cell survival, self-renewal, and differentiation [4].

The successful transplantation of hematopoietic stem/
progenitor cells (HSPCs) is based on their ability to home to
the BM niche and on their engraftment capacity. Interactions
between HSPCs and their niches are altered during mobi-
lization and must be reestablished during BM homing and
repopulation.The homing of HSPCs to BM is a rapid process
that takes place during the hours after transplantation and is
an essential and necessary requirement for repopulation and
engraftment [5].

The use of mobilized peripheral blood is now the method
of choice in autologous transplantation for various reasons,
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including an elevated production of immature cells, and,
in comparison to the utilization of BM, the shorter time
period required for a satisfactory repopulation, the more
rapid engraftment, fewer technical difficulties, lower risk, and
considerably less pain [6].

HSPCs were used later in allogeneic transplantation [7].
Although BM and peripheral blood are both still considered
a source of stem/progenitor cells for this purpose [8, 9],
peripheral blood is used in 71% of allogeneic transplantations
[6].

Therefore, the regulation of HSPC release from BM
and their migration and homing and the mechanism of
mobilization pathways involve a complex interaction among
adhesion molecules, cytokines, proteolytic enzymes, stromal
cells, and HSPCs [10]. The identification of new mechanisms
that regulate stem cell trafficking may have important impli-
cations for hematopoietic transplants and for cell therapies in
regenerativemedicine (e.g., for infarcted heart, injured spinal
cord, and stroke) [11].

2. Regulation Mechanisms for
the Mobilization and Homing of
HSPCs in Bone Marrow

2.1. Factors That Affect Stem Cell Mobilization. Granulocyte
colony stimulating factor (G-CSF) is the most widely used
agent for stem cell mobilization due to its power and lack of
severe toxicity. It has two stem cell mobilizationmechanisms:
firstly, interruption of the anchoring mechanism through
downregulation of the expression of stromal cell derived
factor-1 (SDF-1) and activation of the CD26 protease that
cleaves the SDF-1 N-terminal, impeding binding to CXCR4
by decreasing the function of integrin-𝛽1; and secondly, an
increase in serum levels of additional cytokines and growth
factors [12–14].

Studies of G-CSF in animals with tissue ischemia have
demonstrated therapeutic benefits, although with the draw-
back of a possibly favoring of atherosclerosis [15, 16]. After
myocardial infarction (MI), G-CSF promotes the mobiliza-
tion of cardiac tissue HSPCs and improves the regeneration
of cardiomyocytes and blood vessels by the mobilization
and subsequent transdifferentiation of BM stem cells. It has
been verified that G-CSF avoids H

2
O
2
-induced apoptosis of

cardiomyocytes and facilitates cardiac remodeling after MI
[17].

However, different studies have demonstrated that the
utilization of G-CSF has various disadvantages, including a
low therapeutic response and the need for multiple daily
injections over several days. These drawbacks can be over-
come by combining G-CSF with other cytokines and using
different growth factor mobilization strategies [18–20].

Chemokine CXCL12, also known as SDF-1𝛼, was identi-
fied in the supernatant of BM stromal cells; it is expressed at
high levels in BM and produced by osteoblasts, endothelial
cells, and reticular cells dispersed throughout the BM stroma.
It is a potent chemoattractant for HSPCs and has been
demonstrated to regulate cell adhesion and survival and cell
cycle status [21]. Méndez-Ferrer et al. [22] studied CXCL12

levels in BM, observing that their production follows a
circadian rhythm, regulated by the sympathetic nervous
system, with noradrenaline acting via 𝛽2-adrenoreceptors on
osteoblasts and via 𝛽3 adrenoreceptors on nestin-positive
stem cells to reduce their production of CXCL12.

Receptors. Two chemokine receptors for CXCL12 have been
identified (CXCR4 and CXCR7). The presence of CXCR4 on
the cell surface bound to other factors promotes migration
and homing into or from the BM niche [23, 24]. CXCR4
couples to a series of signaling molecules, stimulating leuko-
cyte chemotaxis and stem cells that express the receptor
[11, 25]. The interaction of CXCL12 with CXCR4 in HSPCs is
considered an essential signal for regulatingHSPC trafficking
in BM. Cells without surface expression of CXCR4 are not
sensitive to mobilization using CXCR4 receptor agonists or
antagonists. One of them, AMD3100, a bicyclam CXCR4
antagonist that is strongly synergic with G-CSF in humans,
increases mobilization by one to two logs over G-CSF alone
[26, 27]. It is expressed in most types of cancer, including
breast cancer, prostate cancer, and kidney clear cell carcinoma
[28].

CXCR7 has been identified as a second high-affinity
receptor for CXCL12 but does not couple to signaling path-
ways for migration. It regulates the transendothelial migra-
tion of CXCR4+CXCR7+ tumor cells towards a CXCL12
source, an effect that can be blocked by CXCR7-specific
antagonists [29]. Upon binding to CXCR7, chemokine
CXCL12 is internalized and subsequently degraded; there-
fore, CXCR7 appears to act as a CXCL12 sink [12]. The
two receptors (CXCR4 and CXCR7) interact and can even
form functional heterodimers. CXCR4 inhibition does not
appear to affect CXCR7 function. Thus, specific blockage of
CXCR4withAMD3100/plerixaformay increase the functions
of CXCR7 mediated by SDF-1 [29, 30]. CXCR7 is expressed
in cancers of breast, brain, liver, pancreas, lung, and prostate,
melanomas, and rhabdomyosarcomas [31, 32].

2.2. Mobilization and Homing of Hematopoietic Stem Cells
in Bone Marrow and Different Ligands

2.2.1. SDF-1/CXCR4 Axis in Mobilization and Homing. SDF-
1 is essential for the circulation, homing, and retention of
HSPCs inBM. In 2005, Lapidot et al. demonstrated that SDF-1
is expressed by immature human osteoblasts in the endosteal
region [5]. The interaction between SDF-1 and its CXCR4
receptor has been described as a major axis for regulating
the migration and mobilization of HSPCs under steady-state
conditions [33, 34].

Mobilized human progenitor cells express CD34+ and
reducedCXCR4 levels, which correlatewith greatermobiliza-
tion, suggesting the participation of SDF-1/CXCR4 interac-
tions in this process. Overexpression of SDF-1 was found to
induce the mobilization of stem cells in murine blood [35].

New evidence shows that, in addition to SDF-1, themigra-
tion of HSPCs is directed by gradients of the bioactive lipids
sphingosine-1 phosphate (SP1) and ceramide-1 phosphate
(CP1), which are products of membrane lipid metabolism
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and involved in stem cell trafficking. This mechanism is
based on the significant increase produced by molecules
in the chemotactic responsiveness of HSPCs to very low
SDF-1 gradients. At molecular level, this sensitization of the
responsiveness to SDF-1 depends on the incorporation of the
CXCR4 receptor into membrane lipid rafts, activating the
complement cascade (CC) [36, 37].

The importance of the CC in HSPC homing has been
demonstrated in complement component-deficient mice.
Specifically, mice that are deficient in C3 and C5 engraft
less successfully with HSPCs from wild-type animals, while
HSPCs from C3a receptor-deficient mice show defective
engraftment in wild-type littermates. Hence, activation of the
CC in BM induces a highly proteolytic microenvironment
that degrades SDF-1 [38].

It has been reported that hyaluronic acid (HA) and
thrombin (TH) can increase the response of periph-
eral HSPCs to an SDF-1 gradient. This action may be
related to membrane type-1 matrix metalloproteinase (MT1-
MMP), increasing its expression and favoring the passage
of the HSPCs towards a low SDF-1 gradient [34, 39].
The priming/triggering effect produced by supernatants of
leukapheresis products or their components (fibrinogen,
fibronectin, complement C1q, complement C3a, platelet-
derived microvesicles [PMV], HA, thrombin) was found to
be related to an increased secretion of MMP-2 and MMP-
9, which, together with the SDF-1-CXCR4 axis, favor the
homing of these cells [40] (Figure 1).

2.2.2. Role of G-CSF in theMobilization andHoming of HSPCs
in BM. G-CSF induces the mobilization of HSPCs through
the proteolytic inactivation of both CXCL12 and CXCR4
by the granulocyte proteases neutrophil elastase (NE) and
cathepsin (CG), which are released in large amounts in
proteolytically active form in the BM stroma during G-CSF-
induced mobilization. After G-CSF administration, neu-
trophils show increases in their expression of FcgRI/CD64,
CD11b, and FcgRIII/CD16 and in their release of elastase and
lactoferrin, allowing neutrophil progenitors to be activated
and degranulated directly in the BM stroma during mobi-
lization before their migration into peripheral blood. After
their release into the BM environment, these proteases may
inactivate a number of proteins essential for retaining HSPCs
within the BM, that is, vascular cell adhesion molecule-1
VCAM-1/CD106, chemokine CXCL12/SDF-1 and its CXCR4
receptor (in humans), and c-Kit receptor, all of which may
trigger HSPC mobilization [41, 42].

Plasminogen (Plg) is a glycoprotein present in blood
plasma and in most extracellular fluids as the inactive
precursor of a protease enzyme (plasmin) responsible for the
dissolution of clots after thrombosis [43]. Various authors
have confirmed that Plg plays an essential role in the
mobilization of BM stem cells to the peripheral circulation,
particularly in G-CSF-induced mobilization of HPSCs. Plg
binds to the BM extracellular matrix (ECM) and, after
conversion into plasmin, it degrades various proteins of the
ECM, including fibrin, laminin, and plasmin. Plg can also
activate other proteases, such as MMP-3, MMP-9, MMP-12,

andMMP-13, to degrade othermatrix components, including
collagen [44].

There have also been reports on the importance of uroki-
nase Plg activator (uPA), part of the plasminogen activating
system, in the activity of 𝛼1𝛽4 integrin in BM homing. Intact
uPA receptors (uPARs) are required for the adhesion and
engraftment of HSPCs to BM [45].

2.2.3. Other Ligands. The adhesion molecule Very Late Anti-
gen (VLA)-4 (𝛼4𝛽1-integrin) is expressed on murine HSPCs
and on human CD34+ early hematological progenitor cells
[46]. Blocking the interaction between VLA-4 and its ligands
expressed onBMstroma, by using specific antibodies or small
molecule inhibitors, induces rapid mobilization of HSPCs in
humans, primates, and mice [47, 48].

One example is the interaction between VLA-4 and
VCAM-1 on BM stromal cells, which is essential for BMhom-
ing during development and posttransplantation. HSPCs
were found to be mobilized by inhibition of this interaction
through the administration of function-blocking anti-VLA-4
or anti-VCAM-1mAbs or through the conditional deletion of
either 𝛼4 integrin or VCAM-1 gene [41].

With regard to the mechanism, VCAM-1 is a substrate
of both neutrophil serine-proteases, NE and CG, which
accumulate in the BM extracellular fluid during mobilization
and cleave VCAM-1 expressed in mouse BM stroma. As a
result, the concentrations of soluble VCAM-1 fragments and
NE increase in the blood of patients aftermobilization. Serine
proteases are the sole regulators of VCAM-1 levels in the BM
[49].

Tyrosine-kinase c-KIT/CD117 receptor plays an impor-
tant role in mobilization. G-CSF induces the release in the
BM of proteases that remove c-KIT receptor (CD117) from
the surface of HSPCs. Administration of soluble KIT, which
binds to and blocks the endogenous cell factor KIT ligand,
in synergy with G-CSF, increases HSPC mobilization. The
serineproteases in G-CSF remove c-KIT in small fragments,
and its administration to mice reduces c-KIT expression in
primitive hematopoietic cells in the BMandperipheral blood.
Proteases able to remove c-KIT include NE, CG, proteinase-
3, and MMP-9 [50]. Neutrophils are the main source of these
proteases, which provide macrophages with a new pathway
for regulating the surface expression of c-KIT on HSPCs
and may be in part responsible for the downregulation of c-
KIT expression on HSPCs mobilized in vivo. We highlight
that removal of the extracellular domain of c-KIT does not
activate its kinase domain; therefore, c-KIT removal during
mobilization represents a function loss [51, 52].

3. Quantifying HSPCs Mobilization
and Homing

Stem cell quantification is usually based on peripheral blood
samples, but this method can be challenging. Besides the
technical difficulty of precisely determining stem cell mobi-
lization, an increase in stem cells can take place in non-BM
tissues, such as splenic or adipose tissue [41].
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Figure 1: Factors favoring homing ofHPSCs in the bonemarrow. (A)Chemotactic factors independent of the SDF-1/CXCR4 axis gradient. (B)
Triggering or modulating factors of the SDF-1/CXCR4 axis. HSPC: hematopoietic stem/progenitor cells; C3a: complement fraction C3a; C1q:
complement fraction C1q; PMVs: platelet-derived microvesicles; HA: hyaluronic acid; TH: thrombin; MMP-2: metalloproteinase-2; MMP-9:
metalloproteinase-9; MT1-MMP: membrane type-1 matrix metalloproteinase; SP1: sphingosine-1-phosphate; CP1: ceramide-1-phosphate.

Various factors can influence the quantification of mobi-
lized stem cells. One example is the daily variations in BM
SDF-1𝛼 levels, whichmeans that the stem cell count may vary
according to the time of day that the sample is drawn [22]. In
addition, HSPCs mobilized with CXCL2 are less dependent
on CXCR4 in comparison to those mobilized with G-CSF,
which are in turn more dependent on selectins and integrins
[53]. After mobilization, stem cells may rapidly home back
to the BM, but they may also redistribute to other tissues
with local stem cell niches, such as the liver, spleen, lungs,
myocardium, and adipose tissue [54–57]. Thus, the count of
mobilized stem cells in peripheral blood may include not
only those from the BM but also those from these other
organs.

Recent studies demonstrated that the mobilization of
different subpopulations of progenitor cells in the BM can
be directly and accurately counted, allowing the effectiveness
of different mobilizing agents to be compared over the short
and long term [58]. In these experiments, instead of drawing
peripheral blood samples, an in situ perfusion system is
placed in the hind limb of themouse, allowing specific counts
to be made of the total number of hematopoietic progenitor,
endothelial and mesenchymal cells mobilized by the BM
during a given time period.

It has been reported that the number of HSPCs is
inadequate in around 20% of patients treated with G-CSF for
BM transplantation. Successful hematopoietic reconstitution
requires the transplant of at least 2 × 106 CD34+ cells/kg, and
a higher number is associated with a lower incidence of graft-
versus-host disease [59, 60].

4. Therapeutic Outcomes: HSPC Mobilization

In the clinical setting, HSPC mobilization from the BM to
blood has been used for stem cell transplantation and to stim-
ulate angiogenesis in ischemic tissues [61]. Factors that limit
the therapeutic potential of HSPCs include advanced age and
cardiovascular risk factors, including hypercholesterolemia,
hypertension, and smoking [62].

4.1. Current Standard Agents. Since the early 1990s, G-CSF
has been the most widely used agent to mobilize HSPCs
for BM transplants [63]. The administration of exogenous
G-CSF increases the production of neutrophils by the BM,
inducing a rapid exit of HSPCs. Numerous studies have
compared the effectiveness of different forms of G-CSF (peg-
filgrastim, pegylated form; filgrastim, nonglycosylated form;
lenograstim, glycosylated form), which are yet to be well
defined, and they found little difference among them [64–66].
Filgrastim (or lenograstim in some countries) remains the
agent of choice for the mobilization of allogeneic peripheral
blood stem cells from normal donors [67]. The Food and
Drug Administration approved pegfilgrastim for reducing
the duration and severity of the neutropenia associated with
many chemotherapy regimens.

A highly significant positive correlation has been found
between the concentration of CD34+ cells before apheresis in
peripheral blood and the predicted quality of collections from
one-to-three leukaphereses [68–72]. The most frequent G-
CSF dose for mobilization in healthy donors is 10 𝜇g/kg/day
subcutaneously from day 5 until sufficient CD34+ cells are
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collected. Various authors found no increase in stem cell
yields at higher G-CSF doses [67, 73]. Although CD34+ cell
mobilization is increased by its administration twice daily
[74], a single dose is preferred [75]. G-CSF is generally well
tolerated, and the most commonly observed adverse effects
are bone pain, fatigue, nausea, and headache [76, 77]. In a
large retrospective study ofmobilization in 85 healthy donors,
a yield of >85% CD34+ cells was more frequently obtained in
the afternoon than in the morning [78]. It should be borne in
mind that G-CSF-mobilized HSPCs are different from those
present in the BMunder normal conditions and express lower
levels of c-kit, VLA-4 integrin, and CXCR4 [61].

Most centers use G-CSF alone or in combination with
chemotherapy in mobilization regimens [79, 80]. A higher
CD34+ cell yield is obtained with G-CSF plus chemotherapy
than with G-CSF, besides the antitumor effect [81, 82]. In
most patients, the mobilization procedure is started with
G-CSF after the 2nd or 3rd cycle of chemotherapy treat-
ment. In patients with multiple myeloma (MM) or non-
Hodgkin lymphoma (NHL), cyclophosphamide is followed
by the administration of 5 𝜇g/kg G-CSF [83]. Higher doses
of chemotherapy have been associated with a greater fre-
quency of platelet transfusion and hospitalization for febrile
neutropenia [82].

It has been estimated that the incidence of poor mobi-
lizers ranges from 5% to 40% of healthy donors and patients
[71, 84, 102, 103]. G-CSF has been reported to fail to mobilize
a sufficient number of PBSCs for transplantation in some
elderly patients and especially in patients with a history
of chemotherapy or radiotherapy [69, 84, 85, 93, 97, 103].
Other factors associatedwith poormobilization include a low
platelet count immediately before mobilization [85], baseline
thrombocytopenia [85, 92], diabetes [104], and a low TNF-
𝛼 level [105]. However, it is difficult to predict mobilization
in donors due to the absence of well-established predictive
factors [68–71, 84–101], and there is no consensus on the
definition of poor mobilizers [69]. Table 1 lists variables that
have been associated with mobilization failure risk. Olivieri
et al. and the “Gruppo Italiano Trapianto di Midollo Osseo”
[87] recently attempted to clarify the definition of “poor
mobilizers” in lymphomas and multiple myeloma patients.
They proposed a peak of CD34+ cells of >20𝜇L in peripheral
blood before collection as a reliable indicator of satisfactory
mobilization capacity. Poor mobilization has important con-
sequences, increasing the morbidity after repeated mobiliza-
tion attempts and significantly reducing the possibility of
transplantation [66].

4.2. Novel Mobilizing Agents. Plerixafor (AMD3100) has
emerged as a promising HSPC mobilization agent. It is a
reversible CXCR4 antagonist and produces the fast release of
stem cells from BM niches into the blood stream [54, 106].
High expectations have been raised by this agent in the setting
of PBSC transplantation [69, 106], because of its ability to
mobilize large numbers of CD34+ cells in patients with a
poor response to G-CSF administration [54, 107, 108]. The
combination of plerixafor with G-CSF produces even greater
increases in circulating CD34+ cells [109]. It is also effective

Table 1: Variables associated with increased risk of possible mobi-
lization failure.

Variable Main references

Age

Hosing et al., 2009 [84]
Kuittinen et al., 2004

[85]
Wuchter et al., 2010 [86]
Olivieri et al., 2012 [87]

Mobilization with G-CSF alone

Hosing et al., 2009 [84]
Petit et al., 2002 [88]
Bensinger et al., 2009

[89]

Bone marrow infiltration by
tumor cells

Kuittinen et al., 2004
[85]

Demirer et al., 1996 [90]
Disease

Lymphomas >myeloma Pusic et al., 2008 [91]
Chronic lymphocytic leukemia Jantunen et al., 2008 [92]

Disease status

Haas et al., 1994 [93]
Wuchter et al., 2010 [86]
Bensinger et al., 2009

[89]

Previous myelotoxic
chemotherapy

Mohty and Ho, 2011 [69]
Gertz et al., 2010 [71]

Jantunen et al., 2008 [92]
Wuchter et al., 2010 [86]
Bensinger et al., 2009

[89]
Lysak et al., 2005 [94]
Laszlo et al., 2004 [95]
Popat et al., 2009 [96]

Previous extensive radiotherapy
to BM

Bensinger et al., 1995
[70]

Haas et al., 1994 [93]
Sevilla et al., 2013 [97]
Demirer et al., 1996 [90]
Olivieri et al., 2012 [87]

Low premobilization BM
cellularity

Hosing et al., 2009 [84]
Olivieri et al., 2012 [87]

Low baseline CD34+ cell count
Fruehauf et al., 1999 [68]
Han et al., 2012 [98]
Fu et al., 2006 [99]

Low platelet count before
mobilization

Fruehauf et al., 1999 [68]
Hosing et al., 2009 [84]
Wuchter et al., 2010 [86]
Han et al., 2012 [98]

Suzuya et al., 2005 [100]
Zubair et al., 2008 [101]

G-CSF: granulocyte colony-stimulating factor.
BM: bone marrow.
Myelotoxic chemotherapy:melphalan, carmustine, dacarbazine, fludarabine,
lenalidomide, platinum compounds.

in patients that have previously received chemotherapy, and
it acts in synergy withG-CSF and chemotherapy [54, 66, 107].
In December 2008, the United States Food and Drug Admin-
istration approved plerixafor in combination with G-CSF for
HPSC mobilization in patients with NHL and blood stream
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undergoing autologous peripheral blood hematopoietic cell
transplantation [67].

The recommended standard dose of plerixafor is
0.24mg/kg/day by subcutaneous injection, with adjustments
in particular cases such as myeloma patients with advanced
renal failure [110]. Plerixafor used alone rapidly mobilizes
HSPCs, reaching a maximum at 6–9 h, and it improves
the yield in healthy donors either as a single agent or
in combination with G-CSF [30]. Recent research by
Abhyankar et al. [111] confirmed that superior results are
obtained when plerixafor is given at 5:00 PM the evening
before apheresis. The most common adverse effects of
plerixafor are mild-moderate gastrointestinal reactions,
injection-site reactions, and paresthesias [112].

G-CSF plus plerixafor was more effective for first-line
mobilization than G-CSF alone in MM and NHL patients
[113] and also proved effective in patients with Hodgkin’s
lymphoma (HL) [114, 115]. Various studies found that this
combination can safely and effectively remobilize NHL
patients in whom previous mobilization approaches have
failed [116, 117]. This combination may be of special value in
heavily pretreated patients [118].

There is still little experience of mobilization regimens
using plerixafor in combination with chemotherapy plus G-
CSF [119, 120]. Plerixafor may be useful for HPSC mobi-
lization in patients needing high chemotherapy doses as
well as in patients with risk factors for poor mobilization,
for example, age, history of radiotherapy or exposure to
fludarabine, or lenalidomide, among others [72]. Yannaki
et al. [121] proposed G-CSF or plerixafor as mobilizers
in nonsplenectomized adult patients with thalassemia and
plerixafor in splenectomized thalassemic adults. It has also
been suggested that HPSC mobilization would be improved
by plerixafor combined with G-CSF and pegylated-G-CSF
after chemotherapy in patients with advanced germ cell
cancer [122] as well as in those with MM or lymphoma.

For the appropriate use of immediate salvage plerixafor,
it is critical to measure real-time indicators of poor and slow
mobilizers during mobilization treatments. It is indicated
when the concentration of CD34+ cells is <5-6/𝜇L on day
4 of G-CSF apheresis [123]. Awan et al. [124] administered
salvage plerixafor in patients failing chemotherapy and G-
CSF mobilization and obtained ≥2 × 106 CD34+ cells/kg in
all cases. Although plerixafor represents an advance in HSPC
mobilization, 30% of patients that fail with G-CSF protocols
also fail with G-CSF plus plerixafor, which appears to be
attributable to a low or defective reserve of HSPCs or niche
problems. Greater understanding of the molecular mecha-
nisms underlying the action of these factors will allow the
design of predictive algorithms and adequate mobilization
protocols in the future [66].

The 𝛼4 integrin antibody (CD49d) natalizumab, another
proposed agent, achieves adequate cell mobilization in
patients with a poor response to G-CSF and plerixafor [66,
125, 126]. Natalizumab is a recombinant humanized IgG4
monoclonal antibody that binds to the 𝛼-4 subunit of the
𝛼 4-𝛽1 integrin and inhibits the 𝛼-4-mediated adhesions of
leukocytes to their counterreceptors. It has been used in the

treatment of multiple sclerosis (MS) and Crohn’s disease. In
relapsed MS patients, a single dose (300mg) of natalizumab
produced a 5-fold increase in circulating CD34+ cells one day
later [126]. POL 6326, a CXCR4 antagonist, was studied in
MM patients and healthy volunteers and proved to be well
tolerated and effective in the mobilization of CD34+ cells
[127]. Recent results showed that the addition of BKT140 (4F-
benzoyl-TN14003), another CXCR4 antagonist, toG-CSF can
increase themobilization of CD34+ cells and reduce the num-
ber of aphereses. BKT140 has also shown an antitumor effect,
increasing apoptosis in human-derivedMM, lymphoma, and
primary leukemia cells, although further research is required
to establish its anti-MM effects [128].

4.3. Stem Cell Therapy in Ischemic Heart Disease. Over the
past few years, interest has grown in the application of stem
cell therapy in ischemic heart disease. In myocardial repair,
stem cell homing signals play a decisive role inmobilizing BM
stem cells towards the ischemic area of the heart.The therapy
is designed to enhance the homing, survival, persistence, and
differentiation of stem cells in the infarcted area, and the
chemokine SDF-1𝛼/CXCL12 has proven to be themost potent
stem cell homing factor [129]. Research by Wang and Luther
[130] on the infarcted heart showed that hypoxic precondi-
tioning activates SDF-1𝛼/CXCR4 signaling and upregulates
vascular/angiogenic factors that mobilize progenitor cells.
SDF-1𝛼 secretion in the infarcted heart creates an environ-
ment that enhances the homing of circulating CXCR4+ stem
cells and other stem cells. BM-derived mesenchymal stem
cells have shown good results in post-MI cardiac repair [131].
In a study of patients with acute MI, Karapetyan et al. [132]
found that the bioactive sphingophospholipids, SP1 and CP1,
regulate trafficking ofHSPCs. Stemcell-based andmicroRNA
(miRNA, miR) based therapeutic strategies appear to offer
a promising perspective for patients with cardiovascular
disease, especially MI [133].

5. Stem Cell Mobilization in
BM and Clinical Trials

Clinical trialNCT00536887 (Effects of atorvastatin 10mg ver-
sus 40mg in eight-month followup coronary flow reserve and
bone marrow stem cell mobilization in patients with acute
myocardial infarction) demonstrated that different doses (10–
40mg) of atorvastatin were effective to enhance BM stem cell
mobilization in patients with acute MI, increasing the mobi-
lization ofCD34+ andCXCR4+ cells, reducing cytokine levels
and regeneratingmicrovascular integrity [134]. Although this
trial ended in 2008, the final results had not been published
at the time of writing this review.

Another clinical trial in acuteMI patients (NCT00126100:
Bone marrow stem cell mobilization therapy for acute
myocardial infarction [REVIVAL-2]), which was completed,
reported that transplantation of blood-derived or BM-
derived progenitor cells can improve cardiac regeneration
and that G-CSF induces BM stem cell mobilization and
increases the number of circulating stem cells available for
this purpose [135, 136].

http://clinicaltrials.gov/ct2/show/NCT00536887
http://clinicaltrials.gov/ct2/show/NCT00126100


BioMed Research International 7

The Gregorio Marañón Hospital in Spain is running a
Phase 2 clinical trial (NCT00984178: Trial of hematopoietic
stem cells in acute myocardial infarction [TECAM2]) to
compare the effectiveness of four strategies to prevent postin-
farction ventricular remodeling: conventional treatment for
reperfused extensive acute myocardial infarction; intracoro-
nary transplantation of autologous bone marrow stem cells;
mobilization of bone marrow stem-cells induced by G-CSF;
and the combination of stem-cell transplantation with G-
CSF-induced mobilization. This trial is currently recruiting
participants, and no date has yet been given for the end of the
study.

Clinical trial NCT00001071 (A study of stem cells and fil-
grastims) was carried out in patients at various stages of HIV-
1 infection and in HIV-negative volunteers and investigated
the safety of stem cell harvesting after using filgrastim (G-
CSF) to mobilize BM stem cells into the peripheral blood.
This study, which has ended, found that the mobilization
and harvesting of bonemarrow progenitor cells from persons
infected with HIV-1 induced a transient increase in viral
replication in some patients but was not associated with
adverse effects [137, 138].

Clinical trial NCT00011830 (Stem cell mobilization
potential in patients with aplastic anemia in remission)
studied the use of filgrastim in patients with aplastic anemia
(aged ≥12 years) in remission after successful treatment with
immunosuppressive drugs.

It investigated whether G-CSF administration generates
sufficient BM-produced cells that mature into white/red
blood cells and platelets for use in future treatments and
whether successfully treated patients who then relapse can
benefit from autologous stem cell transfusion. G-CSF was s.c.
injected daily for up to 10 days. Stem cells were collected by
apheresis, usually after 5 or 6 days of filgrastim injections.The
results of this trial have not yet been published.

6. Conclusions

HSPCs are mobilized from the BM in various situations,
including hematopoietic transplantation, AMI, bonemarrow
injuries, and stroke, among others. Researchers have demon-
strated that regulation of the mobilization and homing of
HCPCs from the BM plays a critical role in repairing damage
to different tissues. Various factors influence the regulation
mechanisms for HSPC mobilization and homing from the
BM, including SDF-1 and its CXCR4, which have been
implicated as a major pathway for regulating the migration
and mobilization of HSPCs under steady-state conditions.
G-CSF induces HSPC mobilization through the proteolytic
inactivation of CXCL12 and CXCR4 by NE and CG and
through the interaction of other ligands such as VLA-4 and
VCAM-1 in BM stromal cells. It is now possible to accurately
quantify themobilization of stem cells by directmeasurement
in the BM, allowing comparison of the efficacy of different
agents over the short and long term. Mobilizing agents
being used in different diseases include the distinct forms
of G-CSF and, especially, plerixafor, which has represented
a major advance in novel strategies for HSPCs mobilization,

especially in patients with a history of mobilization failure.
Various clinical trials are under way to evaluate the effective-
ness of different factors for the mobilization of BM stem cells.
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