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Abstract

One approach to the reconstruction of infectious disease transmission trees from pathogen genomic data has been to use
a phylogenetic tree, reconstructed from pathogen sequences, and annotate its internal nodes to provide a reconstruction
of which host each lineage was in at each point in time. If only one pathogen lineage can be transmitted to a new host
(i.e., the transmission bottleneck is complete), this corresponds to partitioning the nodes of the phylogeny into connected
regions, each of which represents evolution in an individual host. These partitions define the possible transmission trees
that are consistent with a given phylogenetic tree. However, the mathematical properties of the transmission trees given
a phylogeny remain largely unexplored. Here, we describe a procedure to calculate the number of possible transmission
trees for a given phylogeny, and we then show how to uniformly sample from these transmission trees. The procedure is
outlined for situations where one sample is available from each host and trees do not have branch lengths, and we also
provide extensions for incomplete sampling, multiple sampling, and the application to time trees in a situation where
limits on the period during which each host could have been infected and infectious are known. The sampling algorithm

is available as an R package (STraTUS).
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Introduction

The use of genetic data to reconstruct a pathogen transmis-
sion tree (a graph representing who infected who in an ep-
idemic) has been the subject of considerable interest in recent
years. Many different approaches have been proposed, both
phylogenetic (Morelli et al. 2012; Ypma et al. 2013; Didelot
et al. 2014; Hall et al. 2015) and nonphylogenetic (Aldrin et al.
2011; Jombart et al. 2014; Skums et al. 2018). In phylogenetic
approaches, a phylogenetic tree reconstructed from sequen-
ces for pathogens sampled in an epidemic will specify the
order of the coalescences of lineages, and also, if its nodes are
dated, the time at which these occurred. Some approaches
further assume that internal nodes in the phylogeny corre-
spond to transmission events (Morelli et al. 2012; Mollentze
et al. 2014 Lau et al. 2015), which in a dated phylogeny
specifies infection dates, whereas others do not (Didelot
et al. 2014, 2017; Hall et al. 2015; Klinkenberg et al. 2017). In
either case, a phylogeny on its own does not determine who
infected who, and extra components are required to recon-
struct transmission events.

The assumption of coinciding lineage coalescences and
transmission events may be unwise, and in particular it does
not take into account within-host pathogen diversity (Ypma
et al. 2013; Giardina et al. 2017). Several approaches have been
taken that do not make it, one of which is to note that if a
phylogeny from a completely sampled outbreak has its nodes

annotated with the hosts in which each lineage was present,
the transmission tree is known (Didelot et al. 2014, 2017; Hall
et al. 2015). In particular, Hall et al. (2015) demonstrated that
the set of transmission trees for a known phylogeny, with
complete sampling and assuming transmission is a complete
bottleneck, is equivalent to the set of partitions of its nodes
with the property that each part of each partition contains at
least one tip and the subgraph induced by the nodes in each
part is connected. However, the mathematical properties of
this space of partitions remain largely unexplored.

Here, we provide procedures for counting the total num-
ber of these partitions (and hence the total number of trans-
mission trees) for a known phylogeny. We also give an
algorithm that samples uniformly from the set of such parti-
tions. In a previous paper, Kenah et al. (2016) described a
method to perform these procedures when the order of in-
fection times is completely known; here we relax this and no
input beyond the phylogeny and a correspondence of hosts
to tips is compulsory. Initially we assume that the phylogeny
is binary, sampling is complete, each host provided one sam-
ple, and nothing is known about the timings of each infection,
but we go on in Appendix, Supplementary Material online to
relax each of these assumptions individually, and finally relax
them all simultaneously.

The procedures outlined here may be useful to researchers
wishing to explore the structure that the phylogeny imposes
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on transmission tree space, or alternatively to explore
whether a candidate transmission event is firmly (mathemat-
ically) ruled out by a phylogeny or set of phylogenies. Uniform
sampling from transmission trees on a phylogeny is rapid and
could allow public health researchers who are reconstructing
outbreaks a quick guide to some of the most frequently oc-
curring transmission events among all transmission trees con-
sistent with a set of sequence data. We include some
numerical applications of our sampling approach, comparing
transmission trees on balanced and unbalanced phylogenies,
and comparing uniformly sampled transmission trees with
transmission trees inferred with the TransPhylo approach
(Didelot et al. 2017).

New Approaches

Here we describe how to count, and uniformly sample, trans-
mission trees for a known phylogeny in the simplest case
where the phylogeny is binary, each host in the transmission
tree is sampled once and only once, and no time limits are
placed on the potential duration of a host’s infectious period.

Let the phylogeny 7 be an unlabeled rooted binary tree,
without branch lengths. Let 7 represent the unrooted tree
obtained from 7" by attaching a single extra tip to the root of
7T by a single edge. Note that two distinct 7s can have the
same 7 %, and that 7" has one more tip than 7.

We follow the correspondence described by Hall et al.
(2015) between transmission trees and partitions of the
node set of 7 such that all tips derived from the same
host are members of the same part (or block, or subset) of
the partition, and the subgraph induced by each part is con-
nected. This assumes that sampling is complete and that
transmission is a complete bottleneck (i.e, that only one
pathogen is transmitted at a time, so that diversity is not
transmitted from host to host). Although we relax the former
assumption in Appendix, Supplementary Material online, the
latter is more fundamental. See figure 1 for an example. We
call a partition that satisfies these constraints an admissible
partition.

In this paper, the term “subtree” is intended in the normal
phylogenetic (rather than graph theoretic) sense: a subtree is
a subgraph of 7" consisting of a node u, all its descendants (if
any), and the edges between them. We denote the subtree
rooted at u by 7 ; this is defined even if u is a tip.

Enumeration of Possible Transmission Trees

With 7 fixed and having n tips, suppose we wish to count the
number of admissible partitions, as defined above, of its node
set N(7), and hence the set of possible transmission trees. If
the set of such partitions is P(7), we wish to calculate
|[P(7)|. Nothing about the definition of an admissible parti-
tion requires a rooted tree, so P(7 ") is defined similarly. It is
trivial that if n=1, then |[P(7)| = |P(7 )| = 1. From here
on, when we discuss partitions we mean admissible
partitions.

If T, is a subtree, we can define P(7 ) in the obvious way
by regarding 7, as a tree in its own right. If 7, is indeed a
subtree in a larger phylogeny of an epidemic, however, this is
not sufficient. We do not assume that transmission occurs at
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the time of internal nodes, and so, even with complete sam-
pling, it is possible that the root node of any subtree was not
infecting any of the hosts from which the tips of that subtree
were sampled.

To allow for this possibility, we also define a second set of

partitions of N(7',), Q(7,):
Q7,)={{NT,)NS:SeP}:PeP(7T)}

An element of Q(7 ) is the image of an element of P(7")
when the intersections of all its parts with the node set of 7,
are taken. (This is not an injective operation, as the partition
of the nodes of 7 that are not nodes of 7, does not matter.)

Q(7 ), unlike P(7 ), allows an internal node of 7, to
share its part with no tip of 7 . Suppose ‘{3 is a partition of
N(7') and there exists S € B such that N(7,) N S is non-
empty and contains no tip of 7. Then:

(1) u € N(7,) N S because if it were not then the S would
not obey the connectedness requirement for being a
part of a partition of N(7). This is because, if v € S
NN(7,) and tis the tip of 7 in S, then the path from v
to t must intersect u.

(2) N(7,)NSisthe only member of the set {N(7,) N R
: R € P} that contains no tips of 7, because u can
belong to only one member of a partition of 7 ,.

It follows that Q(7,,) is the set of partitions of 7 which
obey the rules for an admissible partition except that they
also allow (but do not insist on) an extra part (whose ele-
ments still induce a connected subgraph of 7',) containing
7T's root. There is now no need to insist that Q(7") only be
defined if 7 is a subtree of some larger tree; it is defined for
any tree. Figure 2 shows an example of the extra elements of
Q(7") which are not already elements of P(7") (and hence
already displayed in fig. 1).

We will not need to use the definition of Q(7,) again,
because it is in obvious correspondence with P(7 ). (Recall
that 7 is obtained from 7 by attaching a single tip to 7's
root.) Compare figure 3 with the full set of partitions dis-
played in figures 1 and 2 as an illustration of this.

If nis at least 2, then 7 has a left subtree 7, rooted at
the left child rL of its root node r and a right subtree 7
rooted at the right child rR. The following results are proven
in the supplementary information, Supplementary Material
online:

Proposition 1. If 7 has at least two tips, then
IP(T) = (IP(T)[ x [P(T)]) + (IP(T )| x [P(T7,)).

Proposition 2. If 7 has at least two tips, then
IP(T7)] = IP(T)| + (IP(T ;)] < [P(T 2)])-

Since |P(7 )| and |P(7 )| are equal to 1 when 7 has one
tip, |P(7)| can now be calculated for any 7 by doing a
postorder tree traversal, as all that is needed to do the calcu-
lations at any node can be obtained by doing the same
calculations at both of that node’s children. See figure 4 for
an example.
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Fic. 1. A rooted phylogeny (top) and the five compatible transmission trees labeled with their expression as partitions of its node set (bottom).

Thicker, colored branches connect members of the same part.
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Fic. 2. For the tree in figure 1, the three members of Q(7") which are
not members of P(7).

As a mathematical aside:

Proposition 3. If /, is the fully unbalanced tree (also known
as the caterpillar tree) with n tips, then |P(4,,)| is F2p_1, the
(2n — 1)th Fibonacci number, and |P(¢})] is Fap.

Proof ¢; is the tree with one tip, so |P(¢;)| = 1= F; and
|P(¢7)| =1 =F,, then proceed by induction. For n>1,
the two subtrees descended from the root of ¢, are ¢,_4
and 61 P(£y)] = [P(yr) | x [P(E5)] + IP(E, )|  [P(
) = Fan—3 X 1+ Fapa X 1= Fyy_q and [P(£,)| = |P({,)]
+IP(,_ )| x [P(43)] = Fan—1+ Fan—a X 1= Fp,. O

To give some idea of the size of transmission tree space for
a single phylogeny, Proposition 3 shows that |P(¢1o)| = 4181
, [P(4so)] > 2.1 x 10% and |P(l100)| > 1.7 x 107,

An alternative, nonrecursive means of calculating both |P
(7)| and [P(7 )| using the reduced Laplacian matrix of the
wired tree of 7 (Levine 2009) is given in Section 2 of
Appendix, Supplementary Material online. This procedure is
less generally applicable as it does not easily extend to incom-
plete or multiple sampling, but it provides a link to graph
theory which may inspire further theoretical work.

Enumeration of Partitions with a Known Root Part
Having demonstrated how to count the set of partitions or
transmission trees compatible with a given 7', we now turn
our attention to the matter of providing a uniform sample
from that set. In order to do this, we need to determine what
proportion of the |P(7)| partitions have the root r of T
sharing its part with each tip.

IfE(T) is the tip set of 7, and C(7") the set of children of r,
let a: P(E(T)) — P(C(T)) (with P(S) representing the
power set of S) be the function taking a set of tips of 7 to the
set of children of r which are ancestors of (or equal to) at least
one of those tips.

Let {ti,...,t,} bethetips of 7. For each i let H; be the set
containing just t; this may seem redundant but it becomes
crucial when relaxing the single sampling assumption
as described in Appendix, Supplementary Material online. If
P/(7) C P(T) is the set of partitions of N(7) that have r in
the same part as the membership of H;, we wish to calculate
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FiG. 3. An unrooted phylogeny (top) and the eight partitions of its
node set (bottom). Thicker, colored branches connect members of
the same part.

|P'(T)] for all i. Naturally >, ;. [P'(T)| = |[P(T)|. f T
has one tip t; € H,, obviously [P'(7")| = 1. For any other 7,
treating 7,z and 7, as trees in their own right but whose
tips are partially shared with 7, we can define P'(7 ) (re-
spectively, P'(7,z)) only if a(H;) = {rL} (respectively,
a(H;) = {rR}). The following is proven in Appendix,
Supplementary Material online:

Proposition 4. Suppose 7 has at least two tips. Then:

P(T)| x [P(T)l, a(H) = {rL}
P(Tw)l x [P(T)l, a(H;) = {rR}.

0, a(H) = &

Proposition 4 allows the value of [P'(7)| for all i to be
calculated by a similar postorder traversal to that described in
the previous section. See supplementary figure S1,
Supplementary Material online for an example. Note that
with an algorithm to calculate all |P'(‘7")| available, a separate
one to calculate |P(7)| is not necessary as the latter is
simply the sum of the former. As n calculations are performed
at n — 1 nodes, the calculation of |P'(7,)| for all internal
nodes u of 7 is O(n?); in other words the number of required

P(T)]
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Fic. 4. How to count partitions. At each node u, if 7, is the subtree
rooted at u, then the red number is |P(7, )| and the blue [P(77)|. If u
is internal and has children uL and uR, |P(7 )] is (|P(7 )| x [P(7
)+ (IP(Twr)| % [P(T,)]) (the sum of the product of the blue
number at ul and the red number at uR, and the product of the
blue number at uR and the red number at uL), whereas |P(7 )| is |
P(T.)|+ (IP(T;,)| x |P(T;z)|) (the sum of the red number at u
and the product of the blue numbers at its children).

operations scales quadratically with the number of tips of
phylogeny.

Sampling Uniformly from P(7)

If the postorder traversal above is complete (and its results
recorded for all subtrees of 7, not merely 7 itself), sampling a
random partition requires a single preorder traversal. We start
with a collection of empty sets ¥ = {S4,...,S,}, where
each §; is to contain the set H;; once the traversal is complete,
B will be a partition of N(7"). The traversal starts at r, and the
|P/(7)| can be used as a set of probability weights for a draw
of the S; that r belongs to, as they determine, for each i, how
many of the |P(7)| total partitions have r sharing a partition
with the members of H;.

Subsequently, when the traversal reaches another node u
with parent uP, and we have already placed uP in S; then u
must also be placed in §; if t; is one of its descendants (by
connectedness) or if u is t; itself. Otherwise, there are |P(7";)
ways in which 7, can be partitioned, since it can be a mem-
ber of the same part as uP or a member of the same part as
each of its tips. |[P(7,)| — |[P(7,)| of these have u in the
same part as uP, whereas the remaining |P(7 )| do not. For
each j such that t; € E(T ), |P/(7,)| gives the numbers of
ways in which u can be placed in the same part as t;. The part
for u can then be sampled with probability given by a weight
vector that has |P/(7,)| for each S; if tj € E(T ), |P(7})|
—|P(7,)| for S; and 0 for any other part.

Although the sampling procedure requires a single O(n?)
calculation to establish the values of each |P(7)| and
|P/(77)|, the uniform sampler itself is only O(n); its
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complexity scales linearly with the number of tips of 7 and
large samples can be acquired rapidly.

Software Implementation

The enumeration and sampling algorithms described above,
as well as the extensions described in Section 3 of Appendix,
Supplementary Material online, are implemented in an open-
source R package entitled Software for Transmission Tree
Uniform Sampling (STraTUS), available at http://github.
com/mdhall272/STraTUS; last accessed March, 26 2019.
There are two key functions in the package. The first is tt.gen-
erator, which takes as input an phylogenetic tree produced
by, for example, the ape package (Paradis and Schliep 2019),
as well as optional arguments specifying the maximum num-
ber of unsampled hosts in the transmission chain, upper and
lower bounds on infectious periods and assignment of tips to
hosts, and calculates the values of |P'(7 )| and |P/(7})] for
each i and u. The output of tt.generator can then be given to
the second function, sample.tt, in order to generate a uniform
sample of transmission trees of any size. Graphical display of
the node colorations in the sample (using ggtree; Yu et al.
2017) and representations of the transmission trees as igraph
objects are supported.

Results

Sampling random transmission trees that are consistent with
a known phylogenetic tree has applications in transmission
inference and in phylodynamics. In particular, there has been
some work on whether imbalanced phylogenies are indicative
of specific kinds of transmission (Leventhal et al. 2012; Frost
and Volz 2013; Robinson et al. 2013; Colijn and Gardy 2014). It
is clear that the phylogenetic tree places some constraints on
who may have infected whom, particularly if individuals are
treated and become uninfectious at the time of sampling. The
current work aids investigations of this nature by permitting
quantitative comparison of transmission trees sampled uni-
formly at random from two different phylogenetic trees.
The shapes of phylogeneties have been related to trans-
mission patterns in a number of studies, as phylogenetic data
are an appealing alternative to classical methods, such as
contact tracing, to investigate transmission particularly in
settings where highly transmitting individuals may be difficult
to identify directly, for example, in sexually transmitted or
blood-borne infections (Leventhal et al. 2012). In particular,
how the so-called “superspreaders” (individuals transmitting
an infection to a large number of secondary cases), or contact
number heterogeneity more broadly, may leave a signature in
phylogenetic trees is one important phylodynamic applica-
tion, particularly in HIV. Several studies have related contact
number heterogeneity to the imbalance and cluster patterns
in phylogenetic trees, with conclusions that differ depending
on assumptions about the network structure and dynamics
and the simulation approach (Leventhal et al. 2012; Frost and
Volz 2013; Robinson et al. 2013; Colijn and Gardy 2014). One
of the most commonly used ways to describe the shapes of
phylogenetic trees is with their overall asymmetry (imbal-
ance), via, for example, the Sackin index (Sackin 1972).
Indeed, in the phylodynamic literature, this and the number

of cherries in the phylogeny have been the primary measures
of tree shape. We explored whether there is a systematic
difference in the offspring distribution in randomly sampled
transmission trees resulting from their asymmetry.

We began with two input phylogenetic trees each with 40
tips. The phylogenetic topologies were randomly generated
using the apTreeshape R package. One tree came from a Yule
model (a pure branching process) and the other from a so-
called “biased” model with a bias parameter 0.9. The branch
lengths for each were then redrawn from a gamma distribu-
tion with shape parameter 1.6 and scale parameter 1 to pro-
duce phylogenies with the appearance of heterogenous
sampling times (if their branch lengths are assumed to be
in calendar time). The “biased” model is a growing tree model;
the children of a lineage with a speciation rate r have rates pr
and (1 — p)r. This produces imbalanced trees. The two input
trees, along with a randomly sampled partition assuming full
sampling and only one tip per host, are shown in figure 5.

We sampled 300 transmission trees uniformly at random
on our 2 input phylogenetic trees, with full sampling and 1 tip
per host, and compared the distribution of offspring, that is,
the number of secondary cases infected by a host. Note that
this is distinct from the offspring distribution of a speciation
process of the type that may be used to generate a phylogeny;
in that case speciation events are represented by nodes, an
assumption that we do not make. With full sampling, the
mean number of secondary cases per source in a tree is just
under 1, because each individual except the source has a
single infector.

We find that the relationship between the phylogenetic
tree and the dispersion of the offspring distribution depends
on whether the timings of infection are restricted. When we
make no such restrictions, there is sufficient flexibility in who
may infect whom that the two trees have very similar off-
spring distributions. In contrast, if we constrain the heights of
nodes in each tip’s part of the partition according to an in-
fectious period, such that each host becomes noninfectious
upon sampling and becomes both infected and infectious no
more than 3.5 time units before sampling (using the sampling
procedure outlined in Appendix, Supplementary Material on-
line), the transmission tree from the more imbalanced phy-
logeny has fewer nodes with no children but more with
one or two, suggesting a tendency towards sequential trans-
mission compared with more frequent superspreader-like dy-
namics in the balanced version (fig. 6).

We also compared the transmission trees sampled on the
biased and Yule phylogenies directly, using the metric ap-
proach developed by Kendall et al. (2018). Briefly, the metric
is a distance between two transmission trees; the distance is
zero if and only if the transmission trees are the same (except
for some sets of unsampled cases which are not relevant here,
as we used full sampling). We compute the distances between
all pairs of trees, and visualize the distances using multidimen-
sional scaling (MDS). Figure 7 shows the results both with and
without time constraints. Without time constraints, the Yule
and biased phylogenies both admit a “wide spread” of possi-
ble transmission trees, but while there is a small overlap they
are for the most part strongly separated on the plots. With
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Fic. 5. Yule (top) and biased (bottom) phylogenetic trees with randomly sampled partitions. Each color corresponds to a part of each partition.
Gray edges separate nodes that are in different parts of the partition. Branch lengths are assumed to be in arbitrary time units.

time constraints the spread is notably greater for the biased
tree, whereas the transmission trees for the two phylogenies
form entirely distinct clusters. This is a visual illustration of the
fact that the structure of the phylogeny places consistent
constraints on admissible transmission trees, and how the
imposition of limits on infectious periods differentiates
them further.

We then sampled 500 random phylogenetic trees of 20
tips each using ape (Paradis and Schliep 2019) and computed
the number of transmission trees each one admits. We also
computed two common tree shape statistics: the number of
cherries and the Sackin imbalance. A cherry is a configuration
consisting of two tips and an internal node. Each binary phy-
logenetic tree with n tips has at least one cherry and could
have at most n/2 cherries. The Sackin imbalance (Sackin
1972; Blum and Frangois 2005) has been defined in several
ways, including the total or alternatively the average path
length from a tip to the root of the tree. Broadly (see figure
8), the number of possible transmission trees compatible with
a phylogeny increases as the Sackin imbalance of that phy-
logeny increases, and declines as the number of cherries
increases (cherries are symmetric feature, so trees with higher
numbers of cherries tend to have a lower Sackin imbalance).
This is, again, under the assumption that there no constraints
on the timing of transmission relative to the node’s sampling
time.

Finally, we compared randomly sampled transmission
trees with transmission trees estimated by the TransPhylo
algorithm (Didelot et al. 2017). Our aim here is to investigate
whether, if sensible constraints on infectious periods are
known, the fast uniform sampling approach can yield a com-
parable set of transmission trees to full statistical model in-
ference using MCMC. We used an outbreak of tuberculosis
cases over a 13 year period in Hamburg, Germany, which was
previously published (Roetzer et al. 2013) and previously
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analyzed using TransPhylo (Didelot et al. 2017). Because the
current version of STraTUS cannot apply limits on infectious
periods to unsampled cases (see Appendix, Supplementary
Material online), we applied the two algorithms to a 72-tip
subtree in which the root node of the epidemic was plausibly
infecting a sampled host (see supplementary fig. S2,
Supplementary Material online). (This restriction in
STraTUS means it will not favor any particular number of
unsampled hosts in the transmission tree along the branches
separating the root node from the first sampled case, regard-
less of the lengths of those branches. This is very different to
TransPhylo, so we ensure that the root case was plausibly
sampled in order to make a comparison.) We sampled trans-
mission trees uniformly at random with STraTUS, and com-
pared them with the TransPhylo-estimated trees. The timed
phylogeny was estimated using BEAS (Suchard et al. 2018)
and was the same as reported in Didelot et al. (2017), then
pruned to the 72-tip subtree. We restricted the maximum
possible time between the point of infection and sampling to
7 years (permitting cases to become infectious immediately
upon infection), and assumed that cases become noninfec-
tious upon sampling. We generated multiple STraTUS sam-
ples for 0 and 40 unsampled hosts, and also with the
unsampled count drawn from the empirical distribution of
unsampled hosts from TransPhylo. The median number of
unsampled hosts from TransPhylo was 39.

We used the metric and MDS approach outlined above to
compare the sets of transmission trees. Figure 9 illustrates the
results in 2D MDS. For 40 unsampled hosts and when the
unsampled count was drawn from the TransPhylo empirical
distribution, the STraTUS sample occupies much of the same
space as TransPhylo, but the STraTUS transmission trees are
much more widely distributed. This is not surprising, as the
sampling of a TransPhylo tree is determined by its posterior
probability under a phylodynamic model, whereas STraTUS is
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Fic. 6. Offspring distributions from two input phyogenetic trees with-
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tion and sampling such that hosts became noninfectious
immediately upon sampling, and had been infectious for a maximum
of 3.5 time units, compared with the mean branch length in these
trees of 1.39 and 1.63 time units, respectively.

a cruder, uniform sample from the space of all admissible
phylogenies. The STraTUS sample with no unsampled hosts,
on the other hand, forms a largely distinct cluster in the plot
from the TransPhylo trees.

We also determined the tree within each group that is
closest to the center of the trees (the geometric median
tree; Jombart et al. 2017). These are marked in figure 9.
Notably, the STraTUS sample whose median is closest to
the TransPhylo median is the one where the unsampled
host count was drawn from the TransPhylo empirical distri-
bution. These results suggests that it may be possible to use
STraTUS to quickly produce an approximate sample of pos-
sible transmission trees for a given phylogeny, but that unbi-
ased estimation of the number of unsampled individuals
would be necessary.

For the TransPhylo and empirical STraTUS samples, we
show the geometric median transmission trees in figure 10.
Although these are not the same, they share a number of
transmission events and features. The distribution of
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Fic. 7. Multidimensional scaling plots visualizing distances between
transmission trees sampled on the Yule and biased phylogenies, with-
out and with restrictions on the lengths of infectious periods.

unsampled cases is differs notably because STraTUS does
not take branch lengths into account in placing them,
whereas TransPhylo does.

Discussion

In this paper, we have explored the mathematics of the set of
transmission trees for a known phylogeny, if internal nodes of
that phylogeny are not taken to represent infection events, in
greater depth and with more rigor than in any previous work.
We also give algorithms for uniform sampling of transmission
trees. We acknowledge that in most cases a uniform sample
from transmission tree space will not be the ideal final tool for
inferring epidemic dynamics. However, this work, in addition
to establishing a firm footing for further theoretical work of
this nature and providing a new means to investigate the
relationship between the properties of an epidemic phylog-
eny and of the epidemic itself, has several other potential
applications.

The packages TransPhylo (Didelot et al. 2014, 2017) and
BEASTLIER (Hall et al. 2015) both employ MCMC sampling of
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Fic. 8. PCA plotillustrating the distances between transmission trees
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lished by Didelot et al. (2017). The colors indicate the algorithm
used and the number of unsampled cases selected in STraTUS. The
shaded areas enclose all the trees in each sample and give an idea of
the extent of the corresponding MDS spaces. The squares represent
the geometric median tree of each sample.

partitioned trees to estimate transmission trees, for a fixed
phylogeny in the former case and a variable one in the latter.
The uniform sampling procedure detailed here, perhaps to-
gether with metrics on phylogeny and transmission tree
space (Kendall and Colijn 2016; Kendall et al. 2018) may prove
valuable in the design of improved transition kernels for these
algorithms. A uniform sampler for transmission trees may
also be useful in a two-stage importance sampling approach
of the type employed by Numminen et al. (2014), wherein a
uniform sample of transmission trees are sampled, given
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importance weights according to their likelihood under a
model of transmission and then resampled with probability
proportional to those weights.

Furthermore, approaches such as TransPhylo, BEASTLIER,
phybreak and others make use of a number of models and
prior beliefs, such as the nature of the natural history of the
pathogen (which is used to inform a likelihood based on time
between infection and transmission using a generation time),
the sampling fraction and sampling process, and a coalescent
model for the within-host pathogen evolution. These param-
eters are difficult to estimate in any single outbreak data set
(particularly in-host evolutionary parameters), and may vary
from one outbreak or setting to the next. Reusing past esti-
mates may not solve the problem. The ability to very rapidly
sample from all transmission trees consistent with a phylog-
eny could allow outbreak investigators to quickly get a grip on
which putative transmission events are and are not consistent
with genomic data, without making strong assumptions on
unknown parameters. That the STraTUS sample occupies a
larger area of transmission tree space than the TransPhylo
sample is presumably a consequence of the uniform sampling
approach giving equal probabilities to histories that are out-
liers according to the TransPhylo model. However, the fact
that the TransPhylo set is fully contained in the area covered
by the STraTUS set is encouraging. This is true only when the
number of unsampled hosts is roughly similar, and hence
acquiring an at least reasonably accurate estimate of that
number would be advisable.

Perhaps counter-intuitively, we see from figure 8 that
unbalanced phylogenies actually admit more transmission
trees than balanced ones. This suggests that the fully unbal-
anced tree (see proposition 3) may be the most flexible
phylogeny of all with respect to potential epidemic histories,
a potential analytical result that warrants investigation.
However, this may be of largely theoretical interest as it
ignores branch lengths and hence plausible infection tim-
ings. Previous work has shown that the number of potential
neighbors for a host in the transmission tree is smaller when
the phylogeny is unbalanced (Leventhal et al. 2012), and we
do see this pattern when applying time limits to our Yule
and unbalanced trees (see fig. 6). The time limits place very
useful constraints on the transmission tree set and we rec-
ommend their use in STraTUS whenever possible; it should
be borne in mind that without them, a transmission tree in
which the last-sampled host is the index host is just as
probable as any other. The simple cutoff approach to iden-
tifying possible infectious periods used here could be refined
in further work.

The main assumption in transmission tree inference that
we are unable to relax is the complete bottleneck at infection.
The partition approach basically requires this, as to discard it
is to discard the requirement that the region of a phylogeny
associated with each host is connected. Without this, any
number of transitions amongst the hosts can occur on any
branch, and thus the set of transmission trees is infinite. We
would argue that that set is rather less useful than the one we
present here, as large numbers of reinfection events will be
rare for most pathogens. An approach similar to ours which
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allows for the transmission of multiple lineages at transmis- studied. Consequential violations of connectedness, where
sion without conflating that with regular reinfection would transmission trees exist that are actually impossible under
be a useful subject for future work. The importance of the the complete bottleneck assumption (see supplementary
bottleneck assumption in practice has not been extensively fig. S3, Supplementary Material online), require not just
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that multiple lineages be transmitted, but that two or more
of them are later either transmitted onwards to different
hosts, or sampled. How likely this is to happen in practice
will vary from pathogen to pathogen and setting to setting; it
is more plausible when the “hosts” in the transmission tree
are taken to be geographical locations, which has been a
standard approach in agricultural epidemics (Ypma et al.
2013; Hall et al. 2015), rather than when they are individual
organisms. It is also unclear whether such an event would
ever leave a sufficient signal on the pathogen genome to allow
its identification. A family of nonphylogenetic methods to
estimate transmission trees that do not make the complete
bottleneck assumption has been developed (Worby et al.
2014, 2016), and a parsimony approach, as implemented in,
for example, phyloscanner (Wymant et al. 2018), will readily
make such reconstructions, but we are not aware of any
similar papers to this one examining the interaction between
transmission tree space and the phylogeny when the assump-
tion of single lineage transmission is not made.

In summary, we have built on previous work linking trans-
mission trees to partitions of the nodes of a phylogeny to
outline procedures by which, for a known tree, possible epi-
demic histories can be enumerated and sampled from. We
also showed how this is possible when the assumptions of
complete and single sampling are relaxed. We have presented
some examples of how these algorithms can be used to in-
vestigate the impact of the phylogeny on the transmission
tree, and as a quick alternative to more intensive statistical
approaches to the reconstruction of the latter. Future work
may refine the handling of infectious periods and unsampled
cases, or employ this sampler as a component of a more
sophisticated statistical approach.

Materials and Methods

The Yule and biased trees were generated using the rtree-
shape function in apTreeshape v1.5 (Bortolussi et al. 2006).
The random phylogenetic trees used to investigate the rela-
tionship between transmission tree count and other statistics
were generated using the rtree function in ape v1.5 (Paradis
and Schliep 2019). All trees were visualized with ggtree v3.7
(Yu et al. 2017). Transmission trees were compared using the
metric of Kendall et al. (2018) implemented in treespace 1.1.3
(Jombart et al. 2017). Principal component analysis was per-
formed using ade4 v1.7-13 (Chessel et al. 2004). Sequencing,
alignment and BEAST analysis of the Mycobacterium tuber-
colosis data set has been previously described (Roetzer et al.
2013; Didelot et al. 2017).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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