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Abstract

Functional connectivity (FC) in blood oxygen level-dependent (BOLD) fMRI time series can be estimated using
methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of re-
gions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic
FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare
methods on both dimensions. We compared five FC methods: Pearson’s/full correlation (static, bivariate), lagged
correlation (dynamic, bivariate), partial correlation (static, multivariate) and multivariate AR model with and with-
out self-connections (dynamic, multivariate). We compared these methods (i) directly, by assessing the similarities
between the FC matrices, and (ii) indirectly, by comparing the patterns of brain-behavior associations. Although FC
estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multi-
variate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates,
especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of
brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC
estimates represent information largely similar to that of the static FC.

Keywords: functional connectivity, autoregressive model, dynamic functional connectivity, brain-behavior
associations

1. Introduction1

Brain functional connectivity (FC) is estimated by calculating statistical associations between time series of brain2

signal [1], which reflect functional relationships between brain regions [2]. The investigation of FC has improved3

our understanding of brain function in health and disease and has been shown to be useful as a tool to predict in-4

terindividual differences, such as cognition, personality, or the presence of mental or neurological disorders [3, 4]. In5

functional magnetic resonance imaging (fMRI) studies, FC is most commonly estimated using the Pearson’s corre-6

lation coefficient between time series of pairs of regions. Although correlation is simple to understand and compute,7

it is insensitive to the temporal order of time points. Measures or models that are sensitive to the temporal order of8

time points are called dynamic, while measures that are insensitive to temporal order are measures of static FC. Given9

that the information flow in the brain is causally organized in time [5, 6], dynamic connectivity models could be more10

informative in terms of understanding brain function and investigating brain-behavior associations.11

Dynamic FC can be estimated using measures of lag-based connectivity, such as lagged correlation or multivariate12

autoregressive (AR) model. In contrast to static FC, dynamic FC methods can be used to estimate the directionality of13

information flow based on temporal precedence [7]. Although these methods have been commonly used, some studies14

[7, 8, 9, 10, 11] have warned that the ability of these methods to accurately estimate the presence and directionality15

of connections is compromised due to the convolution of the neural signal with the hemodynamic response function16
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(HRF) and the resulting blurring of the signal, due to interregional variability of HRF, noise [7, 8, 9, 10], and/or17

downsampling of the neural signal in fMRI [11]. Other studies [12, 13, 14] have shown that the measures of dynamic18

FC complement the measures of static FC. For example, lagged FC measures can improve discrimination between20

individuals and between tasks [12, 13] and can be used to improve effective connectivity estimates [14]. Furthermore,21

Liégeois et al. [15] have shown that the multivariate AR model explains temporal FC fluctuations better than Pearson’s22

correlations.23

In subsequent research Liégeois et al. [16] showed that static FC and dynamic FC exhibit different patterns of24

brain-behavior associations. They concluded that dynamic FC explains additional variance in behavior beyond vari-25

ance that can be explained by static FC. However, this comparison confounds two orthogonal properties of FC meth-26

ods. Although Pearson’s correlation and multivariate AR models differ in their sensitivity to temporal reordering (i.e.,27

static vs. dynamic), they also differ in terms of how many variables (brain regions) are taken into account during the28

estimation of a single edge (bivariate vs. multivariate). Hence, a more valid comparison between static and dynamic29

FC methods should consider both dimensions: the number of variables and the sensitivity to temporal reordering.30

Combining these two factors enables us to differentiate between four basic classes of FC methods (see Figure 1).31

Our aim was to systematically compare the FC estimated by both dimensions, that is, the sensitivity to temporal32

reordering (static vs. dynamic) and the number of independent variables (bivariate vs. multivariate). We focused on33

five mathematically related methods: full/Pearson’s correlation, partial correlation, lagged correlation, and multivari-34

ate AR model with and without self-connections, where self-connections refer to autocorrelation of the region with35

itself [17, 18]. We were interested in similarities of the FC estimates and patterns of brain-behavior associations.36

We compared FC methods (i) directly by assessing similarities between FC matrices and (ii) indirectly by comparing37

brain-behavior associations. In addition, to better understand the results obtained using different methods and the38

relationship between them, we generated and analyzed synthetic data in which we systematically varied the length of39

time series and the amount of noise.40

We used empirical and simulated data to test two hypotheses. First, we predicted that dynamic and static FC41

methods will provide similar FC estimates due to autocorrelation of the fMRI time series. Autocorrelation is inherent42

to the fMRI signal and originates from two main sources: physiological noise and convolution of neural activity with43

HRF [19]. We expected that the degree of similarity between static and dynamic FC estimates would be similar to44

or larger than the average autocorrelation of the fMRI time series. Furthermore, we expected the similarity between45

dynamic and static FC to be smaller when the fMRI time series is pre-whitened (i.e., when autocorrelation is removed46

before computation of FC).47

Second, we predicted that multivariate methods can improve inferences about causal relationships between re-48

gions, as they estimate direct connections by removing the confounding influence of indirect associations [2] as49

opposed to bivariate methods, which cannot separate indirect and direct connections [18]. By providing more direct50

information on causal relationships between brain regions [20], multivariate methods could improve brain-behavior51

associations in terms of explained variance and/or brain-behavior correlation estimates. Existing research has shown52

inconsistent differences in behavior predictive accuracy between partial and full/Pearson’s correlations, favoring either53

partial [21, 22] or full correlation [23] or showing negligible differences between them [24].54

2. Method55

2.1. Participants56

To address the research questions, the analyzes were performed on publicly available deidentified data from 109657

participants (Mage = 28.8, S Dage = 3.7, 596 women) included in the Human Connectome Project, 1200 Subjects58

Release [25]. Each participant took part in two imaging sessions over two consecutive days that included the acqui-59

sition of structural, functional (rest and task), and diffusion-weighted MR images. The study was approved by the60

Washington University institutional review board and informed consent was signed by each participant.61

2.2. fMRI data acquisition and preprocessing62

Data were acquired in two sessions using the Siemens 3T Connectome Skyra tomograph. Structural MPRAGE63

T1w image (TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, voxel size = 0.7 mm isotropic, SENSE factor = 2, flip angle64
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Figure 1: A schematic of analysis steps. A. BOLD fMRI data was preprocessed, parcellated, and individual parcel timeseries were extracted. B.
Functional connectivity (FC) was estimated with five methods that differed along two dimensions: static vs. dynamic and bivariate vs. multivariate.
Static FC refers to measures that are insensitive to temporal order and can be estimated using full/Pearson’s correlation or partial correlation,
whereas measures of dynamic FC are sensitive to temporal order of time points. Dynamic FC can be estimated using measures of lag-based
connectivity, such as lagged correlation, or using the linear multivariate autoregressive (AR) model. The lagged correlation between two time
series is calculated by shifting one time series by p time points. Similarly, a p-th order multivariate (or vector) autoregressive model predicts
the activity of a particular brain region at time point t based on the activity of all regions at time point(s) from t − p to t − 1. Bivariate and
multivariate FC methods differ in terms of number of variables (regions) taken into account when estimating connectivity at a single edge: bivariate
connectivity between two regions depends only on the two regions, whereas multivariate connectivity between two regions includes all other regions
as covariates. C. FC matrices were vectorized. D. FC estimates were compared both (i) directly by calculating correlations between FC estimates
and (ii) indirectly by comparing estimates of brain-behavior associations across FC methods. E. Additionally, we performed simulation to assess
the influence of random noise and signal length on the similarity between FC estimates obtained using different methods.
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= 8◦) and T2w image (TR = 3200 ms, TE = 565 ms, voxel size = 0.7 mm isotropic) were acquired in the first session.65

The participants underwent four resting state fMRI runs, two in each session (gradient echo EPI sequence, multiband66

factor: 8, acquisition time: 14 min 24 s, TR = 720 ms, TE = 33.1 ms, flip angle = 52◦).67

Initial preprocessing was performed by the HCP team and included minimal preprocessing [26], ICA-FIX denois-68

ing [27] and MSMAll registration [28]. The data was then further processed using QuNex [29] to prepare them for69

functional connectivity analyzes. First, we identified frames with excessive movement and/or frame-to-frame signal70

changes. We marked any frame that was characterized by frame displacement greater than 0.3 mm or for which the71

frame-to-frame change in signal, computed as intensity normalized root mean squared difference (DVARS) across all72

voxels, exceeded 1.2 times the DVARS median across the time series, as well as one frame before and two frames73

after them. Marked frames were used for motion censoring, which is described in detail in the Appendix. Next, we74

used linear regression to remove multiple nuisance signals, including six movement correction parameters and their75

squared values, signals from the ventricles, white matter and the whole brain, as well as the first derivatives of the76

listed signals. The previously marked frames were excluded from the regression and all subsequent analysis steps were77

performed on the residual signal. No temporal filtering was applied to the data, except a very gentle high-pass filter at78

the cutoff of 2000 s applied by the HCP team [26], since temporal filtering could introduce additional autocorrelation79

[30] and inflate correlation estimates [19, 31].80

Only sessions with at least 50% useful frames after motion censoring were used in the further analysis, except81

where noted otherwise. This resulted in 1003 participants with at least one session. Before FC analyzes, all resting-82

state BOLD runs from available sessions were concatenated and parcellated using a multimodal cortical parcellation83

(MMP1.0) containing 360 regions [28]. Each parcel was represented by a mean signal across all the parcel grayordi-84

nates.85

2.3. Functional connectivity estimation86

Functional connectivity was estimated using five methods: full (Pearson’s) correlation, partial correlation, lagged87

correlation, multivariate AR model (also called vector AR model), and multivariate AR model without self-connections.88

The listed methods differ in terms of the number of regions used to estimate the connectivity of a single edge (bivariate89

vs. multivariate) and in terms of sensitivity to temporal reordering of time points (static vs. dynamic) (see Figure 1).90

A multivariate AR model without self-connections was included to test how much similarity between the multivariate91

AR model and partial correlation depends on self-connections (the diagonal terms in the autocovariance matrix).92

The bivariate static FC was estimated using full correlation. Let xi be a demeaned T × 1 vector of region i time93

series (T is the number of time points) and let X = [x1, . . . , xN]′ be a N × T matrix of the demeaned region time series94

(N is the number of regions). Then the sample covariance matrix C can be estimated with95

C =
XX′

T − 1
(1)

A correlation matrix can be obtained by standardizing the time series to zero mean and unit standard deviation96

(i.e., z-scores) beforehand.97

Multivariate static FC was estimated using partial correlation. Partial correlations were computed by taking an98

inverse of a covariance matrix (i.e., the precision matrix) and then standardizing and sign-flipping according to the99

equation:100

ρi j = −
wij
√wiiwjj

(2)

where ρ is an element of a partial correlation matrix, w is an element of a precision matrix, and i and j are the indices101

of rows and columns, respectively [32].102

Dynamic bivariate connectivity was estimated using lagged correlation (also known as autocovariance matrix).103

Autocovariance is defined as the covariance of time series with lagged time series. Let Xt be an N × (T − p) matrix104

of shortened time series with time points from 1 to T − p (p is the lag/model order) and Xt+p be a similar matrix with105

time points from p + 1 to T . Then,106

Cp =
Xt+pX′t
T − p

(3)
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is p-th order autocovariance or lagged covariance matrix. Diagonal entries are called autocovariances or, some-107

times, self-connections or self-loops [18, 17]. Off-diagonal entries of autocovariance matrix are also called cross-108

covariances. Note that the autocovariance matrix of lag 0 is equal to the ordinary covariance matrix. The autocorrela-109

tion matrix was obtained by standardizing time series before computing autocovariance.110

Correlations, autocorrelations, and partial correlations were Fisher z-transformed for subsequent analyzes.111

Multivariate dynamic connectivity was estimated using the Gaussian multivariate AR model. Let Z be an N p ×112

(T − p) matrix of stacked matrices of shortened time series, Z = [X′t+p−1, . . . , X
′
t+1, X

′
t ]
′. The multivariate AR model113

can be written in matrix notation as:114

Xt+p = AZ + E (4)

where A is an N × N p matrix of AR coefficients of the p-th order model and E is an N × (T − p) matrix of zero-mean,115

independent, normally distributed residuals. The matrix A can be estimated using the ordinary least squares (OLS)116

estimator:117

Â = Xt+pZ′(ZZ′)−1 (5)

For p = 1 Â equals:118

Â = Xt+pX′t (XtX′t )
−1 (6)

The equation shows that the coefficients of the multivariate AR model are a product of the lagged covariance and119

(non-lagged) precision matrix. Therefore, the multivariate AR model encodes both static and dynamic FC. The same120

can be inferred from the Yule-Walker equations (see Liégeois et al. [15], Chatfield and Xing [33]). Moreover, for lag121

0, the multivariate coefficients of the AR model are equal to the covariance matrix (see [15]).122

To estimate the coefficients of the multivariate AR model without self-connections, we fitted the model123

xi,t+p = X′t ai + ei (7)

for each region i separately, such that we set i-th row of matrix Xt to zero (the equation above applies for p = 1 only, but124

the model could be extended to include higher lags as in Equation 4). Vectors xi,t+p were taken from rows of the matrix125

Xt+p and included time points from p + 1 to T . Vectors ei represent normally distributed, zero-mean, independent126

residuals. FC matrix was constructed by organizing N × 1 vectors ai into the N × N matrix A1 = [ai, . . . , aN]′. This127

matrix is asymmetric with zeros on the diagonal. The coefficients of both multivariate AR models were estimated128

using the coordinate descent algorithm implemented in the GLMnet package for MATLAB [34].129

All AR models were estimated for lag 1 only. This order was shown to be optimal for the multivariate AR model130

for resting state fMRI data with a high number of regions [35, 36], and also in a study using HCP data [37]. There were131

no differences between the variance of order 1 and the higher-order models explained by the first principal component132

of the null data generated from the multivariate AR model in a previous study [15]; therefore, we did not consider133

higher-order autoregressive models.134

2.4. Prewhitening135

We expected that FC estimates based on AR models would be similar to static FC estimates due to autocorrelation136

present in the fMRI time series. To test the similarity between static and dynamic FC in the absence of autocorrelation,137

we computed connectivity both from non-prewhitened time series and on prewhitened time series. The exception was138

multivariate AR model, where the diagonal term (self-connections) effectively acts as a prewhitening. The difference139

between the multivariate AR model with and without prewhitening is essentially the difference between the multivari-140

ate AR model with and without self-connections. We performed prewhitening by taking the residuals of the regression141

of the ”raw” time series on lagged time series.142

To retain frame sequence after prewhitening, frames that were marked as bad in any of the original or lagged time143

series were set to zero before computing residuals. For this reason, frames that were preceded by a bad frame in any144

of the 1 to l previous frames were not prewhitened. At higher orders, this resulted in fewer total prewhitened frames.145

Prewhitening was performed on orders 1 to 3 (abbreviated AR1/2/3 prewhitened). Autocorrelations were already146

significantly reduced at order 1 and were additionally reduced at lags 2 and 3 (Figure S1). Since the results were147
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similar regardless of the prewhitening order, only the results for the prewhitening on order 1 are shown in the main148

text, and the results for higher orders are shown in the supplement.149

2.5. Similarities between FC estimates obtained using different methods150

We estimated similarities between the FC estimates by computing the correlation between vectorized FC matrices.151

We adjusted the vectorization for each pair of methods so that only unique elements were taken into account. For152

example, correlation and partial correlation matrices are symmetric; therefore, only the upper or lower triangular part153

of the matrix (without the diagonal) should be considered. On the other hand, the FC matrices derived from the154

AR models are not symmetric; therefore, the whole matrix must be vectorized. The exception is the multivariate155

AR model without self-connections, which does not contain any information on the diagonal, so in this case matrix156

without the diagonal needs to be vectorized. When comparing asymmetric and symmetric matrices, we computed and157

used the average of the upper and lower triangular parts of the matrix (using equation (X + X′)/2) .158

We estimated similarities in two ways: first, by computing correlations between connectivity estimates for each159

subject separately and then averaging the resulting correlations (mean correlations between individual-level FC ma-160

trices), and second, by averaging FC matrices over participants and then computing correlation between methods on161

group FC matrices (correlations between group-level FC matrices).162

To test how similarity between FC estimates depends on data quality, we repeated analyses on a subset of 200163

participants with the largest number of retained frames.164

2.5.1. Correlation between edge similarity and test-retest reliability165

To better understand the origin of the similarities between the FC methods, we examined the relationship between166

the edge similarity of the FC estimates obtained using different methods and test-retest reliability at the edge level. If167

similarities between FC estimates depend on the signal-to-noise ratio (SNR), more reliable edges will be more similar168

across methods.169

We computed the edge similarity as correlation at every edge for each pair of FC methods. We estimated the170

test-retest reliability using the intraclass coefficient (ICC) for each method separately. We estimated the variance171

components within the linear mixed model framework using the restricted maximum likelihood (REML) procedure172

[38, 39]. We defined variance components as follows:173

var(ypdr) = σ2
p + σ

2
d + σ

2
r + σ

2
p×r + σ

2
p×d + σ

2
d×r + σ

2
e (8)

where y is an estimate of an edge, p indicates participant, d day, r run and e residual.174

We computed the ICC as a ratio between between-subject variance (which included interaction terms pertaining175

to participants) and the total variance [40]. For this analysis, the runs were not concatenated.176

Finally, we applied Fisher’s z-transformation to both edge similarity and ICC and computed the correlation be-177

tween them. To reduce the number of comparisons, we only investigated the most relevant comparisons: full cor-178

relation vs. lagged correlation, partial correlation vs. multivariate AR1, and partial correlation vs. multivariate AR1179

without self-connections. Since we estimated test-retest reliability separately for each method in a pair, there were180

two correlations for each pair of methods. We averaged both correlations for each comparison.181

2.6. Brain-behavior associations182

To compare the brain-behavior associations obtained by different FC measures, we used 58 behavioral measures183

(see Table S1) that included cognitive, emotion and personality measures and were previously used in other studies184

[16, 41, 42].185

2.6.1. Variance component model186

We computed brain-behavior associations using the multivariate variance component model (VCM), developed by187

Ge et al. [43] to estimate heritability. The use of the variance component model to estimate associations between the188

brain and behavior was introduced by Liégeois et al. [16]. We adopted the same approach to allow direct comparison189

with the results reported by Liégeois et al. [16]. Furthermore, the use of VCM allows an easy calculation of the190

explained variance for single traits. The model has the form191
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Y = C + E (9)

where Y represents the N × P matrix (number of subjects × number of traits) of behavioral measures, C represents192

shared effects and E represents unique effects. The model has the following assumptions:193

Vec(C) ∼ N (Σc ⊗ F)

Vec(E) ∼ N (Σe ⊗ I)
(10)

where Vec(·) is the matrix vectorization operator, ⊗ is the Kronecker product operator, and I is the identity matrix.194

F represents N × N matrix of similarities between participants, which were estimated with the Pearson’s correlation195

coefficient. Σc and Σe are P × P matrices, which are being estimated. The total variance explained is computed as:196

M =
Tr (Σc)

Tr (Σc) + Tr (Σe)
(11)

where Tr(·) represents the trace operator, and:197

Mi =
Σc(i, i)

Σc(i, i) + Σe(i, i)
(12)

for single traits. M is analogous to the concept of heritability and can be interpreted as the amount of variance in198

behavior that can be explained with the variance in the connectome.199

Before computing VCM, we imputed missing behavioral data using the R package missForest [44]. There were200

0.59% missing data points overall. Following the procedure of Liégeois et al. [16], we applied quantile normalization201

to behavioral data. To remove potential confounding factors, we regressed age, gender, race, education, and movement202

(mean FD) using the procedure described in Ge et al. [45, 43].203

We estimated M for each connectivity method separately. We compared patterns of explained variances by corre-204

lating the variance explained at the trait level between all methods.205

Since the results of VCM are based on similarities between participants (matrix F), we tested the extent to which206

the similarities between participants, and thus the results of VCM, depend on the levels of noise in the data. To this207

end, we performed a simulation in which we added random Gaussian noise (mean 0, standard deviation 0–1 in steps208

of 0.1) to the standardized time series. To reduce complexity, we performed this analysis only for static FC methods.209

2.6.2. Canonical correlation analysis210

Since VCM is rarely used to study brain-behavior associations, we repeated the analysis using canonical cor-211

relation (CCA). CCA is used to reveal the low-dimensional structure of the shared variability between two sets of212

variables (in our case, connectivity and behavior).213

Let X and Y be N × P and N ×Q matrices (N is the number of observations, P and Q are the number of variables),214

respectively. CCA aims to find a solution to the following set of equations:215

U = XA

V = YB
(13)

where UN×K and VN×K are matrices of canonical scores (or variables) and AP×K and BQ×K are matrices of canonical216

weights. The solution to the above set of equations is found under the constraint U′U = V ′V = I. The columns of217

the U and V matrices tell us the relative position of each observation in the canonical variables. In contrast, columns218

of the A and B matrices contain information on the relative contribution of each variable to each of the canonical219

variables. Canonical correlations are correlations between columns of U and V . Additionally, one can calculate220

canonical loadings - the correlations between original data matrices and canonical scores. Canonical variables are221

ordered in descending order according to the size of canonical correlations. Usually, only the first or first few canonical222

components are of interest, as these explain most of the shared variance. Mathematical details on CCA can be found223

elsewhere [e.g. 46, 47, 48, 49, 50].224
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We performed the CCA using the GEMMR package [47]. To prepare the data for CCA, we followed the procedure225

by Smith et al. [51], including deconfouding using the same variables as for VCM. Prior to CCA, we reduced the226

dimensionality of both sets of variables to 20 components using principal component analysis (PCA). This number227

was chosen to optimize the number of samples per feature based on the recommendation by Helmer et al. [47] under228

the assumption of a real first canonical correlation r = .30. We performed a 5-fold cross-validation to assess the229

generalizability of the model. We only examined the first canonical correlation since it was shown that the first230

canonical variable explains the most shared variance, and it was the only statistically significant canonical variable in231

a previous study [51].232

We repeated the CCA for all FC methods. The similarities between the methods were assessed by comparing233

the first canonical correlation obtained in the training and the test set. Next, we correlated the canonical weights and234

loadings related to behavior.235

2.6.3. Control analyses236

Participants in the HCP dataset are genetically and environmentally related, which can inflate between-subject237

similarities and influence the results related to interindividual differences. Therefore, we repeated all analyses related238

to brain-behavior associations on two subsamples of genetically unrelated participants (sample sizes 384 and 339).239

2.7. Simulation240

We hypothesized that dynamic and static FC estimates would be similar due to autocorrelation of fMRI time241

series, which is partly the result of convolution of neural time series with HRF. In addition, an important source of242

similarities (or differences) between FC results obtained by different methods could be due to similar (or different)243

effects of the amount of noise and the amount of available data on the resulting FC matrices. To evaluate the impact of244

convolution with HRF, signal quality, and the amount of data on estimated similarities between results using different245

FC measures, we used numerical simulations of data with known covariance structure. We generated multivariate time246

series of events for 1000 ”participants.” Events were sampled from a multivariate normal distribution with a mean of247

zero. The covariances differed for each participant and were taken from experimental data parcellated using Schaefer’s248

local-global parcellation with 100 regions [52]. We used this parcellation instead of MMP to reduce the computational249

burden and the size of the generated data. Events were not autocorrelated. The generated events were then convolved250

with HRF using the SimTB toolbox [53]. TR was set to 0.72 s (the same as in HCP data), and HRF parameters were251

set equal for all participants and regions (delay of response: 6, delay of the undershoot: 15, dispersion of the response:252

1, dispersion of the undershoot: 1, the ratio of response to the undershoot: 3, onset in seconds: 0, length of the kernel253

in seconds: 32). The resulting time series were standardized.254

To estimate the effects of signal quality on FC estimates and on similarities between FC methods, we added255

Gaussian noise with zero mean and standard deviation ranging from 0 to 1 standard deviation in steps of 0.1. This256

translates to SNR from 10 to 1 (excluding time series without noise, which has infinite SNR). We varied the time-series257

durations from 500 to 10000 data points in steps of 500.258

The first step in the analysis was to establish the ground truth for each method, that is, the results that would be259

obtained in an ideal situation. We defined the ground truth as FC at maximum length and without noise in the event260

time series. Note that because events were not autocorrelated, the ground truth for all autoregressive FC methods was261

a matrix with all zero entries.262

Next, we compared results using different FC methods in the same manner as for experimental data for all noise263

level and signal length combinations on prewhitened and non-prewhitened data. We computed (1) correlations be-264

tween ground truth FC matrices and simulated FC matrices for all FC methods and (2) correlations between FC esti-265

mates obtained using different methods. To reduce the number of comparisons, we only investigated the most relevant266

comparisons: full correlation vs. lagged correlation, partial correlation vs. multivariate AR, and partial correlation vs.267

multivariate AR without self-connections.268
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Figure 2: Correlations between FC estimates obtained using different FC methods. We calculated the similarities between FC estimates
obtained using different FC methods (i) by averaging connectivity matrices across participants and then computing correlations between them
(correlation between group-level FC, bottom right triangle), and (ii) by computing correlations between the FC estimates for each participant
separately and then averaging across participants (correlation between individual-level FC, top left triangle).
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3. Results269

3.1. Experimental data270

3.1.1. Similarities between FC estimates obtained using different methods271

To address our research questions, we first focused on estimating similarities between the results obtained with272

different FC methods using empirical data. Comparison of group-level FC matrices showed very high correlations273

between FC results obtained using bivariate methods (r ⩾ .87, Figure 2), as well as between results obtained using274

multivariate methods (correlation between partial correlation [AR1 prewhitened] and multivariate AR model: r = .80).275

In contrast, the correlations between the bivariate and multivariate FC estimates were lower and ranged from .36 to276

.65.277

When comparing and pooling results based on individual-level FC matrices, the mean correlation between FC278

matrices obtained using different methods was lower. The correlations between the bivariate methods were still279

very high (correlation between lagged and full correlation: r = .99, correlation between prewhitened lagged and280

prewhitened full correlation: r = .83), while the correlations between the multivariate methods were lower on average.281

In particular, the correlation between the partial correlation (AR1 prewhitened) and the multivariate AR model was282

.05, compared to .80 between the group-level FC matrices.283

The correlations between the results obtained using static and dynamic FC methods were smaller after prewhiten-284

ing, with the greatest differences when comparing individual-level FC matrices obtained using multivariate methods.285

Specifically, the correlation between the coefficients of the multivariate AR model and the partial correlation decreased286

from .40 to .05 in the individual-level FC and from .86 to .80 in the group-level FC. The order of prewhitening had287

minimal effect on the correlations between the methods (Figure S3), except for the comparison of the results obtained288

using the multivariate AR model and the partial correlation at the individual-level FC, where the correlations increased289

from .05 to .12 (r = .15–.22 for the multivariate AR model without self-connections).290

The correlations between the FC results obtained using different methods were slightly higher when the analysis291

was repeated on 200 participants with the highest data quality (Figure S4).292

3.1.2. Correlation between edge similarity and test-retest reliability293

We computed edge similarity between FC methods as a correlation over subjects at every edge for selected pairs294

of FC methods. We estimated test-retest reliability at every edge for each method separately. Next, we computed the295

correlation between edge similarity and test-retest reliability for each of selected pairs of FC methods. The correlation296

was moderate to high for pairs of multivariate methods (r = .47–.66) and high for pairs of bivariate methods (r = .55–297

.79, Figure 3)). Prewhitening lowered the correlations..298

3.1.3. Brain-behavior associations estimated using variance component model299

Next, we compared patterns of brain-behavior associations derived from different FC methods. The results of300

the VCM show that bivariate methods explain about 30 percentage points less variance in behavior than multivariate301

methods (Figure 4A,B). Furthermore, the similarity of patterns of variance explained over behavioral measures was302

high between static and dynamic FC methods using the same number of variables, i.e., between full correlation and303

lagged correlation (r = 1.00), and between partial correlation and multivariate AR models (r = .83–.86, Figure 4A,C).304

The pattern of similarities in behavioral variance explained between the FC methods was comparable to the direct305

comparison of the FC matrices (Figure 4C, cf. Figure 2). Patterns of similarities between the FC methods were similar306

when the analysis was performed on subsamples of unrelated participants (Figure S5); however, the differences in total307

variance explained between the bivariate and multivariate methods were smaller.308

Simulation of the effects of noise in which we added various levels of noise to the fMRI time series showed that309

noise affects estimates of the behavioral variance explained by the connectome. In particular, the mean of the variance310

explained increased with increasing noise for both the full correlation and the partial correlation, but the increase was311

more pronounced in the case of partial correlations (Figure 5B). This pattern was not equal for all behavioral variables312

– for some, the variance explained decreased and for others, it increased (Figure 5A). On the other hand, the similarity313

between the participants decreased with increasing noise (Figure 5C). This effect was more pronounced for partial314

correlation compared to full correlation.315
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Figure 3: Correlations between edge similarity and test-retest reliability for selected pair of FC methods.

3.1.4. Brain-behavior associations estimated using canonical correlation analysis316

The results of the similarity between the FC methods when investigating brain-behavior associations using CCA317

were comparable to those obtained using VCM. In particular, the correlations between the weights or loadings on318

behavioral measures between the FC methods were high when comparing the methods that use the same number319

of variables for the estimation of a single edge (r > .80) (Figure 6C). On the other hand, there was no discernible320

difference between dynamic and static FC estimates.321

The first canonical correlation was around .70 in the training sample for the bivariate methods and around .50 for322

the multivariate methods (Figure 6B). Cross-validated R was much lower, around .40 for bivariate methods and around323

0.05 for multivariate methods. Although these results differ from VCM (where multivariate methods explained more324

variance), the pattern of similarity between FC methods is the same.325

The pattern of results was similar for the subsamples of unrelated participants, but the differences between the326

training and test sets were larger (Figure S6). The large difference between the performance of the model in training327

and test sets is indicative of overfitting, which is characteristic of CCA with a small number of samples per feature328

[47].329

3.2. Evaluation of similarities between methods on simulated data330

3.2.1. Relationship between FC estimates and ground truth331

Correlations of FC estimates with ground truth were greater than 0.8 for full correlation and between 0.25 and332

0.9 for partial correlation (Figure 7). Prewhitening decreased the correlation with ground truth. This effect was333

more pronounced for partial correlations. Longer time series also had higher correlations with ground truth (the334

difference was up to .5 for partial correlation and up to .3 for full correlation). The correlation with ground truth335

generally decreased with decreasing SNR (increasing noise), but in the case of partial correlation, these effects were336

not monotonic. In particular, for short time series, correlation with ground truth increased with low to moderate337

noise. Also in the case of partial correlation, prewhitening increased the correlation with ground truth at low noise. In338

contrast, prewhitening decreased the correlation with ground truth in the presence of high noise compared to the case339

without prewhitening.340

3.2.2. Similarity between FC estimates341

The connectivity matrices computed on the simulated data were compared in the same manner as for the experi-342

mental data. For brevity, we focus only on the three most relevant comparisons (lagged correlation vs. full correlation,343

multivariate AR model vs. partial correlation, multivariate AR model without self-connections vs. partial correlation).344
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Figure 4: Results of variance component model for brain-behavior associations. A. Variance explained for individual traits estimated with
different connectivity methods – traits are ordered according to the mean variance explained across connectivity methods. B. Mean variance
explained. C. Similarities of explained variance patterns between connectivity methods.

Estimates based on lagged and full correlation were highly similar (r ≈ 1 in the case without prewhitening) for all345

levels of noise and signal length (Figure 7). The correlation between FC estimates was reduced for prewhitened data,346

especially for low signal lengths (< 1000 frames).347
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Figure 5: Results of variance component model for brain-behavior associations on data with added noise. FC was estimated using Pear-
sons’/full correlation and partial correlation after adding various levels of random Gaussian noise to experimental time series. A. Variance explained
for individual traits estimated with different connectivity methods. Traits are ordered according to the mean variance explained across connectivity
methods. B. Mean variance explained. Error bars represent jackknife standard deviation. C. Mean similarity between participants. Error bars
represent standard deviation.

The FC estimates of the multivariate AR model did not correlate with the FC estimates based on partial correlation348

when the noise was low (r = 0 for zero noise). However, with increasing noise and increasing signal length, FC349

estimates became very similar (up to r = .95), especially in the case without prewhitening and for long signal lengths.350

Conversely, FC estimates based on a multivariate AR model without self-connections showed a high similarity351

to the FC estimates based on partial correlation at a low noise level (r > .95). For prewhitened data, there was a352

nonmonotonic relationship between FC estimates with increasing noise, but overall correlations remained high in353
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Figure 6: Results of canonical correlation analysis for brain-behavior associations. A. CCA loadings. B. First canonical correlation on test and
training set, C. Correlations between canonical loadings and weights across functional connectivity methods for first canonical components.

conditions with high signal length.354

4. Discussion355

In this study, we addressed the question of whether the temporal order of the BOLD fMRI time series contains356

information important for the study of the fMRI brain functional connectivity. To this end, we compared FC estimates357
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Figure 7: Results of simulation. A. Ground truth matrices (mean over participants). Note that all ground truth autoregressive model coefficients
equal zero, since the simulated events were not autocorrelated. B. Correlation between the ground truth and the simulated data for all FC methods
and their relationship to the noise level and signal length. C. Correlations between selected pairs of FC methods as a function of noise and signal
length for simulated data. Note that the data in the second row related to multivariate AR models were not prewhitened before computation because
the self-connections act as prewhitening.

between methods that differed in their sensitivity to temporal order, i.e., static and dynamic measures of FC. We also358

compared methods that differed in the number of variables considered in estimating the connectivity of individual359

edges, i.e., bivariate and multivariate. Our results suggest that dynamic FC connectivity methods provide similar con-360

nectivity estimates as static FC methods of the same type (bivariate or multivariate), whereas bivariate and multivariate361

methods differ in terms of the explanation of individual differences in behavior.362

4.1. Dynamic functional connectomes represent information similar to static functional connectomes363

By directly comparing the FC matrices, we have shown that the estimates of the dynamic FC represent information364

similar to the estimates of the static FC. The similarity between estimates of FC, obtained by different methods,365

depended on several factors. First, there were high correlations between the FC estimates when the same number of366

variables was considered.367

Second, similarities between connectomes were greater when averages were compared at the group level than368

when correlations were aggregated across individual-level FC matrices. We believe that the differences between the369

group- and individual-level cases are mainly due to better SNR in the case of the group-level data. Two observations370

support this conclusion: first, similarities in FC estimates between methods were greater for participants with the371

highest data quality, and this effect was more pronounced when comparing individual-level matrices than at the group372

level. Second, edges with higher test-retest reliability (an indicator of SNR) were more similar between FC estimates373

obtained by different methods. Thus, we can conclude that SNR influences the similarity between FC estimates.374

Using simulation, we tested the similarities between FC as a function of noise and signal length. We have shown375

that the dynamic FC estimates resemble static FC estimates even in the absence of true lagged correlation. The376
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similarity between the multivariate AR1 model and partial correlations can be partially explained by the fact that the377

multivariate AR1 coefficients are a product of inverse covariance and lagged covariance matrix.378

We also found a high similarity between the full and the lagged correlation. Therefore, the similarity between379

the multivariate AR1 model and the partial correlation cannot be explained solely by the inclusion of the precision380

matrix in the estimation of the coefficients of the multivariate AR model. Rather, the lagged covariance matrix also381

contributes to this effect.382

We hypothesized that the similarities between the dynamic and static FC estimates originate from autocorrelation383

of the fMRI time series. We predicted that the similarities between the dynamic and static FC estimates would be at384

least as large as the average autocorrelation of the fMRI time series and that this similarity would be reduced after385

prewhitening. Both predictions were confirmed in experimental and simulated data. However, even when autocorre-386

lation was reduced to virtually zero at all lags (this occurred at prewhitening order 3), similarities between estimates387

based on dynamic and static FC models remained high for group-level matrices and simulated data. This suggests that388

prewhitening (or even the presence of noise that reduces autocorrelation) does not completely eliminate the influence389

of convolution with HRF on the estimation of dynamic FC.390

We conclude that even if AR models represent information that goes beyond the static FC, this cannot be claimed391

on the basis of a direct comparison of dynamic and static FC estimates. One of the main differences between static392

and dynamic FC methods is the ability of dynamic FC methods to estimate the directionality of connections [7]. FC393

matrices based on dynamic FC methods are therefore asymmetric. To allow comparisons between static and dynamic394

FC matrices, the former were symmetrized and the information about the directionality of the connections was lost.395

To test the possibility that there is specific information in the dynamic FC estimates that could not be detected in a396

direct comparison of the FC matrices, we additionally compared the patterns of brain-behavior associations between397

FC methods.398

4.2. Dynamic FC models do not explain additional variance in behavior over static FC models399

We used the variance component model (VCM) and canonical correlation analysis (CCA) to estimate brain-400

behavior associations. The results of both methods showed that there were no large differences between the dynamic401

and static FC estimates in the patterns of associations with behavior. However, we found large differences between402

the bivariate and multivariate methods. These differences were specific to the method used to estimate brain-behavior403

associations.404

In the case of CCA, the canonical correlations were higher for bivariate methods than for multivariate methods.405

The cross-validated canonical correlations were around 0 for multivariate methods, indicating that the results were not406

generalizable. In contrast, the difference between the canonical correlations in the training and test sets was relatively407

small for the bivariate methods.408

In the case of VCM, the multivariate methods explained on average about 30 percentage points more variance in409

behavior than the bivariate methods. To better understand this observation, we examined the impact of inter-subject410

similarities on VCM results. To this end, we added random noise to the data, reducing the similarities between411

subjects. Interestingly, full correlation and partial correlation explained more variance in behavior on average when412

we added random noise to the data. This may sound counterintuitive, but keep in mind that VCM was developed413

to estimate heritability [43], that is, the proportion of variance in phenotype that can be explained by variance in414

genotype. Holding the environment constant, higher genetic similarity would reduce the estimate of heritability. If415

all individuals within a sample had the same genotype, heritability would be zero because no variance in phenotype416

could be explained by variance in genotype. The input to VCM is a between-subject similarity matrix (usually a417

genetic similarity matrix or, in our case, a connectome similarity matrix). Participants were more similar when we418

used full correlation as an estimate of FC compared to partial correlation. This explains the observation that the partial419

correlation explained more variance in behavior.420

Our second simulation showed that the partial correlation estimates are less stable and more affected by noise421

and signal length. This explains the apparent discrepancy between VCM and CCA. Our results show that when we422

add noise to the experimental data, participants become more dissimilar and, in the case of VCM, the proportion of423

behavioral variance explained by the variance in the connectome becomes larger. In the case of CCA, lower SNR leads424

to lower and less generalizable canonical correlations for multivariate FC methods. For this reason, we recommend425

that great care be taken when estimating brain-behavior associations with measures that are sensitive to noise.426
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Liégeois et al. [16] have used VCM to compare brain-behavior associations between correlation and the multi-427

variate AR model. They concluded that the dynamic FC explained variance in behavior beyond that explained by428

static FC. We have shown that these results are confounded by the mixing of two orthogonal properties of the FC429

methods: sensitivity to the temporal order of time points and the number of regions used to estimate a single edge.430

The difference between the explanatory value of the multivariate AR model and the full correlation is better explained431

by the difference between the multivariate and bivariate nature of the method than by the sensitivity to the temporal432

order of the time points.433

4.3. Limitations and future directions434

A number of limitations should be considered in drawing conclusions from our study. First, in our simulation,435

we generated noise using a multivariate normal distribution. We could have used more advanced noise modeling that436

incorporated specific noise components such as drift, moving average, physiological noise, and system noise [54].437

Unlike white noise, these noise sources are autocorrelated and therefore could affect the (dynamic) FC estimates. We438

wanted to keep the model simple and interpretable. Even with the simplest noise model without autocorrelation in439

neural time series, we showed that AR models can be affected by convolution of the neural signal with HRF and that440

consequently the dynamic FC estimates resemble the static FC. However, more advanced noise modeling could be441

used for a more realistic assessment of the sources of similarities between different FC methods.442

Similarly, we used a very simple procedure, prewhitening, to reduce autocorrelation. Other methods could also443

be used to reduce autocorrelation, such as advanced physiological modeling [55, 56] or deconvolution [57]. Decon-444

volution can improve dynamic [10] and static FC estimates [57]. However, Seth et al. [11] have shown that sufficient445

sampling rate is more important for valid dynamic FC estimates. Unlike fMRI, electrophysiological measurements446

such as EEG and MEG have sufficient sampling rates and do not require deconvolution, so they could be used to study447

the relationship between static and dynamic FC [58].448

4.4. Conclusions449

Our results show that the dynamic FC estimates represent information about connectivity that is broadly similar450

to the static FC. Moreover, we have shown that the similarity between dynamic and static FC is due, at least in part,451

to the convolution of neural time series with HRF. In contrast, we observed lower similarities in the patterns of FC452

estimates between multivariate and bivariate methods. Multivariate methods were more sensitive to noise and CCA453

models based on multivariate methods were less generalizable.454

Although dynamic FC models are useful as a model for directed FC or for modeling the evolution of neural time455

series over time [15], our results suggest that estimates of the functional connectome do not change when temporal456

information is taken into account. Dynamic FC estimates also show no advantage or difference from static FC in terms457

of brain-behavior associations.458
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10. Appendix486

10.1. Motion scrubbing487

Motion scrubbing is usually performed by removing bad frames before calculating the correlation or related mea-488

sure of static FC. This is not appropriate in the case of dynamic FC or autocorrelation, since removing time points489

disrupts the autocorrelation structure of time series.490

To overcome this limitation, a frame was considered bad if it was bad in either original or lagged time series.491

Frames at transition between concatenated time series (last frame in the first time series and first frame in the next492

time series) were also marked as bad in this case.493

In the case of autoregressive models, transitions between runs (last frame of the previous run, first frame of the494

next run) were excluded in the same manner as bad frames.495
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Figure S1: Autocorrelation function of experimental data as a function of prewhitening order. The mean autocorrelation function was
computed over all participants and regions; the ribbons represent the standard deviation. Prewhitening drastically reduced autocorrelation even at
low orders. Interestingly, prewhitening at orders 1 and 2 reversed the sign of autocorrelation in low lags.
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Figure S2: The autocorrelation function of simulated data as a function of prewhitening order and noise. The mean autocorrelation function
was computed over all participants and regions. In general, noise and prewhitening reduced absolute autocorrelation. The shape of the autocorre-
lation function varied as a function of noise and prewhitening. In case without prewhitening, autocorrelation monotonically decreased and reached
0 at lag 8. After prewhitening, autocorrelation varied between positive and negative values, and this was most pronounced in cases without noise.
The autocorrelation function was more similar to the experimental data in cases with low levels of noise.
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Figure S3: Correlations between connectivity methods. Same as in Figure 2 but includes all orders of prewhitening.
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Figure S4: Correlations between connectivity methods on 200 participants with highest quality data.
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Figure S5: Results of variance component model for brain-behavior associations on subsamples of unrelated participants. (A) Variance
explained for individual traits estimated with different connectivity methods, (B) mean variance explained, and (C) similarities of explained variance
patterns between connectivity methods. The traits are ordered according to the mean variance explained across connectivity methods. The same as
in Figure 4 but in subsamples of unrelated participants.
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Figure S6: Results of canonical correlation analysis for brain-behavior associations on subsamples of unrelated participants. (A,C) First
canonical correlation on test and training set in the first (A, n = 384) and second subsample (C, n = 339). (B,D) Correlations between canonical
loadings and weights across FC methods for the first canonical components on the first (B) and second (D) subsample.
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Figure S7: Correlation between ground truth and simulated data for all FC methods in association ith noise and signal length. Same as in
Figure 7B but includes all orders of prewhitening.
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Figure S8: Correlation between selected pairs of FC methods as a function of noise and signal length on simulated data. Same as in Figure 7C
but includes all prewhitening orders.
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HCP Field Friendly Name HCP Field Friendly Name
PicSeq Unadj Visual Episodic Memory WM Task Acc Working Memory (N-back)
CardSort Unadj Cognitive Flexibility NEOFAC A Agreeableness (NEO)
Flanker Unadj Inhibition (Flanker Task) NEOFAC O Openness (NEO)
PMAT24 A CR Fluid Intelligence NEOFAC C Conscientiousness (NEO)
ReadEng Unadj Vocabulary (Pronunciation) NEOFAC N Neuroticism (NEO)
PicVocab Unadj Vocabulary (Picture Matching) NEOFAC E Extroversion (NEO)
ProcSpeed Unadj Processing Speed ER40 CR Emotion Recog. - Total
DDisc AUC 40K Delay Discounting ER40ANG Emotion Recog. - Anger
VSPLOT TC Spatial Orientation ER40FEAR Emotion Recog. - Fear
SCPT SEN Sustained Attention - Sens. ER40HAP Emotion Recog. - Happiness
SCPT SPEC Sustained Attention - Spec. ER40NOE Emotion Recog. - Neutral
IWRD TOT Verbal Episodic Memory ER40SAD Emotion Recog. - Sadness
ListSort Unadj Working Memory (List Sorting) AngAffect Unadj Anger - Affect
MMSE Score Cognitive Status (MMSE) AngHostil Unadj Anger - Hostility
PSQI Score Sleep Quality AngAggr Unadj Anger - Aggressiveness
Endurance Unadj Walking Endurance FearAffect Unadj Fear - Affect
GaitSpeed Comp Walking Speed FearSomat Unadj Fear - Somatic Arousal
Dexterity Unadj Dexterity Sadness Unadj Sadness
Strength Unadj Grip Strength LifeSatisf Unadj Life Satisfaction
Odor Unadj Odor Identification MeanPurp Unadj Meaning of Life
PainInterf Tscore Pain Interference Survey PosAffect Unadj Positive Affect
Taste Unadj Taste Intensity Friendship Unadj Friendship
Mars Final Contrast Sensitivity Loneliness Unadj Loneliness
Emotion Task Face Acc Emotion Face Matching PercHostil Unadj Perceived Hostility
Language Task Math Avg Difficulty Level Arithmetic PercReject Unadj Perceived Rejection
Language Task Story Avg Difficulty Level Story Comprehension EmotSupp Unadj Emotional Support
Relational Task Acc Relational Processing InstruSupp Unadj Instrumental Support
Social Task Perc Random Social Cognition - Random PercStress Unadj Perceived Stress
Social Task Perc TOM Social Cognition - Interaction SelfEff Unadj Self-Efficacy

Table S1: Behavioral measures.
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