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This exploration intends to remove chloride ions in production and life, enhance buildings’ durability, and protect the natural
environment from pollution. The current dechlorination technology is discussed based on the relevant theories, such as the
lightweight deep learning (DL) model and chloride ion characteristics. Next, data statistics and comparative analysis methods are
used to study the adsorption and desorption performance of dechlorination adsorbents. Finally, the lightweight DL model is
introduced into the chloride diffusion prediction experiment of slag powder and fly ash concrete. The results show that in the
study of dechlorination adsorption performance, the chloride ion concentration decreases gradually with the extension of
adsorption time. However, with the increasing temperature, the chloride ion removal rate is increasing. The removal rate of
chloride ions in water can decrease slowly with the increase of adsorbent. Therefore, selecting the 2 mol/L sodium hydroxide as the
alkali concentration for adsorbent regeneration is the most appropriate. Besides, the regeneration performance of the adsorbent
gradually declines with the increase of sodium chloride concentration in the solution. The lightweight DL model is applied to the
chloride diffusion prediction experiment of slag powder and fly ash concrete. It is found that when the curing age is selected at 18
days, 90 days, and 180 days, respectively, the error between the lightweight DL model and the experimental results is about 0.2. It
shows that the lightweight DL model is feasible for predicting the diffusion of chloride ions. Therefore, this exploration designs
and studies the dechlorination experiment based on the lightweight DL model, which provides a new theoretical basis and
optimization direction for removing chloride ions in the future industry.

1. Introduction

With China’s growing population, increased energy con-
sumption, and intensified industrial activities, industrial
wastewater treatment has become the focus of environ-
mental protection [1]. The discharge of industrial wastewater
will cause serious damage to the environment and cause
great economic losses to enterprises. Excessive chloride ions
in industrial wastewater have become a great challenge to
industrial anticorrosion and attracted extensive attention,
especially in the northwest region with relatively scarce
water resources. Therefore, it is urgent to develop high-
performance technology for chloride ion pollution control
(2, 3].

Ma et al. studied the electroadsorption performance
under different applied voltage and solution concentrations.

It was found that the removal of sodium chloride increased
with the increase of applied voltage and solution concen-
tration, which was due to stronger electrostatic interaction,
higher concentration gradient, and less double-layer overlap
effect. Based on the Langmuir isotherm, the equilibrium
electrosorption capacity at 1.2V was determined to be
270.59 ymol/g. In this case, due to the existence of micro-
pores related to double-layer overlap, the effective surface
area of ion electrosorption at 1.2 V was estimated to be in the
range of 12.18-14.25% of the surface area of Bru-
nauer-Emmett-Teller (BET) [4]. Leon-Fernandez et al.
found that the chloride ion concentration higher than
100 mg-L~" would affect the electrolytic zinc quality in the
electrolytic zinc sulfate process. Hence, Engineering Capa-
bility Release (ECR) technology was used to treat chloride
ions. The electrode adopted two copper electrodes with an
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FIGURE 1: DL model (X represents input data and Y represents output data).

area of 3.15 cm” and an Ag/AgCl reference electrode, and the
distance between the two copper electrodes was 5mm.
Under the optimal conditions of voltage 0.6 V, ultrasonic
power 50 W, and reaction time 3 h, the chloride ion removal
rate reached 54.5% when the chloride ion concentration was
300mg-L™" [5]. Gong et al. used a genetic algorithm and
lightweight deep learning (DL) model to optimize the ex-
periment of the dechlorination training set. The results of
this machine learning model were very accurate. However,
this algorithm also has certain limitations. It usually requires
massive training data to achieve a certain accuracy, and it
will still show great error in predicting the molecular
properties outside the sample [6]. Hubacek et al. proposed
applying a lightweight DL algorithm to predict the total
molecular energy of chemical structures with different
spatial coordinates and charges, including organic mole-
cules, inorganic molecules, and ions [7].

To sum up, this exploration first expounds on the
commonly used dechlorination technology and then studies
the adsorption and desorption performance of dechlori-
nation adsorbents. Furthermore, the lightweight DL model
is applied to the chloride diffusion prediction experiment of
slag powder and fly ash concrete. The research contribution
is to improve and optimize the existing dechlorination
experiments and design a lightweight DL prediction method
with high efficiency, speed, and accuracy. This exploration
provides more methodological references for industrial
dechlorination in the future and enriches the research theory
in this field.

2. Materials and Methods

2.1. Lightweight DL Model. DL is to learn the sample data’s
internal law and representation level. The information ob-
tained in the learning process is beneficial to interpreting
data such as text, images, and sound [8, 9]. Its ultimate goal is
to make the machine have the ability to analyze and learn
like human beings and recognize characters, images, sounds,
and other data. DL is a complex machine learning algorithm
that has achieved far more speech and image recognition
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FiGure 2: CNN model.

results than previous related technologies [10]. Figure 1
shows the specific model structure.

Classified from the specific research content, DL mainly
involves three kinds of methods: convolutional neural
network (CNN) model, self-coding neural network of
multilayer neurons, and deep confidence network [11].

(1) CNN is a kind of feedforward neural network with
convolution calculation and depth structure. It is one
of the representative algorithms of DL. CNN has the
ability of representational learning and can conduct
the translation-invariant classification for the input
information according to its hierarchical structure.
Therefore, it is also called a “translation-invariant
artificial neural network,” mainly composed of input,
hidden, and output layers. Figure 2 shows the specific
form.

If x,,%,,%5,...,x, are input signals and » neurons
are connected to each other, the first neuron is used
as an object, which inputs information into all other
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neurons j(j=1,2,...,n). The connection weight
from the jth neuron to the ith neuron is expressed as
w;;. With the quasi-linear element model in the
neuron model as an example, the biggest feature of
the model is to use continuous information as input
and output. The following equation is the calculation
method of the output function f (x):

1
T epara)

(1)
The total input y; of neurons in the model is
expressed as

Ui = Z wijxj - 0,’) (2)
=1

where the output of neuron i can be calculated by
substituting y; into the following equation as variable
X.

yi = fi(w) (3)

The output value y; is a continuous value.

Besides, when the data in the input layer are
X1, X5, X3, . . .» X, the input of each neuron in the
hidden layer is as follows:

hi=2{zijxj+pi(i=1,2,...,1), (4)
i

where nand 7 are the number of neurons in the input
layer and hidden layer, respectively. z;; is the con-
nection weight between j neuron in the input layer
and i neuron in the hidden layer; p; is the threshold
value of i neurons in the hidden layer; #; is the input
value of i neuron in the hidden layer [12].

The activation function of neurons in the hidden
layer adopts the sigmoid function, so the expression
of the output of neurons in the hidden layer reads:

0;=f(h)(i=12,...,7). (5)

Activate function is f (x) = 1/1 + e”*. The activation
function of neurons in the output layer adopts the
identity function. If the threshold value is 0, the
output of each neuron in the output layer can be
expressed as follows:

Yi= Y vo;(k=1,2,....0), ©)

i=1

vy is the connection weight between i neurons in the
hidden layer and k neurons in the output layer; [ is
the number of neurons in the output layer.

The connection weights between the input layer and
hidden layer neurons together form the weight

weight vector Q is random in the initial case, so the
actual output y,, accuracy of the calculated network
is not high. After determining the number of neu-
rons in the hidden layer 7, the error d;, [13] can be
reduced by adjusting the Q value. Back propagation
is along function e,. The weight vector is adjusted
with the negative gradient direction of the weight
vector. The correction value of the weight vector Q is
set as AQ, AQ = —#0e,/0Q. s is the learning rate, and
the value range is 0~1. The following equations are
obtained through calculation:

I
_ aykr
AQ = n;dkr 3" )
AQ =(Av, Ap;, AQy). (8)
AVki = ’/Idkroir' (9)
l
Api = 10;, (1 - Oir) Z dkrvki. (10)
k=1

1
AQ = 0i; (1 - Oir)xjr Z dkrvki' (11)
k=1

The value of AQ can be calculated by the above
equation, and then the weight vector can be cor-
rected by Q = Q + AQ to obtain the corrected weight
vector [14].

(2) Self-coding neural networks based on multilayer

neurons include Autoencoder and Sparse Coding,
which have recently attracted extensive attention.
Figure 3 shows the specific model.

The specific calculation method is expressed as
M
min ) L(A™,B",C")+1Reg(C), (12)
m

where A", B", andC™ represent the input
A, B, and C matrices of the mth task, respectively; M
is the total number of samples; Reg represents a
regularized constraint; and A is the weight that
controls the regularization constraint [15].

(3) Deep belief network (DBN) is a kind of neural

network of machine learning, which can be used for
both unsupervised learning and supervised learning.
DBN is a probability generation model. Compared
with the neural network of the traditional discrim-
ination model, the generation model is to establish a
joint distribution between observation data and la-
bels. The whole neural network can generate training
data according to the maximum probability by
training the weights between its neurons [16].

vector Q. After the weight vector Q is determined, DL algorithm has achieved great success in the field of
the output value can be calculated according to the = computer vision, such as image classification and target
input value of the neural network. The value of the  detection. However, due to storage space and computation
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limitations, DL technology application in embedded and
mobile devices with certain storage and computing re-
quirements is still a great challenge. How to compress the
model to reduce storage space and computing consumption
has become a research hotspot. Present compression is
mainly realized through the two methods below [17, 18].

2.1.1. Matrix Decomposition Algorithm. Matrix decompo-
sition is a commonly used algorithm in model compression,
including singular value decomposition (SVD) or low-rank
decomposition algorithm. The idea is to obtain the most
representative information in the parameter matrix of each
layer by approximate estimation to realize the effect of
accelerating the operation speed of the compression model
[19]. For example, if the number of fully connected input
layers is x, the size is u x v, and the weight matrix is w, the
calculation method of the output data y of the fully con-
nected layer is as follows:

y=Wx. (13)

If the singular value decomposition is performed on W
and the first f important eigenvalues after decomposition are
approximately used to replace W, the following equation
displays the decomposition calculation method:

w=UYV'=UYV/, (14)
t

where U represents an orthogonal matrix in u x t dimen-
sion, X, is a diagonal matrix corresponding to the first ¢
values in the original diagonal matrix W, and V represents
an orthogonal matrix in v x t dimension. From the above
equation, the following equation displays the specific cal-
culation method of singular value decomposition:

Y=szU-<ZVT>-x=U-z. (15)

2.1.2. Modify the Original Network Structure. Replacing
network width with network depth is one of the methods to
realize network model compression. Figure 4 shows the
specific form.

Figure 4(a) is characterized by the neural network’s large
width and small depth. Figure 4(b) is characterized by the
neural network’s small width and large depth. The advantage
of increasing the depth is that the more parameters the
neural network carries, the more data it can train at one time.
Then, it is more favorable for the test data inspection and
analysis [20, 21].

The lightweight DL model is introduced into the design
and research of the dechlorination experiment to enhance
the accuracy and convenience of the experiment. Figure 5
shows the specific design process.

Figure 5 reveals that factors such as cement content, fly
ash content (or slag powder), and curing time are selected as
input and chloride ion diffusion coefficient as output. The
autonomous learning ability of the CNN is adopted to train
the prediction model. In data processing, P,,.x is equal to 270
and 2.2 x 10" m*/s, the maximum value of input and output
values, respectively. Four 2 x 2 parameter convolution ker-
nels are set in the convolution feature layer, and the sigmoid
function is adopted as the activation function.

2.2. Characteristics of Chloride Ion and Dechlorination
Technology. Chlorine (Cl) is a nonmetallic element. It is a
yellow-green gas under normal temperature and pressure;
has a strong pungent smell and very active chemical
properties; and is toxic [22, 23]. Chlorine widely exists in
nature in the compound form, which is also of great sig-
nificance to human physiological activities [24]. Sodium
chloride salt is common in life.

The following equation is the calculation method of one-
dimensional chloride diffusion in concrete:

oC(x,t) Q(DaC(x, t)>’

or ot 0x (16)

where C(x, t) represents the chloride ion content at x away
from the erosion surface when the erosion time is ¢, and D
represents the effective chloride ion diffusion coefficient.
At present, there are mainly three kinds of dechlori-
nation technologies, namely electrochemical removal
method, physicochemical method, and chemical method. (1)
Electrochemical method is a method to transfer or transform
chloride ions in solution through an external current and
finally realize the separation of chloride ions from the
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FiGure 4: Compression decomposition of neural network ((a) the network with large width and small depth; (b) the network with small

width and large depth).
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FiGURe 5: Teaching design flow of dechlorination experiment based on lightweight DL.

solution to be treated. Different from other methods,
electrochemical treatment has a high degree of automation
and does not need additional agents. However, the energy
consumption of electrochemical treatment is large, and it is
difficult to produce concentrated liquid or chlorine gas. In
general, electrochemistry has a good application prospect in
circulating water treatment. The overall operation of the
electrochemical method is relatively simple and clean
without adding chemical reagents. Electrochemical energy is
relatively popular and easy to obtain. However, the relative
energy consumption is large and the treatment cost is high
[25]. (2) Physicochemical methods are to remove chloride
ions through interception or adsorption technology, in-
cluding the methods of reverse osmosis and ion exchange
resin treatment. Reverse osmosis technology is a membrane
treatment technology with high removal efficiency and can
reduce chloride ions to a small amount. However, there are
membrane damage and high energy consumption. At
present, many studies are about membrane modification.

Membrane modification can reduce membrane damage and
increase membrane permeability. The ion exchange resin
method refers to the replacement of the exchangeable group
on the resin with the chloride ion to be removed from the
electrolyte. The treatment efficiency of the ion exchange
method is high, and the resin can be reused. However, the
resin has incomplete desorption, and its adsorption and
desorption properties are changed by changing the prop-
erties of the resin [26, 27]. (3) Chemical dechlorination
methods mainly include the ultra-high lime aluminum
method, layered bimetallic hydroxide, copper powder pre-
cipitation, and blowing in NO,. First, the principle of the
ultra-high lime aluminum method is to react with CI- in the
presence of Ca(OH), and Al(OH); to form Ca,Al,(OH)
1,Cl,. The ultra-high lime aluminum process has sufficient
raw materials and low requirements for water quality and
impact load resistance. However, its raw material utilization
rate is low, the reaction conditions are complex, and the
effluent hardness will increase [28]. Layered bimetallic
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TaBLE 1: Drugs and reagents used in the experiment.

Reagent name Chemical equation

Purity Production company

Isopropyl titanate Ti{OCH(CHj3),}4 Chemically pure A company in Zhejiang
Sulfuric acid H,SO,
Nitric acid HNO;

Hydrochloric acid HCI

Chinese medicine reagent

Sodium chloride NaCl

Silver nitrate AgNO; Analytical pure

Potassium chromate K,CrO, Aladdin reagent
Sodium hydroxide NaOH

Calcium sulfate CaSO, Chinese medicine reagent
Magnesium sulfate MgSO,

Deionized water H,O0 R>10Q-cm Laboratory self-made

TaBLE 2: Experimental equipment.

Manufacturer

Name of instrument and equipment Type
Ultra-pure water system EPED-40TF
Magnetic stirrer Topolino
Analytical balance AL104

Centrifuge L500

Electric blast drying oven DHG-9245A
Intelligent thermostatic bath DC-2006
Circulating water vacuum pump SHB-III
Constant temperature shaking table ZWY-2000
pH meter PHS-3C
Pipettor Finnpipette F2
Constant flow peristaltic pump BT100MH

Nanjing Yipu Yida Science and Technology Development Co.
IKA, Germany
METTLER TOLEDO
Xiangyi centrifuge instrument co., Itd.
Shanghai Yiheng Scientific Instrument Co., ltd.
Ningbo Xinzhi Biotechnology Co., Itd.
Changsha Mingjie Instrument Co., 1td.
Shanghai Zhicheng
Shanghai leici Technology Co., Itd.
Shanghai Chuangyi Science and Education Equipment Co., Itd.
Baoding Chuang Rui Precision Pump Co., Itd.

hydroxide is a kind of anionic clay with a layered structure.
The calcined products of bimetallic hydroxides can reabsorb
water and anions under certain conditions by using the
structural memory effect to partially restore the layered
structure of lactate dehydrogenase [29]. Layered double-
layer hydroxide has a stable effect and high chloride ion
removal efficiency, but chloride ions will be affected by the
presence of other anions [30, 31]. Principle of copper powder
dechlorination: copper and copper ions interact with
chloride ions in solution to form cuprous chloride precip-
itation. Copper powder precipitation may introduce new
impurities and the high cost of chlorine remover. However,
this method can be used in mining and metallurgy industries
with low chlorine concentrations to realize waste utilization
[32, 33].

2.3. Experimental Equipment and Methods. Tables 1 and 2
show the drugs, reagents, instruments, and equipment used.

3. Results and Analysis

3.1. Study on Adsorption and Desorption Properties of De-
chlorination Adsorbent. Based on the above experimental
conditions, the adsorption performance of dechlorination
adsorbent is studied. Figure 6 shows the specific results.
Figure 6 suggests that the chloride ion concentration
gradually decreases with the extension of adsorption time.
After 65 minutes, the chloride ion concentration does not
change, indicating that the maximum adsorption capacity

has been reached. Meanwhile, the pH will gradually rise
during the reaction. Therefore, at the beginning of the re-
action, a certain amount of sulfuric acid needs to be added to
maintain the subsequent consumption of sulfuric acid. The
removal rate of chloride ions in water can decrease almost in
proportion with the addition of adsorbent. Figure 6(b)
shows the results, suggesting that the chloride ion dosage
can control the chloride ion removal rate, and the maximum
chloride ion removal rate can reach more than 98.01%.
Figure 6(c) reveals the effect of temperature on the ad-
sorption performance of the material. It reveals that the
influence of temperature on the dechlorination process is
quite obvious. With the increase of temperature, the removal
rate of chloride ions increases.

Figure 7 is the research result of adsorbent desorption
performance.

Figure 7(a) shows that the regeneration effect will be
improved when the alkali concentration increases. However,
the acid consumption required for subsequent neutraliza-
tion and the cost of dechlorination will increase. The ad-
sorbent’s regeneration effect is poor using a low alkali
concentration. 2 mol/L sodium hydroxide is selected as the
alkali concentration for adsorbent regeneration through
comprehensive comparison. Figure 7(b) shows that the
regeneration performance of the adsorbent decreases
gradually with the increase of NaCl concentration in the
solution. When the NaCl concentration in the regeneration
solution reaches 120 g/L, the adsorbent can still maintain
60% adsorption efficiency after regeneration. Upon con-
version, this is equivalent to the salt concentration of alkali
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FIGURE 6: Adsorption performance of dechlorination adsorbent (Figure (a) shows the effect of reaction time on the dechlorination of
adsorbent. Figure (b) shows the effect of adsorbent addition on the dechlorination of adsorbent. Figure (c) shows the effect of adsorption

temperature on the dechlorination of adsorbent).
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FIGURE 7: Desorption performance of dechlorination adsorbent. (Figure (a) shows the effect of NaOH concentration on adsorbent re-
generation performance; Figure (b) reveals the effect of NaCl concentration in regeneration solution on adsorbent dechlorination).

regeneration solution after three times of continuous neu-
tralization. Therefore, the same batch of regeneration so-
lution can be used for three times during the experiment. In
addition, when the calcium hardness in the regeneration
solution is less than 500 mg/L, it has little effect on the
regeneration performance of the regeneration solution. The
follow-up study reveals that even if the raw water hardness
(CaCO;) reaches 11310 mg/L, the adsorbed adsorbent enters

the alkali regeneration solution after 0.1 mol/l sulfuric acid
pickling and twice water washing, and the hardness was less
than 500 mg/L, so it has little impact on the subsequent alkali
reuse.

3.2. Study on the Optimization of Dechlorination Experimental
Design of Lightweight DL Model. Seaports and sea crossing
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FIGURE 8: Prediction results of lightweight DL model in chloride diffusion of slag powder concrete.
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FIGURE 9: Prediction results of lightweight DL model in chloride diffusion of fly ash concrete.

bridges are often eroded by chloride ions, resulting in re-
inforcement corrosion and concrete surface falling off.
Therefore, the prediction results of the lightweight DL model
in chloride diffusion of slag powder concrete are analyzed
(Figure 8).

Figure 8 displays that the curing age of concrete is se-
lected as 18 days, 90 days, and 180 days, respectively.
Moreover, the experimental data are compared with the
experimental data added with the lightweight DL algorithm.
When the curing age is 18 and the water to binder ratio is
about 41%, the predicted value of the lightweight DL model
deviates from the experimental value. When the curing age is
90 days, the values completely coincide. When the curing age
is 180 days, the data coincide only when the water to binder

ratio is about 41%. It reveals that when the curing age is 90
days, the prediction result data of the lightweight DL model
are completely consistent. However, the figure also reveals
that the error values are within 0.2, indicating that the values
predicted by the lightweight DL model show a strong
correlation with the chloride diffusion value in the
experiment.

Moreover, the prediction results of the lightweight DL
model in chloride diffusion of fly ash concrete are analyzed
(Figure 9).

Similar to Figure 8, the experimental data are compared
with the experimental data added with the lightweight DL
algorithm. Figure 9 shows that there are errors to a certain
extent in the curing age of 18 days, 90 days, and 180 days,
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among which the largest error is the chloride ion prediction
result of the fly ash concrete in 90 days. However, similar to
the prediction results of chloride diffusion in slag powder
concrete, although there are errors, they are all in the range
of 0.2. Therefore, it can be preliminarily determined that the
lightweight DL model has certain applicability to the pre-
diction results for chloride ion diffusion.

4. Conclusion

With the continuous progress of industrialization, soil, water
quality, and air have also been polluted, and there are
multiple kinds of pollution, among which the excessive
concentration of chloride ions is one of them. First, the
adsorption and desorption properties of the dechlorination
adsorbent are analyzed. Then, the lightweight DL model is
introduced into the chloride diffusion prediction experiment
of slag powder and fly ash concrete. The data statistics and
comparative analysis methods are used to draw the following
conclusions: (1) After studying the adsorption performance
of dechlorination adsorbent, it is found that the chloride ion
concentration decreases gradually with the extension of
adsorption time. The removal rate of chloride ions in water
can decrease almost in proportion to the addition of ad-
sorbent. With the increase of temperature, the removal rate
of chloride ions will also increase. (2) The desorption per-
formance of the dechlorination adsorbent is analyzed. It is
found that when the alkali concentration increases, the
regeneration effect will be improved. However, the acid
consumption required for subsequent neutralization and the
dechlorination cost will increase. However, the regeneration
effect of the adsorbent is poor using a low concentration of
alkali. 2 mol/L sodium hydroxide is selected as the alkali
concentration for adsorbent regeneration after a compre-
hensive comparison. With the increase of NaCl concen-
tration in the solution, the regeneration performance of the
adsorbent decreases gradually. (3) The prediction results of
the lightweight DL model in chloride diffusion of slag
powder concrete are analyzed. Thereafter, it is found that
when the curing age of slag powder and fly ash is selected at
18 days, 90 days, and 180 days, respectively, there will be
some errors more or less, but they are all in the range of 0.2,
indicating that the lightweight DL model has certain ap-
plicability to the prediction results of chloride diffusion.

Due to the limited energy, there are some limitations in
data acquisition, resulting in some deviations in the in-
spection of relevant data. There is also a study on the design
of a dechlorination experiment based on a lightweight DL
model, which has not been discussed regarding economic
cost investment. According to the specific situation, the
benefit evaluation can be carried out in the follow-up re-
search. In this way, to a certain extent, it can bring certain
methods and optimization directions for the dechlorination
experiment in production and life. [34].
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