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Abstract In normal glomeruli, parietal epithelial cells (PECs)
line the inside of Bowman’s capsule and form an inconspicu-
ous sheet of flat epithelial cells in continuity with the proximal
tubular epithelial cells (PTECs) at the urinary pole and with
the podocytes at the vascular pole. PECs, PTECs and
podocytes have a common mesenchymal origin and are the
result of divergent differentiation during embryogenesis.
Podocytes and PTECs are highly differentiated cells with
well-established functions pertaining to the maintenance of
the filtration barrier and transport, respectively. For PECs,
no specific function other than a structural one has been
known until recently. Possible important functions for PECs
in the fate of the glomerulus in glomerular disease have now
become apparent: (1) PECs may be involved in the replace-
ment of lost podocytes; (2) PECs form the basis of
extracapillary proliferative lesions and subsequent sclerosis
in glomerular disease. In addition to the acknowledgement
that PECs are crucial in glomerular disease, knowledge has
been gained regarding the molecular processes driving the
phenotypic changes and behavior of PECs. Understanding
these molecular processes is important for the development
of specific therapeutic approaches aimed at either stimulation
of the regenerative function of PECs or inhibition of the pro-
sclerotic action of PECs. In this review, we discuss recent
advances pertaining to the role of PECs in glomerular regen-
eration and disease and address the major molecular processes
involved.
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Podocyte regeneration by parietal epithelial cells

Podocytes play a key role in maintaining the glomerular fil-
tration barrier and podocyte dysfunction or podocyte loss is
the determining factor for the initiation and progression of
glomerulosclerosis (Kriz et al. 1998). Since podocytes can
be isolated and cultured from the urine of healthy individuals,
we clearly lose podocytes even under normal physiological
circumstances. The loss of podocytes is accelerated in glomer-
ular diseases such as glomerulonephritis and diabetic glomer-
ulopathy. High losses can lead to insufficient podocyte num-
bers that are no longer compatible with long-term glomerular
survival. We therefore urgently need to find ways to prevent
podocyte loss and to replace lost podocytes. Podocytes them-
selves are highly differentiated postmitotic cells that cannot
divide and have therefore no capacity for regeneration.
Pushing podocytes beyond cell cycle arrest leads to polyploi-
dy and eventually to death. The same principle applies to all
other differentiated epithelial cells of the body. Therefore, re-
search has aimed at identifying other cell sources that might
act as podocyte progenitors and be responsible for the regen-
eration or replacement of lost podocytes. During the last 8
years, parietal epithelial cells (PECs) have come into focus
as putative podocyte progenitors. Both the transition from
PECs to podocytes and the functional replacement of
podocytes by PECs have been studied. Until now it has
remained unclear whether podocytes are effectively replaced
by PECs or by cells from any other sources.

Recent studies have indicated that, during human life, a
gradual decrease occurs in the total number of podocytes
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within the kidney (Hodgin et al. 2015; Puelles et al. 2016).
These studies have shown that the human glomerulus contains
approximately 600 podocytes in roughly 1 million nephrons
per kidney and that we lose about 0.34 % of the podocytes per
glomerulus per year (~1-2 podocytes/glomerulus/year;
Hodgin et al. 2015). This loss is accompanied by a gradual
increase in the glomerular tuft volume. In the aging kidney
both the loss of podocytes and the increasing tuft volume lead
to a marked podocyte depletion that might be associated with
age-related (global) glomerulosclerosis. From these studies,
one can conclude that the assumed process of podocyte re-
placement is not sufficient to prevent podocyte depletion in
the aging kidney. However, this does not rule out that
podocyte replacement by podocyte progenitors does indeed
occur and prevents an even faster decrease in podocyte num-
ber than that currently measured.

Most podocytes are formed during glomerular develop-
ment. Remarkably, a recent study indicated that the number
of podocytes increases during glomerular growth and mat-
uration in the early years after birth, raising questions
about the origin of these new podocytes (Puelles et al.
2015). A possible explanation for this may come from ear-
lier investigations. Even in 2009, Appel and co-workers
showed by using lineage tracing of PECs that, in immature
growing mouse glomeruli, podocytes were recruited from
the cells lining Bowman’s capsule (Appel et al. 2009).
Initially, this was believed to be the result of PEC
transdifferentiation. However, these cells could well have
been already committed to become podocytes as the cells
traced on Bowman’s capsule already exhibit the expression
of the podocin promotor and the expression of various
podocyte markers, as suggested by Berger et al. (Berger
et al. 2014).

Whether podocytes are regenerated in mature mammalian
kidneys after injury remains controversial. Several studies
have argued in favor of podocyte replacement by PECs based
on the finding of the increased co-expression of podocyte- and
PEC-specific markers, either on cells lining Bowman’s cap-
sule or on the glomerular tuft. However, clearly, the transcrip-
tional program of PECs is closely related to that of podocytes
and the co-expression of podocyte- and PEC-specific markers
by podocytes and/or PECs might represent aberrant marker
expression triggered by underlying pathological conditions
(Guhr et al. 2013; Sakamoto et al. 2014). In addition, an as-
sessment of whether podocytes are truly lost and replaced is
difficult. An accurate estimation of podocyte numbers is prob-
lematic and laborious and even state-of-the-art methods rely
on podocyte-specific markers, the expression of which may
change in states of disease. Loss of marker expression does
not necessarily reflect loss of podocytes but may be associated
with podocyte injury and loss of function. Similarly, an in-
crease of cells expressing podocyte-specific markers may sim-
ply reflect the restored expression of the marker.
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The technique of lineage/fate tracing has been used largely
to overcome the limitation of marker studies. By using this
technique, podocyte regeneration has been studied in experi-
mental models of aging, podocyte injury and glomerular hy-
pertrophy. The majority of these studies have not been able to
provide evidence for the recruitment of podocytes from PECs
(Berger et al. 2014; Sakamoto et al. 2014; Wanner et al. 2014).
However, two recent studies with PEC-specific reporter sys-
tems found evidence suggesting podocyte regeneration in
models of acute podocyte depletion. Eng et al. (2015) demon-
strated that, in a model of acute podocyte depletion, PECs
undergo two different phenotypic changes. Initially, PECs be-
come activated, expressing CD44 and phosphorylated
extracellular-signal-regulated kinase-1 (Erk-1). Later, a sup-
population of the traced PECs expresses podocyte markers
without Erk-1 (Eng et al. 2015). Lasagni et al. (2015) demon-
strated that, in animals that have attained disease remission
after the previous induction of acute podocyte injury,
podocytes are regenerated from PECs. In these animals, the
genetic PEC reporter signal has been traced in cells that, based
on their location, phenotype and marker expression, resemble
podocytes (Lasagni et al. 2015).

Taken together, the data concerning effective podocyte re-
generation and the role of PECs in this process are still con-
founding and more animal studies are needed. In humans,
difficulties will be experienced in establishing podocyte re-
generation, as this would require the accurate assessment of
podocyte numbers in successive renal biopsies and would also
require information concerning podocyte loss.

Stimulating podocyte regeneration

Podocyte regeneration by PECs depends on the successful
transdifferentiation of PECs towards a podocyte phenotype.
In the last few years, various pathways have been identified as
playing a role in this cell transition. New insights demonstrate
an important role for the retinoic acid pathway. Retinoic acid
is a metabolite of vitamin A (retinol) and acts by binding to the
retinoic acid receptor (RAR), which in turn binds with the
retinoid X receptor (RXR) in DNA regions called retinoic acid
response elements (RARESs). The retinoic acid receptor com-
plex mediates the transcription of various sets of genes con-
trolling differentiation in a variety of cell types. In the glomer-
ulus, retinoic acid mediates the differentiation of podocytes
(Suzuki et al. 2003). Moreover, in PECs, podocyte differenti-
ation markers are up-regulated when the cells are treated with
retinoic acid. In rats with experimental membranous nephrop-
athy and in a mouse model of glomerulosclerosis, treatment
with all-trans retinoic acid has been shown to result in an
increase in number of cells expressing podocyte and PEC
markers and an increased total number of podocytes (Zhang
et al. 2012). However, Peired et al. (2013) showed that, in
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albuminuric kidneys, albumin sequesters retinoic acid in
Bowman’s space. For the treatment of humans, this would
necessitate the use of very high and toxic doses of retinoic
acid (Peired et al. 2013). A recent study from the same group
showed that the effects of retinoic acid can be enhanced: the
glycogen synthase kinase 3 (GSK3) inhibitor BIO (6-bromo-
indirubin-3-oxime) acts by increasing the binding of retinoic
acid to its specific RARE elements, thus enhancing the effect
of retinoic acid. Lasgnai et al. (2015) proposed that the use of
BIO retinoic acid improves the transdifferentiation of PECs to
podocytes and avoids toxicity.

During the last few years, several studies have presented
evidence for the importance of microRNAs. MicroRNAs are
short non-coding RNAs that are involved in the post-
transcriptional regulation of gene expression. With regard to
glomerular epithelial cells, an important role for microRNA
(miR)-193a has been detected in podocyte differentiation and
PEC to podocyte transdifferentiation. In podocytes, miR-193a
induces the down-regulation of WT-1 resulting in podocyte
injury and focal segmental glomerulosclerosis (Gebeshuber
etal. 2013). In cultured human immortalized PECs, the stable
knockdown of miR-193a has been demonstrated to induce a
podocyte-like morphology and marker expression of WT-1,
podocalyxin, synaptopodin, x-actinin-4 and nephrin. PEC
marker expression decreases, e.g., Pax8, claudin-1 and
UCH-L1 (Kietzmann et al. 2015). Similar findings have been
made in vivo in mice. The inhibition of miR-193a by comple-
mentary locked nucleic acids results in the up-regulation of
the podocyte proteins synaptopodin and WT-1. Conversely,
the overexpression of miR-193a in vivo leads to the up-
regulation of PEC markers and the loss of podocyte markers.
Interestingly, the inhibition of miR-193a in a mouse model of
crescentic glomerulonephritis (CrGN) results in a decrease in
crescent formation and proteinuria.

PECs: a key player in extracapillary proliferation
and sclerosis

Following capillary wall or podocyte injury, extracapillary
proliferative lesions may develop. In human glomerular dis-
ease extracapillary proliferation is considered prognostically
adverse as it leads to scarring. Severe glomerulonephritis,
such as anti glomerular basement membrane disease (anti-
GBM disease) and anti neutrophil cytoplasmic antibodies as-
sociated disease (ANCA-disease), is typically associated with
extensive extracapillary proliferation called cellular crescents.
Many other forms of glomerulonephritis, such as IgA ne-
phropathy, frequently have a more chronic clinical course. In
these conditions, “active” extracapillary proliferative lesions
and older scar lesions are typically simultaneously present in
renal biopsies. Extracapillary proliferative lesions are also
seen in focal and segmental glomerulosclerosis (FSGS).

FSGS is considered a non-inflammatory process resulting
from podocyte injury. In FSGS, extracapillary proliferative
lesions are called pseudocrescents because of their non-
inflammatory nature. FSGS occurs as a primary (podocyte)
disease but importantly, almost all other glomerular diseases
give rise to secondary FSGS lesions that, for a large part,
determine prognosis. Thus, extracapillary proliferation lead-
ing to scarring plays a role in virtually all human glomerular
diseases. A better understanding of the nature of these
lesions is therefore extremely important.

Historically, “true” crescents were considered to result
from the proliferation of PECs secondary to capillary wall
necrosis and fibrinous exudate. In fact, glomerular capillary
wall rupture was shown to be sufficient to induce PEC prolif-
eration by exposure to serum only (Ryu et al. 2012). In con-
trast, pseudocrescents were thought to be of podocyte origin,
based on the finding that cell increase often appeared to be
confined to the glomerular tuft, without apparent connection
to the PEC layer. Subsequently, several lines of evidence firm-
ly established that extracapillary hypercellularity in FSGS was
the result of PEC proliferation. Initially, marker studies in a
mouse model of collapsing FSGS showed that proliferating
epithelial cells stained for parietal markers, produced PEC-
specific extracellular matrix and were negative for podocyte
markers. These marker studies were not entirely conclusive, as
it could not be excluded that proliferating cells had indeed
acquired a PEC phenotype as a result of the pathological con-
dition and were of a different (presumably podocyte) origin.
The definitive answer came by means of work carried out on
transgenic mice in which the PEC or the podocyte had been
irreversibly genetically labeled. Both in the model of collaps-
ing FSGS and in the mouse anti-GBM model of CrGN, pro-
liferating epithelial cells were shown to be derived from PECs
and to express the activation marker CD44 (Smeets et al.
2009). In the human situation, the labeling of cells to investi-
gate their fate in disease is not possible but marker studies in
human FSGS are consistent with the findings in mice (Fig. 1).
As for the mechanism that leads to cellular FSGS lesions,
initial insight came from detailed three-dimensional analysis
of glomeruli from a patient with the recurrence of collapsing
FSGS after transplantation. The suggestion was made that
activated cells with a PEC phenotype migrate onto the glo-
merular tuft via cellular bridges between the tuft and
Bowman’s capsule (Dijkman et al. 2005). More insight into
the mechanism of extracapillary hypercellularity and scarring
came from a detailed marker study of secondary FSGS lesions
in 11 different human glomerulopathies. This investigation
made use of triple immunostaining (podocyte marker
synaptopodin with PEC marker annexin 3 or CD44 and a
marker for PEC-specific extracellular matrix) in combination
with light microscopy. In this way, a consistent sequence of
events in the formation of all secondary FSGS lesions can be
detected: (1) the earliest lesions consist in cellular bridges
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Fig. 1 Extracapillary proliferative lesions consisting in parietal epithelial
cells (PECs) in glomeruli of patients with focal and segmental
glomerulosclerosis (FSGS; a) and crescentic glomerulonephritis (CrGN;
b). Double immunostaining for claudin-1 expressed by PECs (green,

between Bowman’s capsule and the glomerular tuft formed by
parietal cells that deposit PEC matrix on the tuft; (2) subse-
quently, PECs migrate onto the glomerular tuft and small ma-
trix adhesions are formed (early sclerotic lesions); (3) in ad-
vanced sclerotic lesions, a larger part of the tuft is covered by
PECs that deposit PEC-specific extracellular matrix. The
more cellular the FSGS lesions are, the more CD44-positive
cells are observed. CD44 is an activation marker and presum-
ably cellular lesions result from more potent PEC activation as
compared with the more sclerotic lesions (Kuppe et al. 2015).
Not only CD44 but also markers constitutively expressed by
PECs have been shown to be useful markers in the detection
of early FSGS lesions in biopsies and can also be employed to
differentiate between FSGS and minimal change disease
(Smeets et al. 2014).

Taken together, the above findings strongly argue in favor
of a single common cellular mechanism leading to
extracapillary hypercellularity and ultimately to sclerosis in
all glomerular disease, irrespective of the underlying cause.
PEC activation and subsequent proliferation are the key ele-
ments. Presumably, the extent of PEC activation determines
the cellularity of the extracapillary lesions and, thus, also the
amount of fibrosis that will follow. This mechanism can be
regarded as a glomerulus-specific “wound-healing” reaction
and may even be adequate in certain circumstances. However,
PEC proliferation often appears to be excessive and deleteri-
ous, especially in patients with diffuse CrGN and collapsing
FSGS, hence the rationale for treating these conditions with
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arrowheads) and specific heparan sulfates in the extracellular matrix
(red). Note marked hyperplasia of claudin-1-positive PECs (arrows) in
both FSGS and CrGN

aggressive immunosuppressive therapy. Pharmacological in-
tervention in the process of PEC activation and proliferation is
potentially of tremendous value for future patient care.

Targeting PEC activation

The acknowledgement of the importance of PECs in the fate
of the glomerulus has stimulated research investigating the
molecular pathways associated with PEC proliferation, migra-
tion and extracellular matrix production (activation).
Currently, several molecules have been identified as being
differentially expressed in glomerular lesions and associated
with PEC activation and/or transdifferentiation in human and
experimental glomerular disease (identified molecules are
listed in Table 1, Fig. 2).

The findings of three different studies revealed that the mech-
anistic target of rapamycin (mTOR) signaling plays an important
role in the physiology and phenotype of PECs and that changes
in mTOR activity can trigger PEC activation or necrosis in ex-
perimental glomerular disease (Kurayama et al. 2011; Hamatani
et al. 2014; McNicholas et al. 2016). mTOR is a serine-
threonine kinase that constitutes a part of two distinct
multiprotein complexes, namely TOR complex 1 (TORC1),
which is sensitive to rapamycin and TORC2, which is not sen-
sitive to rapamycin. In these studies in experimental models of
CrGN and/or FSGS, mTOR signaling is increased in the glo-
merular epithelial cells involved within the lesions as shown by
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Table 1  Summary of recent studies identifying molecules associated with activation of parietal epithelial cells (PECs)
Signaling factor and treatment Effect on PECs Model Study
reference
mTORC]1 inhibition Increased proliferation Mouse model of acute podocyte depletion McNicholas
Increased PEC density Aging mice et al.
2016
mTORCI inhibition or L-type neutral Cell necrosis Rats with crescentic glomerulonephritis (CrGN); ~ Kurayama
amino acid transporters inhibition Decreased crescent formation WKY/NCrj rats injected with anti-glomerular etal. 2011
basement membrane

Sestrin 2 reduction and Associated with increased apoptosis  Adriamycin and pruromycin nephropathy model =~ Hamatani

increased mTOR activity (observation) or proliferation (dependent on the in rat CrGN et al.

Sestrin 2 inhibition in vitro disease model) Conditionally immortalized mouse PEC cells 2014

Increased apoptosis (in vitro)

Reduced phosphorylated extracellular PEC apoptosis Mouse model of protein overload nephropathy Chang et al.
signal-regulated kinase 1 and 2 Conditionally immortalized mouse PEC cells 2012
(p-ERK1/2) (observation)

Matrix metalloproteinase 9 increase and ~ Possible increased migration and Zucker diabetic fatty rats Zhang et al.
ERK activation (observation) loss of adjacent podocytes Primary rat PECs 2015

Glucocorticoid receptor (GR) inhibition ~ Decreased PEC activation Mouse model of acute podocyte depletion Zhang et al.

De novo expression of podocyte 2013
markers

Cell specific GR inactivation and systemic Decreased proliferation and migration Pax8-Cre/GRY mice with induced CrGN Kuppe et al.
GR activation and inhibition Decreased crescent formation glomerulonephritis (NTN model) 2016

Migration inhibitory factor (MIF) Decreased PEC activation and NTN model in: Djudjaj et al.
and CD47 deficiency proliferation MIF”" mice 2016

MIF stimulation in vitro Decreased crescent formation CD47" mice

Induced PEC proliferation Primary murine PECs
Notchl inhibition Reduced PEC proliferative lesions and NEP25 mice model for cFSGS Ueno et al.
Notchl inhibition in vitro reduced exspression of Immortalized murine PEC cell line 2013
mesenchymal markers
Decreased migration and
mesenchymal transcript expression
Interferon-« stimulation in vitro Cell-cycle arrest and inhibition of Immortalized murine PEC cell line Migliorini
migration of PECs etal.
2013
SSeCKS deficiency Increased proliferation NTN model in SSeCKS™ mice Burnworth
et al.
2012
Angiotensin II inhibition (via ACEi) Decreased proliferation of PEC MWEF rats (spontaneous glomerulopathy) Benigni
Less extracapillary lesions etal. 2011

the increased phosphorylation of down-stream molecules p70
ribosomal protein S6 kinase (p70S6K) and 4E-binding protein
1 (4E-BP1), which stimulate ribosome biogenesis and transla-
tion to increase cell mass. In turn, phosphorylated (P-)p70S6K
phosphorylates S6 ribosomal protein (S6RP), which also stim-
ulates translation. SORP has been shown to co-localize with
podocyte markers and with PAX8 and CD44 expressed by
PECs. The strong increase in mTOR activity in glomerular
lesions and the general importance of mTOR signaling in cell
survival growth and proliferation make it a possible therapeutic
target to prevent or inhibit the development of glomerular
lesions. However, McNicholas et al. (2016) demonstrated that
the inhibition of mMTORCI with rapamycin does not benefit the
glomerulus, as they observed an increase in the number of
(severely) injured podocytes and activated PECs in a mouse

model of acute podocyte injury. This results in an increase of
extracapillary proliferative lesions and is also seen in kidney
sections of aged mice treated with rapamycin. The unexpected
worsening of the glomerular pathology through mTOR inhibi-
tion can possibly be explained by the onset, length, or strength of
inhibition. mTOR is an essential regulator of cell metabolism,
growth, proliferation and survival, indicating that an over-strong
or -long inhibition leads to an aggravation of glomerular injury
instead of healing as has been described in detail for podocytes
(Godel et al. 2011). Moreover, the timing of inhibition of mMTOR
probably has an important role in PEC activation as demonstrat-
ed in the a study by Kurayma and coworkers (2011) showing
that the early inhibition of mTOR in rats with CrGN leads to
increased cellular necrosis of PECs, whereas later treatment (7
days after CrGN onset) reduces glomerular crescent formation.
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Fig.2 Representation of glomerular regeneration and glomerular disease
(FSGS and CrGN) and factors that have been associated with these
processes. Vertical arrows lying behind the factors indicate whether an
up-regulation or down-regulation of the expression/activity was observed
in the PECs. PECs are involved in FSGS and in the formation of crescents
in CrGN. In FSGS, activated PECs (orange cells) migrate onto the

This finding illustrates that, within the same pathological pro-
cess, mTORCI1 inhibition can result in different outcomes.
Despite the finding that the effects of mTOR inhibition diverges
in the latter studies, they clearly link mTOR signaling to the
activation of PECs and the development of glomerular lesions.
Nevertheless, mTOR is essential in most, if not all, cells of the
human body and rapamycin treatment will have effects far be-
yond those on the PECs and the glomerulus, complicating the
interpretation of the above findings and also possibly complicat-
ing treatment.

A recent study by Hamatani et al. (2014) further connected
mTOR signaling to PECs. Hamatani et al. (2011) showed that, in
normal rat kidney sections, sestrin 2 is selectively expressed in
PECs. Sestrin 2 is a member of a family of stress-inducible
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Angiotensin Il 1
CD44 1
CD74/MIF 1
ERK1/2 1

mTOR 1
Notch1 1
Sestrin-2 |
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glomerular capillaries and deposit matrix (sclerosis). In CrGN, the
activated PECs form typical crescentic lesions. Recent studies have
reported that, during disease regression, a subset of PECs at Bowman’s
capsule or within a lesion on the capillary tuft differentiate towards a
podocyte phenotype (orange to green cells, arrows)

proteins that counteract oxidative stress. Specifically, sestrin 2
represses cell proliferation and growth by the inhibition of
mTOR signaling. In contrast to other cell types in which sestrin
2 expression is related to stressors, normal adult PECs constitu-
tively express sestrin 2. In other disease models, sestrin 2 expres-
sion decreases and mTOR signaling increases in PECs. In vitro
studies with conditionally immortalized mouse PECs validated
the converse correlation of sestrin 2 and mTOR activity, as the
silencing of sestrin 2 leads to an increase in downstream targets
of mTOR. However, the decrease of sestrin 2 and elevated
mTOR activity result in different outcomes, i.e., PEC prolifera-
tion or PEC apoptosis, depending on the experimental disease.
This study suggests the presence of a specific regulator of mMTOR
signaling within PECs.
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Recently, Djudjaj et al. (2016) investigated the role of macro-
phage migration inhibitory factor (MIF) in the development of
CrGN. MIF is a pleiotropic cytokine that mediates inflammation
via its receptor CD74. CD74 signals within a complex involving
the components CXCR2, CD44 and CXCR4, of which the two
last-mentioned exhibit increased expression within activated
PECs. Djudjaj et al. (2016) demonstrated that MIF, CD74 and
CD44 are up-regulated in the glomeruli of patients and mice with
proliferative glomerulonephritides. During disease, CD74 and
CD44 are expressed de novo in PECs and are co-localized in
PECs and mesangial cells. The secretion of MIF from glomerular
cells and, in particular, from podocytes is increased. This induces
the proliferation of PECs and mesangial cells in vitro. Both
CD47- and MIF-deficient mice possess marked protection from
glomerular injury, PEC activation and extracapillary
proliferation. Hence, the study of Djudjaj et al. (2016) exhibited
another new factor involved in PEC activation and pathological
proliferation in glomerular disease.

Recently, Kuppe et al. (2016) studied the local actions of
glucocorticoids in experimental glomerulonephritis.
Glucocorticoids have become a standard therapeutic option for
patients with nephrotic syndrome and are central in the treatment
of most glomerulonephritides. The beneficial effects of gluco-
corticoids in these patients is commonly assumed to be attribut-
able to a dampening of the immune response. However, in re-
cent studies, local and non-immunological mechanisms of glu-
cocorticoid action have been identified (Zhang et al. 2013;
Kuppe et al. 2016). In the study by Kuppe et al. 2016), the
glucocorticoid receptor (GR) was inactivated specifically in
the kidney epithelial cells by using Pax8-Cre/GR™™ mice. In
Pax8-Cre/GR™ mice with induced CrGN, the genetic inactiva-
tion of GR results in reduced proteinuria, PEC activation and
proliferation and, subsequently, in crescent formation.
Interestingly, the beneficial effects of the genetic inactivation
are similar to the effects observed in mice treated with high
doses of prednisolone but without the immunosuppressive ef-
fects induced with prednisolone. This study indicates that both
the stimulation of GR with prednisolone and its inactivation
showed similar effects. This has further been demonstrated by
using mifepristone, a partial GR antagonist. Pharmacologic
treatment with mifepristone also attenuates disease as effectively
as high-dose prednisolone but without the systemic immunosup-
pressive effects. By inhibiting the GR in kidney epithelial cells,
Kuppe and colleagues (2016) demonstrated a direct effect of
glucocorticoids on PECs. The use of glucocorticoid antagonists
represents a novel therapeutic approach in CrGN with possibly
less adverse effects compared with high-dose steroid treatment.

Future perspectives

In the last decade, insights have been gained regarding the sig-
nificant role of PECs in processes determining the fate of the

glomerulus. Data are strong with regard to the involvement of
PECs in the process of glomerulosclerosis but are however con-
founding regarding the involvement of PECs in podocyte regen-
eration. Therefore, future studies should provide more quantita-
tive data on podocyte number in human kidneys to provide solid
evidence for the existence of podocyte regeneration. PEC activa-
tion is a key process in the common pathways to
glomerulosclerosis in glomerular disease. Although some path-
ways involved in PEC proliferation have been described, the
processes mediating PEC activation remain unknown.
Emphasis should be placed on the better characterization of the
processes leading to PEC activation. For instance, this can be
achieved by a comparison of the transcriptome and proteome
of normal and activated PECs, possibly leading to the identifica-
tion of initiating factors. The identification of such factors might
then lead to the development of therapeutic interventions that
prevent or attenuate PEC activation, both of which might be
beneficial in many different progressive glomerular diseases.
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