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Leptospirosis is the most widespread zoonosis in the world and a neglected tropical 
disease estimated to cause severe infection in more than one million people worldwide 
every year that can be combated by effective immunization. However, no significant 
progress has been made on the leptospirosis vaccine since the advent of bacterins over 
100 years. Although protective against lethal infection, particularly in animals, bacter-
in-induced immunity is considered short term, serovar restricted, and the vaccine can 
cause serious side effects. The urgent need for a new vaccine has motivated several 
research groups to evaluate the protective immune response induced by recombi-
nant vaccines. Significant protection has been reported with several promising outer 
membrane proteins, including LipL32 and the leptospiral immunoglobulin-like proteins. 
However, efficacy was variable and failed to induce a cross-protective response or 
sterile immunity among vaccinated animals. As hundreds of draft genomes of all known 
Leptospira species are now available, this should aid novel target discovery through 
reverse vaccinology (RV) and pangenomic studies. The identification of surface-exposed 
vaccine candidates that are highly conserved among infectious Leptospira spp. is a 
requirement for the development of a cross-protective universal vaccine. However, the 
lack of immune correlates is a major drawback to the application of RV to Leptospira 
genomes. In addition, as the protective immune response against leptospirosis is not 
fully understood, the rational use of adjuvants tends to be a process of trial and error. In 
this perspective, we discuss current advances, the pitfalls, and possible solutions for the 
development of a universal leptospirosis vaccine.

Keywords: Leptospira, reverse vaccinology, genome mining, vaccine discovery, vaccine candidate, recombinant 
vaccine, subunit vaccine, animal model

iNtrODUctiON

Following the discovery of leptospirosis, it was primarily associated with rural populations (1). This 
disease is caused by pathogenic Leptospira spp. and can be transmitted by direct contact via infected 
animals or by indirect contact as leptospires can survive outside the host. Agricultural workers, 
mineworkers, veterinarians, or individuals that came into direct contact with infected animals or 
contaminated environments were the main at-risk groups. However, toward the end of the 20th 
century, there were reports of leptospirosis among the homeless in major cities in the USA (2) and in 
urban slum communities in developing countries (3). The WHO estimated that the global incidence 
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of leptospirosis more than doubled from approximately 500,000 
cases in 1999 (4), to over a million cases in 2015 (5). Urban 
leptospirosis is now endemic in urban slums due to the lack 
of sanitation, rodent infestation, extreme poverty, and limited 
access to public health services in these communities.

Severe leptospirosis or Weil’s disease (jaundice, acute renal 
failure, and bleeding) has a case fatality rate of >10%. However, 
leptospirosis-associated pulmonary hemorrhage syndrome 
(LPHS) is being increasingly reported in developing countries 
(6) and the fatality rate is >50% (7). Clinical diagnosis of lepto-
spirosis is difficult due to its similarity with other hemorrhagic 
diseases, and laboratory diagnostic tests are inadequate in these 
settings (8). There remains an urgent need for point-of-care rapid 
diagnostic tests. Vaccination of at-risk populations remains the 
most viable strategy for the control of leptospirosis. Classical, 
inactivated, vaccines have been available for over 100 years and 
are used routinely for agricultural and companion animals, 
reviewed in Ref. (9). Some countries have approved their use in 
human at-risk populations, although due to the severe side-effects 
and perceived short-term immunity and lack of cross-protection, 
they have not been adopted by the global community (10).

Of the 22 known Leptospira spp., 15 are infectious and can 
cause disease with varying degrees of severity. The pathogenesis 
of leptospirosis is a multifactorial process that is poorly under-
stood, see, e.g., Ref. (11). Serological classification of leptospires 
indicates the existence of at least 250 serovars distributed in 
18 serogroups (12). All this genetic and phenotypic diversity 
of pathogenic Leptospira spp. is a major drawback for vaccine 
development. The idea of a universal vaccine capable of protect-
ing against all infectious Leptospira spp. and serovars would 
appear to be farfetched. However, some progress has been made 
with other pathogens such as influenza (13, 14), dengue (15), and 
others (16, 17). This perspective focuses on current advances, 
limitations, possible solutions, and looks forward to the possibil-
ity of a universal leptospirosis vaccine.

eXPeriMeNtAL recOMBiNANt 
vAcciNes

LipL32 is the immunodominant protein in pathogenic Leptospira 
spp. (18), there are over 38,000 copies per cell (19), and it can 
comprise up to 75% of the protein content of the outer membrane 
(OM) (20). However, there is a doubt as to its cellular localization; 
the latest report suggests it may occupy a subcellular location 
on the inner leaflet of the OM (21). LipL32 is not required for 
virulence; an Leptospira interrogans lipL32 knockout mutant 
could still infect hamsters (22). The biological function of LipL32 
remains unknown, yet it is remarkable that such an abundant 
protein can be removed from the leptospiral OM with little or 
no effect on growth rate or OM structure. This is an example 
of the redundancy encoded in the Leptospira genome, as seen 
with other proteins, e.g., putative adhesins (23). There are over 
20 publications on LipL32 and vaccine development. However, 
when rigorous statistical analysis is applied [e.g., Fisher’s exact 
test (24)], only five demonstrated significant protection against 
leptospirosis, reviewed in Ref. (10, 25). In addition, problems 

with reproducibility, survival in the control groups, high chal-
lenge doses (septic shock or leptospirosis), and the subcellular 
location of LipL32 have complicated its candidacy for inclusion 
in a universal vaccine formulation.

The leptospiral immunoglobulin-like (Lig) protein family 
includes LigA, LigB, and LigC and is only found in pathogenic 
Leptospira spp. (26, 27). While LigA and LigB are highly con-
served (28), only LigB is present in all pathogenic Leptospira 
spp. (29). LigA and LigB are virulence determinants that are 
upregulated during infection (30), play a role in host cell adher-
ence (31), prevent blood clotting (32, 33), and inhibit comple-
ment (34, 35). However, as seen for LipL32, an L. interrogans 
ligB knockout mutant remained virulent in the hamster model 
(36). Nevertheless, the Lig proteins are the standout vaccine 
candidates to date, with high, reproducible, levels of protection in 
animal models of acute leptospirosis in over 15 scientific reports, 
although not all withstood rigorous statistical analysis (10). The 
C-terminal (non-identical) region of LigA is an accepted vaccine 
candidate, having been evaluated in subunit (37–41), DNA (42), 
encapsulated (43), lipidated (44), and carbon nanotube vaccine 
preparations (45). However, when evaluated in a hamster coloni-
zation model, LigA failed to prevent infection (46). There is less 
evidence in support of LigB, the N-terminal conserved (repeat) 
region conferred significant protection as a subunit vaccine 
preparation (47) and a DNA vaccine (48) in the hamster model. 
Our group found that the same LigB polypeptide (LigBrep) not 
only protected hamsters but also induced sterile immunity in 
survivors (manuscript submitted).

Using the classical approach to vaccine candidate discovery, 
approximately 30 leptospiral, non-LipL32, non-Lig, proteins 
have been evaluated (10, 25). Of these, 10 proteins conferred 
significant protection against challenge with Leptospira spp. when 
the data were reanalyzed using, when necessary, a more rigor-
ous statistical analysis (Fisher’s exact test) (10). The first report 
of protein-based protection came from studies of recombinant 
OmpL1 and LipL41 in the hamster model (49), and although 
only 1/3 experiments demonstrated significant protection, this 
provided the initial impetus for further research into protein-
based vaccine candidates against leptospirosis. In an evaluation 
of three putative OMPs (Lp1454, Lp1118, and MceII), the subunit 
formulations failed to protect hamsters (50); however, when com-
bined and encapsulated in liposomes, they conferred significant 
protection against challenge (51, 52). The putative lipoprotein 
LemA, identified using a reverse vaccinology (RV) approach (53), 
significantly protected immunized hamsters when administered 
as a DNA vaccine and protection increased using a prime-boost 
strategy (lemA/LemA) (54). In the most extensive study to date, 
238 proteins identified using RV were evaluated as vaccine can-
didates (55). A hamster colonization model was used to evaluate 
pools of recombinant proteins (5 proteins/pool) and >70% were 
immunogenic. However, none of the recombinant protein pools 
conferred protection against colonization.

tArGet DiscOverY

Cytoplasmic proteins, inner membrane proteins, and OM 
lipoproteins that are not exposed on the surface (i.e., those 
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FiGUre 1 | the cell wall of Leptospira spp., a diderm bacteria with inner and outer lipid membranes, is the target for the identification of potential 
vaccine candidates. The outer leaflet of the outer membrane (OM) is composed of lipopolysaccharide. Lipoproteins can be attached by a lipid anchor to one of 
the leaflets of either membranes. The IM is spanned by alpha-helix transmembrane proteins while beta-barrel transmembrane proteins span the OM. Leptospiral 
motility is provided by two flagella that are attached to the IM and are located within the periplasmic space (PS). A peptidoglycan layer is also present in the PS. OM 
lipoproteins, such as LigA and LigB, as well as OM beta-barrel proteins, such as LptD, BamA, TolC-, TonB-dependent receptors, and other porins have at least a 
portion of their structure exposed on leptospiral surface and are prospective vaccine candidates, highlighted in gray. The localization of the lipoprotein LipL32 in the 
OM is controversial; the latest reports indicate that it has a subsurface location (see text).
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attached to the inner leaflet of the OM) are likely to be ineffec-
tive recombinant vaccines. Antibodies induced by subsurface 
proteins would not be able to bind to infecting leptospires making 
the vaccine ineffective. Therefore, vaccine candidates should be 
surface exposed on the leptospiral cell. Equally important are the 
potential roles in pathogenicity and the immunogenicity of these 
proteins. Furthermore, it is doubtful that a protein-based vaccine 
candidate would be capable of inducing a protective immune 
response if the protein components of the vaccine lacked one or 
more of these characteristics.

Lipoproteins attached to the outer leaflet of the OM and trans-
membrane β-barrel proteins spanning the OM (OMPs) should be 
fully or partially surface exposed (Figure 1). The localization of 
LipL32 is still unresolved; there is experimental data for both sur-
face (56–59) and subsurface locations (21). Leptospiral genomes 
encode OMPs such as LptD, BamA-like, TonB-dependent recep-
tors, and several other porins that play crucial roles in bacterial 
survival and potential role in pathogenicity. These proteins are 
ideal targets and should be evaluated as potential vaccine candi-
dates. RV was developed to identify surface-related proteins in 
the genome of pathogens using bioinformatics (60). RV has been 

used to analyze Leptospira genomes and there are several reports 
in the literature that have used in silico genome mining toward 
the identification of leptospiral vaccine candidates, reviewed in 
Ref. (61).

Recently, dozens of leptospiral proteins have been described 
as adhesins, reviewed in Ref. (11), and blocking the adhesion of 
leptospires is thought to impair their virulence. Similarly, several 
proteins have been described as host complement activation 
inhibitors, suggesting that leptospires evade the complement 
system, reviewed in Ref. (62). In many studies (63–67), the sur-
face localization of the leptospiral antigens were determined by 
in vitro approaches including proteinase K digestion and a surface 
immuno-fluorescence assay (IFA) (68). These approaches have 
contributed to the controversy surrounding the localization of 
proteins such as LipL32. Another example is that of LIC13166, 
this protein was originally demonstrated to be an OMP exposed 
on the surface of the leptospiral cell by surface biotinylation, 
membrane affinity, and surface-IFA experiments (68). However, 
in a recent publication, it was shown that LIC13166 is, in fact, a 
flagellar protein, renamed FcpA, which is located in the periplasm 
(69). The subcellular location of adhesins, complement binding 
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proteins, and virulence factors described in knockout experi-
ments should be properly investigated; otherwise the biological 
relevance of these findings will remain unclear. We are currently 
developing an alternative method to improve the identification 
of surface leptospiral proteins while maintaining the integrity of 
the leptospiral OM.

crOss-PrOtectiON

The perceived lack of cross-protection following immuniza-
tion with a bacterin is another factor that has limited their 
widespread use. There are, however, several reports of bacterins 
conferring cross-protection against species-related serovars. An 
evaluation of bacterins reported 100% cross protection between 
L. interrogans serovars Canicola, Copenhageni, and Leptospira 
borgpetersenii serovar Ballum but not serovar Mozdok (70). A 
multivalent bacterin containing serovars from four different 
serogroups demonstrated cross-protection in a canine model 
of leptospirosis (71). Another study of two bacterins based on 
different serovars, but belonging to the same serogroup and spe-
cies, reported species-related cross-protection, although 50% of 
the control group survived (72). It is likely that the protective 
antigens in these studies were proteins, as leptospiral lipopoly-
saccharide (LPS) does not induce cross-protection, even among 
species-related serovars (73). Rather, protein-enriched samples 
were responsible for cross-protection against species-related 
serovars in a gerbil model of lethal leptospirosis. This was fur-
ther supported by a study using a live vaccine based on an LPS 
defective mutant. Species-related cross-protection was demon-
strated, although the vaccine could not prevent colonization by 
a non-related serovar (74). Several studies of individual proteins 
have claimed to show cross-protection. An adenovirus construct 
containing lipL32 conferred cross-protection against a species-
related serovar, although >50% of the control groups survived 
(75). A treatment based on anti-LipL32 monoclonal antibodies 
protected hamsters challenged with a species-related serovar 
(76). Prime-boost strategies using LemA and LigBrep conferred 
cross-protection against a species-related serovar, albeit in one-
off experiments (54, 77).

At least one strain for every known Leptospira spp. has been 
sequenced and new isolates are continually being sequenced and 
their genomes released on GenBank or other public databases, 
see, e.g., Ref. (29, 78–83), thereby providing a panoramic view 
of Leptospira pathogenomics, permitting the identification of 
orthologs and protein sequence similarity among infectious 
species. This has significantly contributed to the identification 
and selection of conserved vaccine candidates based on a simple 
in silico sequence analysis (Figure 2). Protein sequences are usu-
ally highly conserved among the same species regardless of the 
serovar or serogroup, while they can differ considerably when 
comparing the same serovar in different species. While, serologi-
cal classification is unquestionably important for epidemiology 
and bacterin-based vaccine studies, it is of limited use for recom-
binant vaccine development. This is a problem associated with a 
leptospiral bacterin vaccine, the immune response is primarily 
directed against the leptospiral LPS and while it protects against 
infection by closely related serovars or serovars from the same 

Leptospira spp., leptospiral LPS does not stimulate memory B-cells 
(10). As there is no clear definition of cross-protection in the field 
of leptospirosis, this is a major drawback to vaccine candidate 
discovery and evaluation. Ideally, recombinant vaccine-induced 
cross-protection should be defined as cross-species protection 
rather than cross-serovar protection. A universal vaccine should 
therefore protect against all 15 infectious Leptospira spp. regard-
less of serovar. However, if this is not a viable option, it should 
be possible to identify the main circulating species and develop 
a region-specific recombinant vaccine rather than a universal 
vaccine. This could potentially allow the characterization of the 
protective immune response and establish standard protocols 
for the evaluation of cross-protection of recombinant vaccine 
candidates (Figure 2).

MODULAtiON OF tHe iMMUNe 
resPONse

Several adjuvants and delivery systems have been used to enhance 
the immune response against leptospiral antigens. Aluminum 
hydroxide (alhydrogel) and Freund’s adjuvant are by far the most 
common, although others including flagellin (84), CpGs (85), 
nanostructures (45), liposomes (43, 51, 52), xanthan (85) have 
been investigated. While Freund’s adjuvant cannot be used in 
humans due to its high reactogenicity (86), it is the most potent 
commercially available adjuvant (87), is useful for the primary 
screening of vaccine antigens, and has been used successfully in 
vaccine formulations against leptospirosis (39, 41). To date, only 
partial protection has been demonstrated with vaccines using 
alhydrogel, the most widely used adjuvant in human vaccines. 
Recently, other adjuvants have become commercially available 
and have been approved for use in the formulation of human 
vaccines, comprising the adjuvants MF59 (squalene), AS01 
[monophosphoryl lipid A (MPL), QS21], AS03 (α-tocopherol, 
squalene, and polysorbate 80), AS04 (MPL combined with 
alhydrogel), and virosomes (liposome/VLPs) (88, 89). These 
prospective adjuvants have not yet been evaluated as adjuvants 
for leptospirosis vaccines.

Rational modulation of the immune response is difficult to 
achieve for leptospirosis vaccines as little is known about the 
protective immune response that should be induced by a lepto-
spirosis vaccine. Humoral immunity is believed to be responsible 
for protection; anti-LPS antibodies are protective in animal 
models and can be passively transferred between animals (90). 
As predominantly extracellular organisms, leptospires are most 
likely cleared from the bloodstream by phagocytosis followed 
by opsonization. However, at least in some hosts, e.g., cattle, 
induction of cellular immunity is equally important (90). Until 
recently, there were no published reports of correlation between 
antibody titer, induced by leptospiral recombinant vaccines and 
protection against challenge. However, an oral immunization 
strategy based on LigA found that survival was dependent on 
a minimum antibody titer being reached in a 2-week period 
following immunization (44), and if this can be reproduced, 
it will be an extremely important finding. The lack of immune 
correlates is a major limitation in target discovery using RV as 
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FiGUre 2 | A schematic representation of the development pipeline for a universal vaccine against leptospirosis. The basic research on Leptospira 
microbiology and molecular biology contributes to vaccine development. Leptospira mutagenesis is an example of basic research that has and will continue to 
further our understanding of pathogenesis and identification of virulence factors. Genomic and pangenomic studies are of central importance to the development of 
a universal leptospirosis vaccines, permitting the identification of potential vaccine candidates and the analysis of protein sequences among different Leptospira spp. 
RV has not been fully explored in leptospirosis and needs to be more thoroughly exploited. Once potential vaccine candidates are identified, an in vitro validation is 
required, particularly to confirm the localization of antigens on the surface of the leptospiral cell. At this stage, a prospective vaccine candidate can be assessed for 
immunogenicity. The lack of well-defined correlates of immunity for leptospirosis represents one for the major limitations for leptospirosis vaccine development and 
remains to be resolved. Therefore, surface-related, conserved (among infectious Leptospira spp.), and immunogenic leptospiral antigens must be evaluated in 
vaccine challenge experiments using animal models. Cross-protection, defined as cross-species rather than cross-serovar protection should be evaluated. In 
addition, as the protective immune response is not fully understood, continued research in this field is necessary. Finally, the long-term goal of this pipeline is to 
identify experimental vaccine preparations for evaluation in clinical trials.
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they are essential for the in vitro screening of potential vaccine 
candidates, see, e.g., the bactericidal assay for Neisseria menin-
gitidis (91) and the opsonophagocytosis assay for Staphylococcus 
aureus (92).

ANiMAL MODeLs OF LePtOsPirOsis

The recommended animal model for acute leptospirosis is the 
Syrian hamster; this model replicates the human symptoms of 
the disease, including kidney failure, LPHS, and kidney, liver, 
and lung tissue damage, which result in death (93). Furthermore, 
the hamster model is the recommended model for potency 
testing of bacterin vaccines (94). The acute model is depend-
ent on a virulent challenge strain and the lack thereof has had 
a major impact on protection studies. However, to date, no 
well-established correlates of immunity have been identified 
and, therefore, vaccinated hamsters must be challenged with 
a virulent Leptospira strain to demonstrate protection. Due to 
significant variation among the hamster models of acute lepto-
spirosis, we recommend that the research community adopt a 
standardized model (see Supplementary Material). An alterna-
tive to the lethal model is the hamster colonization model, and 
this is the model of choice when evaluating vaccine candidates 
for agricultural animals including cattle, swine, and horses (55, 
95). Unlike the acute model, the primary endpoint in this model 
is kidney colonization.

A major limitation of the hamster model is the lack of com-
mercial reagents for characterization of the immune response, 
e.g., induction of cytokines and chemokines cannot be measured 
directly. Alternate models include the guinea pig and the gerbil, 

although there are few commercially available reagents for 
these models. Due to the wide range of commercially available 
reagents, the mouse model is attractive, reviewed in Ref. (96). 
Wild-type mice are naturally resistant to leptospirosis, although 
colonization is possible with some serovars (9, 97). Lethal lep-
tospirosis has been demonstrated in C3H/HeJ (41), SCID, and 
Rag1 knockout mice (98). Maintenance host models of chronic 
infection have been developed using the Wistar strain of Rattus 
norvegicus (9, 99).

cONcLUsiON

Alternatives to whole-cell inactivated leptospiral vaccines have 
so far failed to live up to their initial promise, and the concept 
of a universal leptospiral vaccine remains just that, a concept. 
Several reviews have highlighted the modest numbers (~30) of 
leptospiral proteins that have been tested using various vaccine 
strategies, including subunit, DNA vaccines, prime-boost, encap-
sulated, and live avirulent strains. Of these, less than a handful 
has been successful. However, the availability of multiple genome 
sequences, combined with advances in bioinformatics (e.g., RV) 
and the characterization of surface-exposed virulence factors, 
will improve the discovery of potential vaccine candidates. The 
next challenge is to develop in vitro assays based on correlates 
of immunity for the high-throughput screening of these vaccine 
candidates. While there are several animal models of leptospirosis, 
their standardization is necessary for the critical interpretation 
of protection data. Cross-protection is a priority for a universal 
vaccine and will require the identification of vaccine candidates 
that are conserved among the infectious Leptospira spp. Our 
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poor understanding of the (protective) immune response has 
hindered the intelligent selection of adjuvants for use in vaccine 
formulations. Finally, while the field is moving in the right direc-
tion, a universal vaccine for leptospirosis remains a long-term 
goal.
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