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Abstract

The rate of glucose uptake dramatically increases in cancer cells even in the presence of

oxygen and fully functioning mitochondria. Cancer cells produce ATP by glycolysis rather

than oxidative phosphorylation under aerobic conditions, a process termed as the “Warburg

effect.” In the present study, we treated canine melanoma cells with the glucose analog 2-

deoxy-D-glucose (2-DG) and investigated its effect on cell growth. 2-DG attenuated cell

growth in a time- and dose-dependent manner. Cell growth was also inhibited following

treatment with the glucose transporter (GLUT) inhibitor WZB-117. The treatment of 2-DG

and WZB-117 attenuated the glucose consumption, lactate secretion and glucose uptake of

the cells. The mRNA expression of the subtypes of GLUT was examined and GLUT1 and

GLUT3 were found to be expressed in melanoma cells. The growth, glucose consumption

and lactate secretion of melanoma cells transfected with siRNAs of specific for GLUT1 and

GLUT3 was suppressed. These findings suggest that glucose uptake via GLUT1 and

GLUT3 plays a crucial role for the growth of canine melanoma cells.

Introduction

Glucose is a main source of energy and carbon for mammalian cells. It is taken up by the cells

via glucose transporters (GLUTs) and metabolized to pyruvate in the cytosol via glycolysis. In

normal cells, glycolysis-derived pyruvate is predominantly imported into the mitochondrial

matrix where it is oxidized to acetyl coenzyme A (CoA) by the pyruvate dehydrogenase com-

plex. Acetyl CoA is subsequently incorporated into the tricarboxylic acid cycle and undergoes

oxidative phosphorylation. However, the glucose metabolism of cancer cells is different from

that of normal cells. Cancer cells show increased glucose uptake and glycolysis. Following gly-

colysis, most pyruvate is converted to lactate in the cytoplasm by the action of lactate dehydro-

genase and is secreted. These alterations are evident even in the presence of oxygen to support
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mitochondrial respiration. This metabolic phenomenon is termed as aerobic glycolysis or the

“Warburg effect” [1–3].

The transport of glucose across the plasma membrane is considered as a key rate-limiting

step for glucose metabolism [4–7]. Two distinct transporter families are responsible for trans-

porting glucose into the cell, namely, the sodium-coupled glucose co-transporter (SGLT) and

the facilitative GLUT proteins. SGLTs are secondary active transporters that drive the trans-

port of glucose and galactose using the sodium gradient across the cell membrane. In contrast,

GLUTs are passive transporters involved in the transport of hexoses such as glucose and other

substrates using either a chemical or an electrochemical gradient [4, 6].

There are 14 members of the mammalian GLUT family that are subdivided into three clas-

ses based on their protein sequences and structural similarities. Class I comprises GLUT1,

GLUT2, GLUT3, GLUT4, and GLUT14, and class II is composed of GLUT5, GLUT7, GLUT9,

and GLUT11. Class III transporters include GLUT6, GLUT8, GLUT10, GLUT12, and

GLUT13 [6, 7]. Class I GLUT1-GLUT4 are the most studied and established members known

for their role in glucose transport in various tissues and cell types [5, 6].

The upregulation in the expression of class I GLUTs has been demonstrated in different

cancers [8–11], whereas class II and III GLUTs are not well studied. In human malignant mel-

anoma, the expression of class I GLUTs such as GLUT1 and GLUT3 has been reported to be

upregulated and correlated with clinical stages [12, 13]. Additionally, the expression of GLUT1

may predict hypoxia and glycolysis in the tumor tissue as well as the patient outcome [13].

These findings suggest that GLUTs may serve as promising therapeutic targets for melanoma

treatment.

Oral malignant melanoma is a naturally occurring cancer in dogs [14]. The canine mela-

noma is, in general, aggressive, extremely metastatic, and highly associated with poor progno-

sis. Given its tendency to behave in a biologically aggressive manner similar to that observed in

human melanoma, canine melanoma has been considered as a suitable disease model of

human cancers [15–17].

In the present study, we investigated the effect of glucose metabolism on the growth of

canine melanoma cells. We demonstrated that the suppression of glucose metabolism resulted

in the inhibition of cell growth and that class I GLUT subtypes GLUT1 and GLUT3 were

involved in the growth of canine melanoma cells.

Materials and methods

Materials

Canine melanoma cells (MCM-N1 cell line; 13-year-old male dog; chromosome number,

2n = 74) were purchased from DS Pharma Biomedical Co., Ltd. (Osaka, Japan). Canine mela-

noma cell lines (KMeC and CMec-1 [18–20]) were kindly provided by Dr. Takayuki Nakagawa

(Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The

University of Tokyo). Lipofectamine 2000 and TRIzol were obtained from Life Technologies

Co. (Carlsbad, CA). PrimeScript RT Master Mix and Ex Taq were supplied by TaKaRa Bio

Inc. (Shiga, Japan). Rabbit monoclonal anti-GLUT1 (EPR3915) and anti-GLUT3 (EPR10508

(N)) antibodies were obtained from Abcam (Cambridge, UK), and mouse monoclonal anti-

mouse β-actin antibody (AC74) and GLUT1, GLUT3, and scramble small-interfering RNAs

(siRNAs) were procured from Sigma-Aldrich Inc. (St Louis, MO). Horseradish peroxidase

(HRP)-conjugated anti-rabbit IgG and anti-mouse IgG antibodies, ECL Western Blotting

Analysis System, and ImageQuant LAS 4000 mini were supplied by GE Healthcare (Piscat-

away, NJ). Mini-PROTEAN TGX gel and polyvinylidene difluoride (PVDF) membranes were

obtained from Bio-Rad (Hercules, CA), and Block Ace and complete mini EDTA-free protease
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inhibitor mixture were purchased from Roche (Mannheim, Germany). The Dulbecco’s modi-

fied Eagle medium with 1 g/L glucose (DMEM-LG), phenylmethanesulfonyl fluoride (PMSF),

sodium fluoride, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were

obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan), and 3-(4,5-dimethyl-

2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay reagent, glucose assay kit-

WST, lactate assay kit-WST from Dojindo (Tokyo, Japan). 2-(N-(7-Nitrobenz-2-oxa-1,3-dia-

zol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) was purchased from Peptide institute Inc (Osaka,

Japan). StatMate IV was purchased from ATMS (Tokyo, Japan).

Cell culture

Canine melanoma cells were maintained in static cultures in DMEM-LG supplemented with

10% fetal bovine serum (FBS) in an incubator with 5% CO2 at 37˚C. The medium was replaced

with fresh medium once a week [21]. After reaching 90%–95% confluency, the cells were har-

vested with 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA) and suspended in the

CELLBANKER 1 plus medium at a density of 2 × 106 cells/500 μL for cryopreservation. Cell

suspensions (500 μL) were placed in sterilized serum tubes, which were stored in a freezing

vessel (BICELL) and cryopreserved at −80˚C. Before experiments, the tubes were removed

from the BICELL vessel and immersed in a water bath at 37˚C. Thawed cell suspensions were

transferred into centrifuge tubes containing DMEM-LG with 10% FBS and centrifuged at 300

×g for 3 min. Cell pellets obtained were resuspended in DMEM-LG with 10% FBS and trans-

ferred into 75-cm2 culture flasks. Static culture was then carried out under the same condition

as prior to cryopreservation. Cells were harvested using 0.25% trypsin-EDTA once they

reached approximately 90% confluency. The collected cells were seeded at a density of 1 × 106/

75-cm2 culture flask.

MTT assay

Cells were seeded at a density of 3,000 cells/200 μL in each well of a 96-well plate. MTT assay

reagent was dissolved in phosphate-buffered saline (PBS) at a concentration of 5 mg/mL, and

20 μL of the reagent was incubated with cells for 1 h in an incubator with 5% CO2 at 37˚C. Fol-

lowing incubation, PBS (100 μL) was added to each well. After 1 min, the supernatant was dis-

carded and the MTT formazan crystals were dissolved in 200 μL of 0.04 M hydrochloric acid

(HCl) in 2-propanol. The optimal density (O.D.) was detected by a microplate reader (Fluoros-

kan Ascent FL, Thermo Fisher Scientific K.K., Kanagawa, Japan) at 570-nm wavelength.

Glucose and lactate assay

Cells were seeded at a density of 3 × 105 cells/mL in each well of a 6-well plate. The cells were

stimulated with 5 mM 2-deoxy-D-glucose (2-DG) or 60 μM WZB-117 for 72 h and culture

supernatants were collected. To measure culture supernatant glucose concentrations, we used

an assay kit according to the kit instructions.

2-NBDG uptake assay

Cells were seeded at a density of 3 × 105 cells/mL in 35-mm glass-base dish. The cells were

stimulated with 5 mM 2-deoxy-D-glucose (2-DG) or 60 μM WZB-117 for 24 h. 2-NBDG was

dissolved in phosphate-buffered saline (PBS) with 10% FBS at a concentration of 50 μM, and 1

mL of the 2-NBDG reagent was incubated with the cells for 30 min in an incubator with 5%

CO2 at 37˚C. Following incubation, the cells were washed with PBS and fixed with 1 mL of 4%
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PFA in PBS to each well for 15 min. The fluorescence signal was visualized using a confocal

laser scanning microscope (LSM-510; Carl Zeiss AG, Oberkochen, Germany).

Real-Time Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from canine melanoma cells using the TRIzol1 reagent (Life Technol-

ogies Co.) according to the manufacturer’s instructions. RNA concentration was spectrophoto-

metrically measured by reading the absorbance at 260 nm/280 nm. First-strand cDNA synthesis

was carried out using 500 ng of the total RNA and the PrimeScript RT Master Mix (TaKaRa Bio

Inc., Shiga, Japan). PCR was performed using 2 μL of first-strand cDNA in a 10-μL total reac-

tion volume with primers specific for GLUT1, GLUT2, GLUT3, and GLUT4 (Table 1) and Ex

Taq. PCR was conducted on an iCycler (Bio-Rad, Hercules, CA) as previously reported [18–29].

The thermal cycler was programmed for initial denaturation at 94˚C for 2 min, followed by 25

cycles of denaturation at 94˚C for 30 s, primer annealing at 55˚C for 30 s, and primer extension

at 72˚C for 30 s. PCR products were separated using 2% agarose gel electrophoresis, stained

with ethidium bromide, and visualized under UV light. The amplification of TATA box-bind-

ing protein (TBP) from the same amount of cDNA was applied as an endogenous control.

Western blotting

Western blotting was performed as per methods reported previously [21–32]. The melanoma

cells were lysed using a lysis buffer containing 20 mM HEPES, 1 mM PMSF, 10 mM sodium fluo-

ride, and a complete mini EDTA-free protease inhibitor cocktail at pH 7.4. Protein concentra-

tions were adjusted using the Bradford method [33]. Extracted proteins were boiled at 95˚C for 5

min in a sodium dodecyl sulfate (SDS) buffer. Samples were loaded into separate lanes of 7.5% or

12% Mini-PROTEAN TGX gels and electrophoretically separated. Separated proteins were trans-

ferred onto PVDF membranes, treated with Block Ace for 50 min at room temperature, and

incubated with primary antibodies (GLUT1 [1:1000], GLUT3 [1:1000], and β-actin [1:10000]) for

120 min at room temperature. After washing, the membranes were incubated with an HRP-con-

jugated anti-rabbit or anti-mouse IgG antibody (1:10000) for 90 min at room temperature.

Immunoreactivity was detected using ECL Western Blotting Analysis System. Chemiluminescent

signals of the membranes were measured using the ImageQuant LAS 4000 mini.

Transfection of siRNA

The siRNA transfection was performed as per previously described methods with some modi-

fications [24, 27–32]. Canine melanoma cells seeded at a density of 1 × 105 cells/35-mm dish

Table 1. Primers used for RT-PCR.

Gene Name GenBank ID Primer sequences size (bp)

SLC2A1 NM_001159326.1 F: 50- AGCTGCCATTGCTGTTGCTG -30 115

(GLUT1) R: 50- CACGGTGAAGATGATGAAGACGTA -30

SLC2A2 XM_005639915.1 F: 50-TGTGTGTGCCATCTTCATGTCC-30 149

(GLUT2) R: 50-AGAACTCTGCCACCATGAACCA-30

SLC2A3 NM_001003308.1 F: 50-CTTCAGATCGCGCAGCTACC-30 118

(GLUT3) R: 50-TGCATCTTTGAAGATTCCTGTTGAG-30

SLC2A4 NM_001159327.1 F: 50-GCTTCTGCAACTGGACAAGCAA-30 178

(GLUT4) R: 50-AAGTCAGCCGAGATCTGGTCAA-30

TBP XM_863452 F: 50-ACTGTTGGTGGGTCAGCACAAG-30 184

R: 50-ATGGTGTGTACGGGAGCCAAG-30

https://doi.org/10.1371/journal.pone.0243859.t001
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or 5 × 105 cells/90-mm dish were transfected with Opti-MEM containing 5 μL/mL Lipofecta-

mine 2000 and 100 nM GLUT1, GLUT3, or scramble siRNA for 6 h. After transfection, the

medium was changed to DMEM-LG containing 10% FBS, and the cultures were maintained

in an incubator with 5% CO2 at 37˚C for 5 days. The siRNA sequences that were used have

been shown in Table 2. The efficiency of siRNA transfection was determined by western

blotting.

Statistical analysis

The data from experiments are presented as mean ± standard error of means. Statistical analy-

sis was performed using StatMate IV. The data from the time course study were analyzed

using two-way analysis of variance, and the data from other experiments for multiple compari-

son and paired comparison were analyzed using one-way analysis of variance and paired t test,

respectively.

Results

Effect of 2-deoxy-D-glucose on the growth of canine melanoma cells

We first examined the contribution of glucose metabolism to the growth of canine melanoma

cells using 2-deoxy-D-glucose (2-DG), a synthetic glucose analog. 2-DG is frequently used as

an inhibitor of glucose metabolism, including glycolysis [34–39]. The treatment with 5 mM

2-DG for 3 days resulted in a significant decrease in the growth of cells (Fig 1A). The growth of

the cells was inhibited after treatment with various concentrations of 2-DG (0 to 20 mM) for 3

days in a dose-dependent manner (Fig 1B). Glucose consumption and lactate secretion of the

cells were attenuated after treatment with 5 mM 2-DG for 3 days (Fig 1C and 1D). As shown

in Fig 1E, the 2-DG treatment also attenuated glucose uptake. We observed that the effect of

2-DG on the cellular viability, glucose consumption, lactate secretion and glucose uptake was

conserved in several canine melanoma cell lines (S1, S2 and S5 Figs). These results suggest that

melanoma cells rely on glucose metabolism for their growth.

Effect of a GLUT inhibitor on the growth of canine melanoma cells

The production of ATP by glycolysis under aerobic conditions (Warburg effect) is important

for the growth of several types of cancer cells. Glucose transport across the cell membrane via

GLUTs is considered as a rate-limiting step for glycolysis. Thus, we examined the effect of the

GLUT inhibitor WZB-117 on the growth of melanoma cells. The cells were incubated with

60 μM WZB-117 for 3 days that led to a significant attenuation of their growth (Fig 2A). The

treatment of cells with 0 to 60 μM WZB-117 resulted in a significant decrease in their growth

in a dose-dependent manner (Fig 2B). When the cells were treated with 60 μM WZB-117 for 3

days, glucose consumption and lactate secretion of the cells were significantly attenuated (Fig

2C and 2D). We also observed that the WZB-117 treatment also attenuated glucose uptake

(Fig 2E). As shown in S3, S4 and S5 Figs, WZB-117 showed the significant decrease in the cel-

lular viability, glucose consumption, lactate secretion and glucose uptake of several canine

melanoma cell lines.

Table 2. Sequences for siRNA transfection.

Gene Name Gene bank ID siRNA sequences

SLC2A1 (GLUT1) NM_001159326.1 GCUGUCUUCUAUUACUCCA

SLC2A3 (GLUT3) NM_001003308.1 GCUGUUUGUUCCAUCCUUA

https://doi.org/10.1371/journal.pone.0243859.t002
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Contribution of GLUT isoforms to the growth of canine melanoma cells

We investigated the mRNA expression of GLUT isoforms in canine melanoma cells by

RT-PCR. As shown in Fig 3A, the mRNA expression of GLUT1 and GLUT3, but not that of

GLUT2 and GLUT4, was detected in canine melanoma cells. We observed that GLUT1 and

GLUT3 mRNA dominantly expressed in additional canine melanoma cell lines (S6 Fig). The

protein expression of GLUT1 and GLUT3 was also observed by western blotting (Fig 3B,

scramble control).

To elucidate the contribution of GLUT1 and GLUT3 to the growth of canine melanoma

cells, we examined the effect of the knockdown of GLUT1 and GLUT3 expression by siRNA

transfection. The expression of GLUT1 and GLUT3 proteins decreased in the cells transfected

with GLUT1 and GLUT3 siRNAs, respectively, but not that in those transfected with scram-

bled siRNA (Fig 3B–3D). The expression of β-actin used as an internal standard showed no

alterations following transfection of cells with GLUT1, GLUT3, and scramble siRNAs (Fig 3B).

The growth, glucose consumption, lactate secretion and glucose uptake of the cells transfected

with GLUT1 and GLUT3 siRNAs were clearly attenuated (Fig 3E–3H). These results suggest

that GLUT1 and GLUT3 play an important role in the growth of melanoma cells. Therefore,

GLUT1 and GLUT3 may serve as promising targets for anticancer therapy of melanoma.

Discussion

In this study, we demonstrated that 2-DG induced inhibition of the growth of canine mela-

noma cells. 2-DG is a glycolytic inhibitor that is taken up by cells via GLUTs as well as glucose,

and is subsequently phosphorylated by hexokinase to form 2-deoxy-D-glucose-6-phosphate

(2-DG-6-P). 2-DG-6-P fails to undergo further metabolism via glycolysis but accumulates and

inhibits hexokinase and phosphoglucose isomerase, which are involved in the first step of glu-

cose metabolism [40–42]. The consequences involve downstream inhibition of glycolysis and

induction of oxidative stress [1, 39]. Although this effect of 2-DG is known, 2-DG is thought to

interfere with N-linked glycosylation of proteins [35], consequently leading to endoplasmic

reticulum stress and apoptosis [36]. As the depletion of glucose can lead to cancer cell death

via more than one mechanism, 2-DG is considered as a potent therapeutic agent against vari-

ous cancer cells [36–39]. Therefore, our observations support the notion that the anti-glyco-

lytic strategy via depletion of glucose is promising for canine melanoma treatment.

We also demonstrated that the GLUT inhibitor WZB-117 inhibited the growth of canine

melanoma cells. This observation suggests that the inhibition of GLUTs results in the suppres-

sion of cell growth by reducing glycolysis because glucose is transported across the cell mem-

brane via GLUT in a rate-limiting step [4–7]. In a previous study, the increase in the glucose

uptake rate was observed during cellular alterations and conversion to malignancy in fibro-

blasts infected with sarcoma viruses [43]. Upregulation in glucose transport has been consid-

ered to be associated with the overexpression of GLUTs. In human melanoma cell lines such

Fig 1. Effect of 2-deoxy-D-glucose on the growth of canine melanoma cells. (a) Time-dependent changes in the

growth of canine melanoma cells with (closed circle) or without (open circle) 2-deoxy-D-glucose (2-DG) treatment.

The cells were incubated with 5 mM 2-DG for 3 days, and their growth was found to be significantly attenuated. (b)

Dose-dependent effect of 2-DG on the growth of canine melanoma cells. The cells were incubated with 0 to 20 mM

2-DG, which attenuated their growth in a dose-dependent manner. (c) The effect of 2-DG on glucose consumption of

canine melanoma cells. The cells were incubated with 5 mM 2-DG for 3 days, and glucose consumption was found to

be significantly attenuated. (d) The effect of 2-DG on lactate secretion of canine melanoma cells. The cells were

incubated with 5 mM 2-DG for 3 days, and lactate secretion was found to be significantly attenuated. (e) The effect of

2-DG on glucose uptake of canine melanoma cells. The cells were incubated with 5 mM 2-DG for 3 days, and glucose

uptake was found to be significantly attenuated. Results are shown as mean ± SE from three independent experiments.
�P< 0.05 as compared to that on 0 day (a) or with 0 mM (b).

https://doi.org/10.1371/journal.pone.0243859.g001
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as WM3211, Mel-Im and SbCl2, the dose-dependent reduction in glucose consumption and

cell growth has been previously observed following treatment with a GLUT inhibitor [44].

Therefore, the inhibition of GLUTs could be exploited as an anticancer strategy for canine

melanoma.

We found that canine melanoma cells expressed GLUT1 and GLUT3. GLUT1 and GLUT3

have high affinity (Km 3 and 1.4 mmol/L, respectively) for glucose that may contribute to opti-

mization of the energy supply, thereby providing a fundamental advantage for the growth of

cancer cells [45, 46]. In humans, the upregulation in the expression of GLUT1 and GLUT3 has

been observed in the majority of cancers (e.g., lung, brain, breast, bladder, cervical, colorectal,

esophageal, hepatocellular, ovarian, renal cell, pancreatic, and prostate cancers) and has been

linked to poor survival and tumor aggressiveness [10, 47, 48]. In stage I non-small cell lung

carcinoma [49], oral squamous cell carcinoma [50], breast carcinoma [51], thyroid carcinoma

[52], and laryngeal carcinoma [53], the overexpression of both GLUT1 and GLUT3 genes and

proteins has been reported to be associated with poor survival. Therefore, the deregulated

expression of these GLUTs has been associated with malignancy [54]. Regarding human mela-

noma, GLUT1 and GLUT3 are expressed in malignant and benign melanocytic lesions [55].

However, GLUT1 expression was found to be downregulated in malignant melanoma in this

study. On the other hand, GLUT1 and GLUT3 are considered as potentially useful markers for

the differentiation of melanoma from nevi, as patients with GLUT1- and GLUT3-positive mel-

anomas had significantly lower survival rate than those who lacked GLUT1 and GLUT3

expression in their melanomas [13, 56, 57]. Therefore, it is conceivable that the upregulation of

GLUT1 and GLUT3 expression is related to the malignancy of melanoma as well as other can-

cers. However, the contribution of GLUT1 and GLUT3 to this biological phenomenon has

been unclear in melanoma cells. The growth of GLUT1 siRNA-transfected mouse B16 mela-

noma cells was reduced [41]. We also demonstrated that the transfection with GLUT1 and

GLUT3 siRNAs resulted in the attenuation of the growth of canine melanoma cells. The

uptake of the glucose analogue 2-deoxy-2-[18F]-fluoro-D-glucose is closely related to GLUT1

and GLUT3 expression in malignant melanoma [58]. Taken together, it is likely that both

GLUT1 and GLUT3 contribute to the glucose transport necessary for the growth of melanoma

cells.

Silencing of GLUT1 and GLUT3 expressions by siRNA transfection was shown to enhance

the apoptosis of oral squamous cell carcinoma cells and acute myeloid leukemia cells, respec-

tively [59, 60]. Therefore, siRNA interference against GLUT1 and GLUT3 appears to be a valu-

able tool for the gene therapy of canine melanoma. As GLUT1 has been reported to be

ubiquitously distributed in all tissues [10] and GLUT3 is predominantly expressed in neuronal

tissues, placenta, testis, myocardium, and platelets in humans [10, 61–63], GLUT3 appears to

be a more promising therapeutic target for the specific treatment of melanoma.

Fig 2. Effect of a GLUT inhibitor on the growth of canine melanoma cells. (a) Time-dependent changes in the

growth of canine melanoma cells with (closed circle) or without (open circle) GLUT inhibitor WZB-117 treatment.

The cells were incubated for 3 days with 60 μM WZB-117, which significantly attenuated their growth. (b) Dose-

dependent effect of WZB-117 on the growth of canine melanoma cells. The cells were incubated with 0 to 60 μM

WZB-117, which attenuated their growth in a dose-dependent manner. (c) The effect of WZB-117 on glucose

consumption of canine melanoma cells. The cells were incubated with 60 μM WZB-117 for 3 days, and glucose

consumption was found to be significantly attenuated. (d) The effect of WZB-117 on lactate secretion of canine

melanoma cells. The cells were incubated with 60 μM WZB-117 for 3 days, and lactate secretion was found to be

significantly attenuated. (e) The effect of WZB-117 on glucose uptake of canine melanoma cells. The cells were

incubated with 60 μM WZB-117 for 3 days, and glucose uptake was found to be significantly attenuated. Results are

shown as mean ± SE from three independent experiments. �P< 0.05 as compared to that on 0 day (a) or with 0 μM

(b).

https://doi.org/10.1371/journal.pone.0243859.g002
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Conclusion

As melanoma is less responsive to the existing therapeutic approach, our observations provide

a new insight into the role of GLUT subtypes, GLUT1 and GLUT3, in cell growth and high-

light an anti-glycolytic strategy as a promising tool for the treatment of canine melanoma.
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transfected with GLUT1 and GLUT3 siRNA. Results are presented as mean ± SE from three independent experiments. �P< 0.05.
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52. Jóźwiak P, Krześlak A, Pomorski L, Lipińska A. Expression of hypoxia-related glucose transporters

GLUT1 and GLUT3 in benign, malignant and non-neoplastic thyroid lesions. Mol Med Rep 2012; 6:

601–606. https://doi.org/10.3892/mmr.2012.969 PMID: 22752218

PLOS ONE GLUTs in the melanoma cell growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0243859 February 4, 2021 14 / 15

https://doi.org/10.1006/abio.1976.9999
https://doi.org/10.1006/abio.1976.9999
http://www.ncbi.nlm.nih.gov/pubmed/942051
https://doi.org/10.1111/j.1471-4159.1981.tb06322.x
http://www.ncbi.nlm.nih.gov/pubmed/7334375
https://doi.org/10.1158/1535-7163.MCT-07-0310
https://doi.org/10.1158/1535-7163.MCT-07-0310
http://www.ncbi.nlm.nih.gov/pubmed/18025288
https://doi.org/10.1089/ars.2007.1714
http://www.ncbi.nlm.nih.gov/pubmed/17627467
https://doi.org/10.1073/pnas.0803090105
http://www.ncbi.nlm.nih.gov/pubmed/19004802
https://doi.org/10.1016/j.canlet.2014.09.003
https://doi.org/10.1016/j.canlet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25218591
http://www.ncbi.nlm.nih.gov/pubmed/13405925
https://doi.org/10.1016/0300-9084%2892%2990070-u
https://doi.org/10.1016/0300-9084%2892%2990070-u
http://www.ncbi.nlm.nih.gov/pubmed/1467345
https://doi.org/10.1111/j.1749-6632.2000.tb06199.x
http://www.ncbi.nlm.nih.gov/pubmed/10863552
https://doi.org/10.1016/0304-419x%2874%2990008-0
http://www.ncbi.nlm.nih.gov/pubmed/4371599
https://doi.org/10.18632/oncotarget.4977
https://doi.org/10.18632/oncotarget.4977
http://www.ncbi.nlm.nih.gov/pubmed/26293674
https://doi.org/10.1042/bj2900701
http://www.ncbi.nlm.nih.gov/pubmed/8457197
https://doi.org/10.1016/s0014-5793%2802%2903058-2
http://www.ncbi.nlm.nih.gov/pubmed/12135767
https://doi.org/10.1016/0006-291x%2890%2991263-r
https://doi.org/10.1016/0006-291x%2890%2991263-r
http://www.ncbi.nlm.nih.gov/pubmed/2372287
http://www.ncbi.nlm.nih.gov/pubmed/8640778
https://doi.org/10.1002/%28sici%291097-0142%2819970915%2980%3A6%26lt%3B1046%3A%3Aaid-cncr6%26gt%3B3.0.co%3B2-7
http://www.ncbi.nlm.nih.gov/pubmed/9305704
https://doi.org/10.3390/molecules15042374
http://www.ncbi.nlm.nih.gov/pubmed/20428049
https://doi.org/10.1007/s12253-012-9500-5
http://www.ncbi.nlm.nih.gov/pubmed/22270867
https://doi.org/10.3892/mmr.2012.969
http://www.ncbi.nlm.nih.gov/pubmed/22752218
https://doi.org/10.1371/journal.pone.0243859
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