
Ecology Letters. 2022;25:1725–1737.     | 1725wileyonlinelibrary.com/journal/ele

INTRODUCTION

Efficient and effective ecological restoration is urgently 
needed to counteract the negative consequences of hab-
itat destruction and degradation for biodiversity and 
the functioning of natural ecosystems (Suding et al., 
2015). Yet, progress towards ambitious global targets 
(Fagan et al., 2020) is challenged by ineffectiveness 

at achieving restoration goals (Benayas et al., 2009; 
Jones et al., 2018) and inconsistent restoration out-
comes, hindering the efficient use of limited financial 
resources (Brudvig et al., 2017). Generally, restoration 
enhances biodiversity compared with unrestored levels 
(Crouzeilles et al., 2017; Huang et al., 2019; Jones et al., 
2018; Meli et al., 2017). However, the variability of bio-
diversity among restoration sites within projects is not 
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Abstract

Ecological restoration projects often have variable and unpredictable outcomes, 

and these can limit the overall impact on biodiversity. Previous syntheses have 

investigated restoration effectiveness by comparing average restored conditions 

to average conditions in unrestored or reference systems. Here, we provide the 

first quantification of the extent to which restoration affects both the mean and 

variability of biodiversity outcomes, through a global meta- analysis of 83 terrestrial 

restoration studies. We found that, relative to unrestored (degraded) sites, 

restoration actions increased biodiversity by an average of 20%, while decreasing 

the variability of biodiversity (quantified by the coefficient of variation) by an 

average of 14%. As restorations aged, mean biodiversity increased and variability 

decreased relative to unrestored sites. However, restoration sites remained, on 

average, 13% below the biodiversity of reference (target) ecosystems, and were 

characterised by higher (20%) variability. The lower mean and higher variability 

in biodiversity at restored sites relative to reference sites remained consistent over 

time, suggesting that sources of variation (e.g. prior land use, restoration practices) 

have an enduring influence on restoration outcomes. Our results point to the need 

for new research confronting the causes of variability in restoration outcomes, and 

close variability and biodiversity gaps between restored and reference conditions.
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well understood (Brudvig et al., 2017; Brudvig & Catano, 
2021). Unrestored sites typically show substantial vari-
ability in biodiversity, owing to the variety and severity 
of degrading processes that can act on ecosystems, in-
cluding altered disturbance regimes, invasive species, 
and land- use conversion (Crouzeilles et al., 2016; Meli 
et al., 2017). Since the goal of restoration is generally to 
guide various degraded conditions toward reference con-
ditions, variation in biodiversity outcomes among resto-
ration projects (hereafter ‘among- restoration variation’) 
is likely to be highest where degradation was also highly 
variable. Alternatively, if the dominant forms of distur-
bance pre- restoration are homogeneous, then restoration 
is likely to produce more predictable and less variable 
biodiversity outcomes. In this study, we consider how 
restoration influences both variability and overall levels 
of biodiversity following ecological restoration, with re-
spect to both degraded and reference conditions.

Understanding how biodiversity outcomes change 
over time following restoration is crucial for accurately 
setting restoration targets and optimising management 
decisions. On short timescales (<5  years), restoration 
projects often take divergent trajectories due to a strong 
influence of local environmental gradients, successional 
dynamics and stochastic variation, even when on av-
erage moving towards reference levels (Matthews & 
Spyreas, 2010). Over longer time scales, the variation in 
biodiversity among restoration replicates can decrease 
due to a predominating influence of a common set of 
factors (e.g. climate, disturbance; Matthews & Spyreas, 
2010), whereas overall biodiversity accumulates (Holl, 
2020). Here, we evaluate the extent to which age of res-
toration moderates overall levels and the variability of 
biodiversity.

The magnitude of degradation at an unrestored site 
usually delimits the goal of any given restoration proj-
ect, and therefore, the outcomes of restoration (Brudvig 
et al., 2017; Crouzeilles et al., 2017; Groves et al., 2020; 
Prach et al., 2020). Land- use history is a major driver 
of biodiversity outcomes, for example, a history of low- 
intensity disturbance (e.g. selective logging) can lead to 
more desirable biodiversity outcomes in restored for-
ests compared with high- intensity disturbance regimes 
(Crouzeilles et al., 2016). Understanding how among- 
restoration variation in biodiversity differs across histor-
ical land uses will enable more accurate predictions of 
variability in biodiversity outcomes. Because sites with 
the most intensive historical land use generally exhibit 
the highest alteration from baseline conditions, demand-
ing the most complex restoration interventions (Hobbs & 
Norton, 1996; Prach et al., 2020), we expect that they will 
have the highest levels of among- restoration variability 
in biodiversity. Additionally, many of the restoration 
methods applied in less degraded starting conditions 
(e.g. burning, thinning, mowing) could select for specific 
suites of species adapted to these treatments (Pausas & 
Bradstock, 2007; Rainsford et al., 2021; Shryock et al., 

2014), as well as being broadly more homogenous treat-
ments compared with those employed in complex in-
terventions, resulting in less variable outcomes. These 
particular low- degradation methods may also provide 
more suitable environmental conditions for species 
found in reference ecosystems and, therefore, result in 
more consistently successful restoration. However, if res-
toration failure takes time –  that is, it takes a long time 
for a failed project to become apparent, or sites decline 
in target metrics of biodiversity over time –  then vari-
ability may instead increase at longer timescales. Lastly, 
it may be that intense land- use histories may cause very 
homogenous disturbance to a given area, reducing the 
variability of outcomes in these environments.

The scale of a restoration site can strongly affect its 
success in meeting desired outcomes (Ager et al., 2017), 
but little is known about the moderating influence of 
scale on variability in these outcomes (Brudvig et al., 
2017). There are complex logistical, political and finan-
cial intricacies associated with scaling up ecological res-
toration while maintaining biodiversity benefits (Murcia 
et al., 2016), yet large- scale goals are often perceived as 
the ideal (Ehrenfeld, 2000; Sexton & Emery, 2020). It 
may be that larger restoration sites are likely to display 
greater among- restoration variation in biodiversity due 
to increased variety in abiotic factors (evapotranspira-
tion, topography, soil), biotic inputs (species pool, soil 
seed bank) and historical contingencies acting on res-
torations conducted at landscape scales (Buffam et al., 
2007; Cohen et al., 2016). Conversely, historical contin-
gencies such as stochastic dispersal or biotic inputs may 
have a stronger influence on community assembly at rel-
atively fine scales, leading to highly variable outcomes 
at smaller sites (Benincà et al., 2008; Stark et al., 2008). 
In terms of mean biodiversity levels, we expect that the 
same challenges (e.g. landscape heterogeneity, logistical 
and financial barriers) could limit overall biodiversity 
increases following restoration.

In summary, the aim of our study is to use a global 
meta- analysis of terrestrial ecological restoration stud-
ies to ask: (1) What is the effect of ecological restoration 
on both variability in biodiversity and average biodiver-
sity with respect to both unrestored and reference con-
ditions?; (2) Does biodiversity increase with time since 
restoration, and do sites become more or less variable?; 
(3) Does biodiversity decrease with spatial extent of res-
toration, and do sites become more or less variable? and 
(4) How does land- use history moderate the effect of res-
toration on overall levels and variability of biodiversity?

M ETHODS

Two databases –  Web of Science Core Collection and 
Scopus –  were searched for all studies published up 
until March 25, 2020, using the following search string: 
(((restoration or restored) and (eco*) and (monitor* or 
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success* or evaluat* or assess*)) and (biodiversity) and 
(taxonomic richness or taxonomic diversity or species di-
versity or species richness or functional diversity or func-
tional richness or phylogenetic diversity)). To narrow the 
search to projects with goals of enhancing biodiversity 
and returning ecosystem integrity (following Society for 
Ecological Restoration (SER) definitions, https://www.
ser- rrc.org), we did not explicitly include terms such as 
reforestation, reclamation or rehabilitation in our search 
(Wortley et al., 2013), although we did not exclude stud-
ies using these terms during screening of results. This 
yielded 1796 results from Web of Science and 697 results 
from Scopus. An additional three studies were identified 
in literature databases of previous meta- analyses. The 
total number of records was reduced to 2277 after 219 
duplicates were excluded. After the removal of irrelevant 
studies, 584  studies remained for full- text screening. 
Following the full- text screening, 83 studies had data ex-
tracted for analysis (see Appendix S1 for details).

The literature search protocol was informed by the 
PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta- Analyses) statement (Liberati 
et al., 2009; Moher et al., 2009), and we have provided a 
PRISMA- EcoEvo checklist (O’Dea et al., 2021; archived 
at https://osf.io/4aucp/).

Screening and extraction

From each study, we extracted mean biodiversity (as well 
as the metric of biodiversity measurement), standard 
deviation, coefficient of variation, standard error, past 
land status, sample size (N), ‘treatment’ (restored, unre-
stored, reference), age of restoration (years), approximate 
scale of restoration project (ha) and restoration method. 
For studies where the values were condensed into cat-
egories (e.g. ‘young’ and ‘old’ restoration sites), or where 
the history of restoration was not well known and given 
only as a range, we used median values. The categories 
used for past land use were forestry, mining, agricul-
ture, urban, semi- natural. ‘Semi- natural’ was adopted 
as a category for studies of sites that were not necessar-
ily heavily degraded in the classic sense, but where the 
cessation of a disturbance produced an undesired state 
transition (e.g. woody encroachment where the restora-
tion treatment to return desired conditions was thinning 
and burning). We scored restoration method across three 
categories: 1 –  natural restoration (cessation of the de-
grading process to allow natural recovery), 2 –  assisted 
restoration (active remediation of substrate, reintro-
duction of species, invasive species management) and 
3 –  reconstructive restoration (a combination of both 
strategies with reintroduction of a major proportion of 
desired biota) (Atkinson & Bonser, 2020; Gann et al., 
2019).  Studies that only measured structural changes 
such as abundance or cover, or physical and chemical 
attributes of soil, were not included. Additionally, we 

noted the focal organisms of the study, the category of 
restoration method, the approximate location, and the 
size of the quadrats where applicable. For all available 
diversity variables in a study, we extracted the mean 
and standard deviation (SD), often calculated from raw 
data or other measures of spread. Where values were not 
available in text, we extracted them from figures using 
WebPlotDigitizer (Rohatgi, 2020) and the RStudio pack-
age metaDigitise (Pick et al., 2019).

Cross- study biodiversity syntheses are prone to error 
and bias by comparing across multiple spatial scales or 
units of replication (Spake et al., 2020). Biodiversity res-
toration studies generally aim to understand the effect 
of restoration methods across multiple independent ‘ef-
forts’. We considered each restoration effort as the unit 
of replication (N) in our calculations of standard devia-
tion. For example, the variability of biodiversity among 
restorations is the variance reported within a single res-
toration treatment replicated across several restoration 
efforts in a single study (see Scale dependency section of 
Appendix S1 for more details).

Effect sizes

Effect size calculations were completed using the escalc 
function in the ‘metafor’ R package (Viechtbauer, 2020). 
Due to the diversity of restoration methods used world-
wide, effect sizes are calculated from both experimental 
and observational comparisons.

To quantify the effect of restoration on the relative 
variability of biodiversity we used the natural logarithm 
of the ratio between the coefficients of variation (lnCVR) 
(Nakagawa et al., 2015; Senior et al., 2020). Sánchez- 
Tójar et al. (2020) suggest that lnCVR is preferable over 
the variability ratio (lnVR; Nakagawa et al., 2015) when 
there is a strong mean- variance relationship, as it can 
account for the simultaneous difference between group 
mean and variance (Cohen & Xu, 2015; Nakagawa & 
Schielzeth, 2012). That is, in terms of our research ques-
tions, it would be unsurprising that restoration increases 
variability given it is also known to generally increase 
mean biodiversity (Huang et al., 2019; Jones et al., 2018; 
Meli et al., 2017); Figure S1), so the use of a relative mea-
sure of variability such as lnCVR is important. We as-
sess heterogeneity in our models using I2 (Higgins et al., 
2003) and present these alongside meta- analysis plots in 
Appendix S1 (Figure S3).

For mean differences, we used the log response ratio 
(lnRR; Hedges et al., 1999). Advantages of lnRR over 
the standardised mean difference (Cohen's d) include its 
ease of interpretability as a percentage response and its 
resilience to influence by heteroscedasticity (Sánchez- 
Tójar et al., 2020). We calculated lnCVR and lnRR for 
two sets of models, the first comparing unrestored levels 
with restorations and the second comparing restorations 
with reference levels.

https://www.ser-rrc.org
https://www.ser-rrc.org
https://osf.io/4aucp/
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The data set comparing unrestored sites with restored 
sites consisted of 734 effect sizes from 59 studies, and for 
the comparison of restored sites and reference sites, there 
were 739 effect sizes from 66 studies. Thirty- nine stud-
ies presented data for unrestored, restored and reference 
conditions.

Meta- analyses and meta- regression

For lnCVR and lnRR, we specified restored sites as the 
numerator and the unrestored group as the denomina-
tor, so that positive values correspond to increased bio-
diversity variability at restored sites, and vice versa for 
negative values.

To account for the effect of the multi- level structure 
in our data (e.g. repeated measurements within a study) 
on heterogeneity, we ran multilevel meta- analytic mod-
els for both lnCVR and lnRR to test the variability and 
mean effects of restoration on biodiversity respectively 
(Nakagawa & Santos, 2012). A meta- analytic (intercept) 
model was used to calculate the overall effect of resto-
ration in the absence of moderators. We then used one 
meta- regression model to investigate the influence of 
moderators that were available for all studies (age of res-
toration, past land use, measure of biodiversity) and a 
second model with a reduced sample size to determine 
the moderating effect of scale. The meta- analytic and 
meta- regression models included two random effects: 
study and plot, which accounted for repeated measures 
over time and across biodiversity metrics. To account 
for correlations between diversity metrics measured in 
the same plots, we constructed a variance- covariance 
matrix that was used as the variance parameter of all 
mixed models (Noble et al., 2017). Marginal R2 and con-
ditional R2 values (Nakagawa & Schielzeth, 2013) were 
calculated using the r2_ml from the orchaRd package 

(Nakagawa et al., 2020). We also tested our intercept 
models for evidence of publication bias, time- lag bias 
and scale dependency (Appendix S1; Figures S8– S11; 
Tables S7– S10). Lastly, we ran meta- analysis of overall 
variability and mean responses as well as the moderat-
ing effects of restoration site age separately for the or-
ganism categories (plants, invertebrates, vertebrates, 
microbes, fungi, and amoebae), to check the sensitivity 
of our results across broad taxonomic groups. Pairwise 
comparisons of groups (taxon) was conducted using the 
multcomp package (Hothorn et al., 2008) for any models 
for which there was evidence of differences in taxon.

All analysis was conducted using R version 4.1.2 
(RStudio Team, 2022). All data and code for running the 
analysis and data visualisation are available from OSF: 
https://osf.io/4aucp/.

RESU LTS

The majority of biodiversity data (for all data sets) were 
derived from plants (N = 608, 61.4%) and invertebrates 
(N = 280, 28.3%), with the remaining values deriving from 
vertebrates (N = 42, 4.2%), fungi (N = 41, 4.1%), soil mi-
crobes (N = 6, 0.6%) and testate amoebae (N = 12, 1.2%). 
Measures of biodiversity included taxonomic (N = 489, 
49.9%), functional (N = 243, 24.5%), phylogenetic (N = 9, 
0.9%) and other biodiversity indices (N = 248, 25%). Our 
data set includes studies conducted in Europe, North 
America, South America, Asia, Oceania, Australasia 
and Africa (Figure 1). Restoration sites ranged in size 
from 0.001 to 2300 ha, with an average size of 76 ha, and 
in age from 0.1 to 54.5 years old (median = 7, mean = 10). 
Restorations were somewhat evenly spread between 
woody (583, 59%) and non- woody (406, 41%) ecosystems. 
Twenty- two studies assessed natural (or ‘passive’) res-
toration, with 64  studies assessing assisted restoration 

F I G U R E  1  Global distribution of studies included in the meta- analyses (N = 83)

https://osf.io/4aucp/
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methods and six studies assessing ecosystem recon-
struction (note some studies included sites of multiple 
categories).

Restored sites had 20% higher mean biodiversity than 
did unrestored sites (LnRR = 0.18, 95% confidence interval 
(hereafter CI) = 0.11– 0.25, p < 0.001; Figure 2). Variation 
in biodiversity was 14% lower among restorations than 
among unrestored sites (LnCVR  =  −0.16, CI  =  −0.25– 
−0.06, p  =  0.002; Figure 2b). However, restored site 
biodiversity was on average 13% lower (LnRR = −0.14, 
CI  =  −0.22– −0.06, p  <  0.001), and variation in biodi-
versity 20% higher, than reference sites (LnCVR = 0.18, 
CI = 0.05– 0.31, p = 0.007; Figure 2b). Subgroup analysis 
at the taxon level showed no significant variation be-
tween taxon responses in any model (Table S15).

Age of restoration sites had varied effects on the rel-
ative mean and variability of biodiversity. The effect of 
restoration on mean biodiversity relative to unrestored 
ecosystems was more pronounced at older restored 
sites. Biodiversity at restored sites showed a mean in-
crease of approximately 0.6% per year (LnRR = 0.006, 
CI = 0.003– 0.009, p < 0.001, N = 728; Figure 3a), relative 
to unrestored sites, and no significant change in variabil-
ity through time (LnCVR = −0.005, CI = −0.013– 0.002, 
p  =  0.15, N  =  728; Figure 3b). Age of restoration also 

had no significant effect on the mean (estimate = 0.001, 
CI = −0.003– 0.006, p = 0.58, N = 739; Figure 3a) or vari-
ability (estimate  =  0.001, CI  =  −0.006– 0.009, p  =  0.71, 
N  =  739; Figure 3b) of biodiversity relative to refer-
ence sites. When incorporating a taxon- level interac-
tion with age, there was no significant heterogeneity 
between groups except in mean biodiversity compari-
sons between restored and unrestored sites (Table S16). 
However, pairwise comparisons between taxon in this 
model showed no significant differences between each 
taxa (Table S17).

There was no significant effect of restoration scale on 
mean or variability of biodiversity for either set of mod-
els (Figure 4a– b; N = 347 for restored/unrestored models 
and N = 297 for restored/reference models).

Restoration of semi- natural (e.g. sites subjected to 
thinning, burning, mowing) and agricultural land pro-
duced higher mean biodiversity increases (compared with 
degraded unrestored systems) than other past land- uses 
(Figure 5a). Restored semi- natural sites showed the least 
variation in biodiversity outcomes of any past land- use 
type, relative to unrestored sites (Figure 5b). Restoration 
of sites that had been subjected to agriculture, forestry, 
urban use, invasive species removal or mining did not 
significantly affect biodiversity variability (Figure 5a– b).

F I G U R E  2  Meta-analytic model results comparing the (a) mean (LnRR) and (b) variability (LnCVR) of biodiversity in restored sites with 
either unrestored or reference sites (central points represent model estimated means, thick bars represent 95% confidence intervals, and thin 
bars 95% prediction intervals). Each background point is an effect size, and its size is scaled by the precision of that estimate (1/SE). Note that a 
small number of outliers have not been shown here (those <-3 or >3) but are visible on Figure 5
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DISCUSSION

We found strong empirical evidence that restoration gen-
erally increased mean biodiversity and reduced the vari-
ability of biodiversity compared with unrestored levels. 
However, mean biodiversity was lower and variability 
higher at restored sites than at reference sites, indicat-
ing that, on average, there are still biodiversity shortfalls 
and uncertainties in reported restorations. Our models 
suggest that restoration scale is not an important mod-
erator of biodiversity outcomes. The effects of restora-
tion, relative to unrestored sites, became stronger with 
increasing age, yet there were no significant effects of 
age when comparing with reference sites. Only in previ-
ously semi- natural systems was there a significant effect 
of restoration on biodiversity variability, with reduced 
variability relative to the original state. The results of 
our main models and age effects were consistent across 
broad taxonomic groups. Together, these results advance 
our understanding of the effects and drivers of biodiver-
sity and its variability to restoration actions.

We found that restorations generally occupied a mid-
dling condition between degraded and reference sites in 

terms of both mean and variability of biodiversity. The 
mean results reinforce the findings of past work that 
restoration usually leads to a deviation from the de-
graded state but rarely a full recovery to the reference 
state (Benayas et al., 2009; Jones et al., 2018; Meli et al., 
2017). It may also be that the typical time scales of res-
toration studies do not allow sufficient time to enable 
full recovery (Ruiz- Jaen & Aide, 2005; Tischew et al., 
2010). Historical land- use type and intensity are likely 
to play major roles in determining the response of the 
environment to restoration (Bullock et al., 2011; Prach 
et al., 2020) since land use can have lasting effects on soil 
seed banks (Bekker et al., 1997; Bossuyt & Hermy, 2001) 
and the status of soil nutrients and compaction (Standish 
et al., 2007). Our models indicate that agricultural and 
semi- natural systems have the greatest capacity to shift 
away from a degraded state (Figure 5a), which might 
relate to their relatively low alteration from original or 
reference conditions compared with mining and forestry.

The reduction in the variability of biodiversity rela-
tive to degraded sites, where disturbances are not likely 
to be entirely homogeneous, implies that restoration 
actions are initiating the convergence of biodiversity 

F I G U R E  3  Meta-regression model results showing the moderating effects of restoration age on (a, c) variability of biodiversity (lnCVR) 
and (b, d) mean (lnRR) biodiversity relative to both unrestored (a, b) and reference (c, d) sites (red dashed line represents 95% confidence 
intervals, and blue dashed line 95% credibility intervals). Each background point is an effect size, and its size is scaled by the precision of that 
estimate (1/SE). Dashed/solid lines represent statistically non-significant/significant results
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toward a new state (although not one comparable with 
reference ecosystems). One explanation for this finding 
is that restoration actions (e.g. thinning, mowing, and 
burning of vegetation) may be favouring a particular 
suite of species that respond positively to these treat-
ments (Kahmen & Poschlod, 2008; Spasojevic et al., 
2010; Stammel et al., 2003). Another possibility is that 
convergence could be explained by the direct planting 
or translocating of similar species during restoration 
(Gann et al., 2019; Holl, 2020). However, we also found 
that biodiversity variability in restorations remained 
much higher than reference ecosystems, which is likely 
to be driven by similar divergence processes as those 
that act on mean biodiversity, such as successional 
dynamics and species invasions. This finding might 
also be explained, in some cases, by the selection of 
reference sites that fail to represent the complete di-
versity of environmental conditions experienced by the 
target ecological community or restored landscape. 
Similarly, a bias in favour of selecting reference sites of 
particularly high quality could lead to variability goals 
that are unattainable in practice, and in some cases it 
may be appropriate to select more realistic reference 

targets given the extent of degradation (Hobbs, 2007; 
Miller & Hobbs, 2007).

We showed that the mean biodiversity of resto-
rations significantly increased over time. This sug-
gests that restoration efforts can develop ecosystem 
conditions that are suitable for the accrual of addi-
tional species. However, we did not detect a moderat-
ing influence of age on biodiversity differences among 
restored and reference sites. This may reflect the rel-
atively short timeframes of study for the majority of 
projects or may be evidence of restoration methods 
that produce incomplete (or divergent) ecosystem re-
covery (Matzek et al., 2016; Parkhurst et al., 2021; 
Salaria et al., 2019). Alternatively, the absence of biodi-
versity accrual at restoration sites relative to reference 
levels may be explained by restorations following non-
linear trajectories (Jones et al., 2018). Heterogeneity 
among the effects of restoration was high in all models 
(Table S3), indicating that despite significant overall 
effect sizes, there are large inconsistencies in the effect 
of restoration on both mean and variability of biodi-
versity. As monitored restorations age, it may be pos-
sible to better disentangle this relationship with site 

F I G U R E  4  Meta-regression model results showing the moderating effects of site size against (a, b) variability of biodiversity (lnCVR) and 
(c, d) mean (lnRR) biodiversity relative to both unrestored (a, c) and reference (b, d) sites (red dashed line represents 95% confidence intervals, 
and blue dashed line 95% credibility intervals). Each background point is an effect size, and its size is scaled by the precision of that estimate (1/
SE). Dashed/solid lines represent statistically non-significant/significant results
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age and community assembly, and the development of 
novel restoration strategies to close lingering biodiver-
sity deficits between restorations and reference sites. 
Regardless of the causes, this biodiversity gap un-
derscores the inappropriateness of our current resto-
ration practices to substitute conservation (Jones et al., 
2018).  Importantly, the effects of age were consistent 
across broad taxonomic categories.

Our analysis found no evidence that biodiversity 
variability changed with time since restoration, that is, 
restored sites failed to approach the low variability val-
ues typical of reference sites. Therefore, a potentially 
critical opportunity in current restoration projects 
to decrease variability in biodiversity is at the onset 
of restoration, perhaps by standardising initial resto-
ration practises (Matthews & Spyreas, 2010). Doing 
so will be important for maximising the reliability of 
future restorations. Support for this notion has been 
found in some restoration systems in mean biodiversity 

response to restoration activities, for example, the ini-
tial f loristics model where initial inputs predict estab-
lished biodiversity at a later stage (Egler, 1954; Koch, 
2007).

The most marked reduction of variability was at 
sites that were categorised as ‘semi- natural’ suggest-
ing that such methods may predictably select for cer-
tain groups of species adapted to those management 
interventions, resulting in less variable outcomes 
(Matthews, 2015; Matthews & Spyreas, 2010; Newbold 
et al., 2020). We used categories of land use because 
we expected the treatments used in some categories 
to be simpler and more homogenous (e.g. potentially 
producing less variable outcomes), as well as being 
associated with lower degradation or modification 
of natural abiotic and biotic conditions (e.g. soil con-
ditions, seedbanks). However, we also thought that 
more intense land- uses could produce more homoge-
nous disturbance, resulting in less variable outcomes 

F I G U R E  5  Meta- regression model results showing the moderating effects of past land status mean (a, b; lnRR) and variability (c, d; 
lnCVR) of biodiversity relative to both unrestored and reference sites (points represent model estimated slopes and distributional margins 
represent 95% confidence intervals)
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compared with less- disturbed sites. Our results sug-
gest the former explanation is the more generalisable. 
Further, these types of sites are possibly better able to 
support the suites of species desired in restoration be-
cause soil, seedbanks, and other ecosystem properties 
are less likely to be fundamentally altered (De Barros 
et al., 2020; Li et al., 2017; Prach et al., 2020). Although 
variability among restored sites was generally higher 
than among reference sites, such an effect was not 
present at semi- natural sites. This result suggests that 
the restoration of semi- natural landscapes is produc-
ing less- variable results more consistent with reference 
levels. Research specifically confronting variability in 
more uncertain sites, such as those previously used for 
forestry, will result in more reliable and predictable 
restoration outcomes. Furthermore, while past land- 
use categories enabled us to test the broader findings 
across a range of common restoration settings, we are 
not able to directly compare the effect of increased 
degradation. Future synthesis of the effects of degra-
dation level will provide valuable information for res-
toration practitioners.

In our study, we have advanced novel generalities 
on the variability of biodiversity among restoration ef-
forts. While restoration is generally successful in pro-
moting targeted biodiversity and does not exacerbate 
variability in diversity, restoration efforts do not re-
turn these key diversity measures to those observed in 
reference communities. Our results show that age, size 
and broad categories of land use are not strong predic-
tors of variability. Further resolving these drivers at 
finer taxonomic and geographic scales will provide an 
opportunity to increase restoration predictability and 
better manage limited conservation resources (Brudvig 
& Catano, 2021). Although current data are limited, 
we hope that future synthesis capitalising on the many 
efforts currently underway to develop comprehensive 
databases of restoration data (Ladouceur et al., 2022). 
More detailed restoration data will be able to extend 
the present work by quantifying the difference in re-
sponses of native versus exotic biodiversity, the effec-
tiveness of various levels of restoration intervention 
(across and among taxa), and the effects of gradients of 
disturbance and the long- term resilience of restoration 
activities.

Although a degree of the predictive capacity of res-
toration ecology inevitably operates at a site- specific 
level (Reid et al., 2018), some generalities can and have 
been made about the variability and mean biodiversity 
response to restoration. Finally, restorations that are 
unpredictable may negatively influence the perceptions 
of the value of restoration by policy- makers, volun-
teer groups, and other key funding and support groups 
(Zahawi et al., 2014). As global commitments to resto-
ration soar (Fagan et al., 2020), garnering ongoing public 
support and good faith engagement from policy- makers 
will be vital.
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