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Scale‑free behavioral cascades 
and effective leadership 
in schooling fish
Julia Múgica1, Jordi Torrents1,2, Javier Cristín3,4, Andreu Puy1, M. Carmen Miguel2,5* & 
Romualdo Pastor‑Satorras1*

Behavioral contagion and the presence of behavioral cascades are natural features in groups of 
animals showing collective motion, such as schooling fish or grazing herbivores. Here we study 
empirical behavioral cascades observed in fish schools defined as avalanches of consecutive large 
changes in the heading direction of the trajectory of fish. In terms of a minimum turning angle 
introduced to define a large change, avalanches are characterized by distributions of size and duration 
showing scale-free signatures, reminiscent of self-organized critical behavior. We observe that 
avalanches are generally triggered by a small number of fish, which act as effective leaders that induce 
large rearrangements of the group’s trajectory. This observation motivates the proposal of a simple 
model, based in the classical Vicsek model of collective motion, in which a given individual acts as a 
leader subject to random heading reorientations. The model reproduces qualitatively the empirical 
avalanche behavior observed in real schools, and hints towards a connection between effective 
leadership, long range interactions and avalanche behavior in collective movement.

Collective motion is an ubiquitous phenomenon in nature, observed in a wide variety of different living systems 
and on an even wider range of scales, from mammal herds and fish schools, to bacteria colonies and cellular 
migrations1–3. The study of collective motion allows scientists to infer the intricate interaction mechanisms 
governing the diversity of behaviors found in natural grouping species1,4–6. Identifying the most relevant traits 
will prove essential if we ever want to take advantage of nature wisdom for engineering applications such as in 
swarm robotics7 or in driver-less cars. Social animals group and travel together to gain several benefits, from 
better foraging and more efficient offspring training, to improved navigational accuracy and reduced risk of 
predation8. Examples illustrating the emergence of ordered collective motion in social animal groups can take the 
spectacular form of wildebeest herds crossing deserts in Africa, or huge fish schools running away coordinately 
from predators9. From a more mundane perspective, the seemingly simple movement of a sheep herd crossing 
a road also arises as a result of the collective, coordinated motion of individual sheep10.

A common view of collective motion, implemented in most numerical models, is that coherent spatio-
temporal patterns emerge spontaneously from decentralized interactions among identical self-propelled group 
members1. The kind of coordination required to produce such impressive patterns, however, requires an efficient 
transfer of information among the group components. In this regard, leadership is sometimes brought about 
to rationalize the cooperative movements of animal groups by single individuals that appear to have a strong 
influence on the flock behavior11. The effects of leadership have been considered in several contexts, including 
crowd behavior12, hierarchical leadership13, linear response theory in flocking systems14,15 or the emergence of 
complex patterns of cooperation and conflict16. Leadership can arise as a natural instinct in some animals, which 
form a permanent hierarchical structure, but in other cases it can exhibit a switching dynamics that can even 
depend on context5,17–19. In this sense, effective leadership can come from individuals having useful information 
about their environment, such as the position of food or predators, not visible to the rest of the flock20,21. Another 
important aspect of collective animal motion is the existence of spontaneous individual-level behavioral varia-
tions, which may be transmitted to the group as if those particular individuals were effective group leaders. As a 
result of abrupt changes of dynamic behavior at the level of one or a few individuals, animal groups can exhibit 
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intermittent collective rearrangements, or can even undergo state transitions at the macroscopic level. Collective 
behavioral oscillations or waves in groups have been reported in golden shiners4, which were related to an under-
lying or hidden communication network4. On the other hand, sheep herds have been shown to pass from slow 
group dispersive motion while grazing, to rapid aggregation induced by sudden, individual changes of speed10 in 
the absence of nearby threatening sources. Most interestingly, these experimental studies emphasize that animal 
rearrangements can either spread extensively within the group or extinguish rapidly, leading to an avalanche-like 
type of response with a broad-tailed distribution of avalanche magnitudes4,10. This sort of avalanche behavior is 
well known in the physics literature22, where it has been discussed in magnetic materials23, superconductors24, 
plastic deformation of crystalline materials25, fracture phenomena26, or earthquakes27.

In this paper we examine the interplay between effective leadership and behavioral cascades (avalanching 
behavior) by means of an empirical analysis of the movement of black neon tetra fish Hyphessobrycon herbertax-
elrodi, and through the theoretical analysis of a variation of the classical Vicsek model28 that includes an explicit 
leader. In our empirical analysis, we define avalanches in terms of changes in the fish heading above a given 
turning angle threshold, which lead to a sudden reorientation of the global trajectory of the school. We observe 
that the distributions of size and duration of the measured avalanches show scale-free signatures in analogy with 
self-organized critical processes29 that can be described in terms of a set of characteristics scaling exponents. We 
explore the possible presence of leadership by considering the statistics of avalanche initiators, observing that 
some fish have an anomalous large probability of starting an avalanche, acting thus as effective leaders promot-
ing substantial school rearrangements. In order to check the general effects of leadership in avalanche behavior, 
we consider a Vicsek-like model in which a global leader, which exerts a long range influence over the group 
members, alternates a directed motion, unaffected by other individuals, with sudden variations of its direction 
of motion, in the spirit of run-and-tumble locomotion30. Akin to our experimental observations, the model 
exhibits intermittent scale-free avalanche-like behavior, not present in the original model. Our results confirm 
the presence of scale-free signatures in behavioral cascades in collective motion4 and highlight the role of effec-
tive leadership and long range interactions in the emergence of this sort of collective behavior.

Results
Empirical analysis of schooling fish.  We have analyzed the avalanche behavior in black neon tetra 
(Hyphessobrycon herbertaxelrodi), a small freshwater fish (adult mean body size of 2.5 cm) that have a strong 
tendency to form compact and highly polarized schools31. Experiments, performed by the group of F. S. Beltrán 
and V. Quera at the Institute of Neurosciences, University of Barcelona (Spain), consisted in groups of 40 indi-
viduals, freely swimming in an experimental rectangular tank of dimensions 100× 93 cm and 5 cm of depth. 
Videos of the fish movement were recorded at 20 frames per second with a resolution of 1072× 1004 pixels. 
Three independent recordings, each of length T = 12,000 frames were performed. The path of individual fish 
was digitized using a custom-made tracking software. The paths obtained were later visually inspected to correct 
for a few anomalously large jumps, due to the switching of fish identities in the tracking process. The trajectories 
obtained were finally smoothed by applying a Savitzky-Golay filter of window length 7 and polynomial order 332. 
The final result were three digital data series, labeled A, B and C, that we analyzed numerically.

Avalanche analysis.  Supplementary Video SV 1 shows a rendering of a segment of the school evolution in time 
for series A. The heading of each fish, marked by a short arrow, is defined in terms of its instantaneous velocity 
vi(t) . Given the path of a fish as a function to time ri(t) , t = 1, 2, . . . ,T (time measured in frames), we define the 
velocity at time t using a Richardson extrapolation of order 4, in terms of the expression33

As we can see in Supplementary Video SV 1, fish tend to move in a coherent and highly polarized fashion, swim-
ming with a common and slowly changing average velocity. In this regime, heading variations are small and rather 
smooth. However, at some instants of time, we can recognize swift rearrangements of the individuals’ headings, 
that lead to a change of the average orientation of the school, accompanied by an increase of the average veloc-
ity and a decrease and a delayed increase of the global order of the school (see the animated plot in SV 1). We 
interpret these sudden rearrangements of individual heading as triggerers of avalanches of activity. Avalanches 
are triggered at different positions within the experimental tank and, in particular, they are also initiated near 
the tank’s walls, but they are not restricted to occur always there. In order to quantify them, we fist examine the 
angular variations in the heading of individual fish, defined as the turning angle ϕi(t) formed by the velocity 
vectors vi(t + 1) and vi(t) , and computed as

where × stand for the vectorial product and � · � represents the vector modulus. For symmetry reasons, the angles, 
computed in the interval [−π ,π ] , are projected onto [0,π ].

In Fig. 1a we plot the distribution of turning angles P(ϕ) for the different data series (hollow symbols) and 
for the aggregation of all three of them (red line). Discarding some extremely small values of ϕ , which can be 
attributed to imprecision of the tracking algorithm when following an essentially straight segment, the distribu-
tions show an extended plateau for small turning angles, corresponding to stretches of time in which fish barely 
change their heading and are thus compatible with movement along a smoothly winding trajectory. Instead, 
for values larger than 0.01 radians, the distribution starts to decrease sharply. These large turns correspond to 
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the sparsely distributed large rearrangements of direction observed in SV 1. In order to quantitatively identify 
avalanches, as is customarily done in condensed matter physics34, we define a turning threshold ϕth that distin-
guishes small turns ϕ < ϕth , associated to smooth trajectories, from large turns ϕ > ϕth , associated to sudden 
rearrangements that trigger an avalanche. In Fig. 1b we plot, for a given value of the threshold, the number of 
active fish, defined as those performing a turn larger than ϕth , as a function of time. Here we can see the actual 
presence of turning avalanches, defined as trains of consecutive frames in which more than one fish is active, 
delimited by two frames (one at the beginning and another at the end of the train) with no active fish. These 
curves highlight the intermittent and heterogeneous character of avalanches, which may be rather small or can 
also reach relatively large sizes.

Our experimental data only allows the identification of a limited number of avalanches. Indeed, in Fig. 1c we 
plot the total number of recorded avalanches as a function of the turning threshold. From here we observe that 
the range of values of ϕth that lead to at least 1000 avalanches range approximately in the interval [0.20, 1.50]. To 
study the statistics of avalanches, we compute their duration t and size s, defined as the number of consecutive 
time steps (frames) with at least one active fish, and the sum of the number of active fish at each time step of 
an avalanche, respectively. Notice that, since a fish can be active in more than one step along the duration of an 
avalanche, the avalanche size s is in general larger than the avalanche duration t, and can be larger than the total 
number of fish in the experiment. A first broad statistical characterization of avalanches is given by the relative 
size and duration fluctuations, measured as the standard deviation σ divided by the corresponding average 
value µ . In Fig. 1d, we plot these relative fluctuations for both s and t, respectively. From this plot, we observe 
that relative fluctuations are only larger than 1 for threshold values within the interval between 0.1 and 1.2. We 
therefore restrict our analysis to the conservative threshold interval [0.20, 1.20].

We consider the shape of the probability distributions of avalanche sizes, P(s), and durations, P(t), focusing 
on the cumulative distributions,

In Fig. 2a we plot in full symbols the cumulative size distribution obtained for different values of ϕth . From the 
double logarithmic scale in the plot, we can see that the size distributions show long tails, compatible with a 
power-law behavior of the form P(s) ∼ s−τs for small values of s. This power-law behavior is due to the correlated 
nature of turns in the fish school, a feature that can be corroborated from the comparison of these results with the 
avalanche distributions obtained from trajectories reconstructed by randomizing the sequence of turning angles 
of each fish. In the latter case, one obtains a clear exponential decay, as shown in hollow symbols in Fig. 2a,b; see 
“Methods” for an analytical derivation.

(3)Pc(s) =

∞
∑

s′=s

P(s′) and Pc(t) =

∞
∑

t′=t

P(t′).

Figure 1.   (a) Probability density of turning angles ϕ of individual fish. (b) Number of fish turning an angle 
larger than ϕth in a sequence of 1000 frames in data series A, for different values of the turning threshold. (c) 
Number of avalanches observed as a function of the turning threshold. (d) Relative fluctuations of the avalanche 
size (s) and duration (t) distributions as a function of the turning threshold. Vertical lines in (c) and (d) 
represent the turning threshold interval [0.2, 1.2].
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Upon closer scrutiny, we can also observe that, for sufficiently large ϕth , the initial power-law behavior of 
the size distributions is followed by a faster decay for s larger than a characteristic size sc that appears to be a 
decreasing function of the threshold ϕth . Inspired by the observations in other avalanche systems35 and in mod-
els of self-organized criticality29, we can assume that, for different values of the threshold, the size distributions 
exhibit a scaling behavior of the form

where the scaling function Gs(z) is constant for small z ≪ 1 and decays rapidly to zero for z ≫ 1 . In analogy 
with avalanches in condensed matter and critical phenomena36,37 we make the ansatz for the behavior of the 
size cut-off sc(ϕth) ∼ ϕ

−σs
th

 , where σs is a characteristic exponent. We can estimate the values of the exponents 
by noticing that Eq. (4) implies, for the cumulative distribution, Pc(s) = s−τs+1Fs

(

sϕσs
th

)

 , where Fs(z) is another 
scaling function. The previous expression can be rewritten as

where F ′s(z) = z−τs+1Fs(z) . Equation (5) implies that, when plotting the rescaled distribution ϕσs(1−τs)
th

Pc(s) as 
a function of the rescaled size sϕσs

th
 , with the correct exponents τs and σs , plots for different values of ϕth should 

collapse onto the same universal function F ′s(z) . Using this idea, one can estimate numerically the exponents 
τs and σs as those that provide the best collapse of the data rescaled using Eq. (5) for the different values of ϕth , 
see “Methods”.

Following this approach, using values of ϕth ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2} , we estimate the exponents τs ≃ 2.03 
and σs ≃ 3.03 . In Fig. 2c we show the data collapse for Eq. (5) obtained for the cumulated size distributions using 
these values. Different intervals of the turning threshold provide slightly different values of the exponents, from 
which we estimate the average exponents quoted in Table 1. The same procedure can be applied to the duration 
distribution, see Fig. 2b, where now the cumulative duration distribution Pc(t) fulfills Eq. (5) with the corre-
sponding exponents τt and σt . In the same interval of thresholds we find τt ≃ 2.33 and σt ≃ 1.59 , see Fig. 2d, 
while the average exponents are given in Table 1. We can check the validity of these results considering that, for 
small values of s and t, the distributions P(s) ∼ s−τs and P(t) ∼ t−τt imply that the average size of avalanches of 
duration t, s̄t , takes the form

(4)P(s) = s−τsGs
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s

sc(ϕth)

)

(5)ϕ
σs(1−τs)
th

Pc(s) = F ′s
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)

,

(6)s̄t ∼ tm, with m =
τt − 1
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.

Figure 2.   (a) Cumulative probability distribution of the avalanche sizes Pc(s) for different values of the turning 
threshold ϕth . (b) Cumulative probability distribution of the avalanche durations Pc(t) for different values of the 
turning threshold ϕth . In (a) and (b), filled symbols represent the actual empirical distributions, while hollow 
symbols correspond to distributions obtained by randomizing the turning angles in the trajectory of each fish. 
(c) Check of the scaling of the cumulative size distribution with the turning threshold, as given by Eq. (5). (d) 
Check of the scaling of the cumulated time distribution with the turning threshold, as given by Eq. (5). (e) 
Average size s̄t of avalanches of fixed duration t as a function of t. The main plot shows the empirical data. The 
inset presents the results from a randomization of the turning angles in each fish trajectory. In this case, we plot 
the average duration as a function of the theoretical prediction Nqt/Q, see Eq. (13).
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In Fig. 2e we represent the empirical average avalanche size s̄t as a function of the duration t. For the different 
values of the turning threshold considered, we estimate numerically that s ∼ t1.31 . This observation is in good 
agreement with the expression in Eq. (6), which, using the values from Table 1, yields m = 1.4(2) . In Fig. 2e we 
also show the average avalanche size observed in randomized avalanches, which shows a linear dependence as 
expected theoretically, see “Methods”. This last result highlights the relevant effect of turning angle correlations 
in real fish.

Effective leadership and avalanche behavior.  In order to explain the origin of the avalanche behavior observed 
in our empirical data, we consider the possibility that avalanches are triggered by some initiator or effective 
leader, which consistently starts the large turning rearrangements that lead to the formation of an avalanche. 
While several definitions of leadership have been proposed within the field of collective animal motion38, here 
we use a measure explicitly devised to detect the presence of preferential initiators of avalanches. We consider 
the originator of an avalanche as the fish that performs the first large heading turn in the evolution of the ava-
lanche. As more than one fish can be active in any frame, we consider as initiators all active fish in the first frame 
of an avalanche. We define the leadership probability χi of fish i in a given data series as the ratio of the number 
of avalanches in which the fish i is active in the first frame, divided by the total number of avalanches in which 
fish i participates. The calculation is restricted to sufficiently large avalanches, of duration larger than 5 frames. 
In Fig. 3 we plot the value of χi computed for each one of the N = 40 fish in each series, for different values of 
the turning threshold ϕth . As we can see, the leadership probability shows an important variation among fish. 
Moreover, for the largest values of ϕth considered, the leadership probability can take values up to 0.60, indicating 
that some fish initiate more than half of the avalanches in which they participate.

In order to quantify the relevance of the values of χi obtained, and ascertain that they are not the effect of 
random fluctuations in the activity of the fish, given our small populations, we compare our empirical estimates 
with the results obtained in a null model in which the turns performed by fish are completely independent, see 
“Methods”. The continuous lines in Fig. 3 represent the null model average leadership probability, while the 
shaded region represents its 99% confidence interval. Our results in Fig. 3 indicate that, with the exception of 
series C, in all series and for all values of the turning threshold considered, several fish have an unusually very 
large probability to initiate an avalanche, much larger than the value expected from pure random fluctuations. 
We can associate them to effective leaders of the school, which initiate with large probability the avalanches in 
which they participate.

More information can be obtained by considering the evolution of the leadership probability as a function 
of the turning threshold for each fish in each time series, see Supplementary Fig. (SF) 1. From this plot we can 
confirm, first of all, that some fish never initiate an avalanche ( χi = 0 ) for large values of the turning threshold, 
while others consistently start much less avalanches than they should by mere random fluctuations. Some other 
fish behave as initiators for some range of values of the turning threshold. Finally, some fish reliably initiate a 
large number of avalanches, much more than they should by pure randomness. These fish can be identified as 
consistent effective leaders, which trigger a large majority of the avalanches, independently of the value of the 
threshold used to quantitatively define them.

Modeling avalanches in the presence of leaders.  To explore the effects of the presence of leadership in 
the avalanche behavior of schooling fish, we consider as the simplest modeling scenario a variation of the classic 
Vicsek model28 in which we introduce an effective leader.

Model definition.  The Vicsek model28,39 is defined in terms of N self-propelled particles (SPPs), characterized 
by a position ri and a velocity vi of constant modulus v0 , evolving in a two dimensional space, and thus being 
fully characterized by the heading angle θi defined by the velocity vector. Particles interact among them by trying 
to align their instantaneous velocity with the average velocity of the set of nearest neighbors inside a circular 

Table 1.   Summary of scaling exponents for the avalanche size and duration distributions obtained from 
observations of a real fish school and from the Vicsek model with a perturbed leader.

Schooling fish

τs σs τt σt

2.0(1) 3.1(3) 2.4(1) 1.70(4)

Vicsek model with a perturbed leader 
ϕth(η) = 2.5πη

τs D τt z

η = 0.2 1.73(5) 2.01(2) 4.03(5) 0.39(5)

η = 0.3 1.69(5) 2.01(2) 3.49(5) 0.42(5)

Vicsek model with a perturbed leader 
ϕth(η) = 2.8πη

τs D τt z

η = 0.2 0.99(5) 2.06(2) 0.26(4) 0.50(5)

η = 0.3 1.04(5) 2.03(2) 0.57(5) 0.52(5)
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region of radius R centered in the considered SPP. A noise source of strength η , representing physical or cognitive 
difficulties in gathering or processing local information, allows the formation of an ordered (flocking) phase at 
low noise intensities, and of disordered (swarming) states at high enough noise values. See “Methods” for further 
details and simulation conditions.

In the variation we study (see “Methods”) we consider that a given particle, say particle 1, plays the role of an 
effective global leader with a long range influence over the rest of the SPPs. We notice that long-range interactions 
have already been considered in models of collective motion, as a mechanism to ensure a compact flock in the 
absence of periodic boundary conditions40. The velocity of the leader, v1(t) = vL is not affected by the behavior of 
its neighbors, and therefore its heading remains constant θ1(t) = θL over time. The other SPPs can, on the other 
hand, feel the orienting effect of their local neighborhood as well as that of the leader, independently of their 
relative distance. Therefore they take it into account when computing the average velocity of their neighbors, 
to which they try to align.

At this point, it is worth pointing out that this leader can be any individual who first experiences a sudden 
orientational shift. For this reason we simply assume that its heading will remain constant, and therefore unaf-
fected by its neighbors, until another reorientation of similar characteristics occurs in the system. We have 
checked that the leader does not need to be always the same individual to obtain the main results of our model. 
On the other hand, the presence of an unperturbed leader, that is, a leader with a constant heading over time, 
would have the effect of suppressing the disordered phase exhibited by the classic Vicsek model. As we can see 
in SF 2, while for the classical model the transition becomes sharper when increasing the systems size L, the 
leader induces an ordered state for any value of η , with an order parameter (see “Methods”) fairly independent 
of system size and vanishing only in the limit of maximum noise η = 1.

Avalanche behavior in response of leader perturbations.  In this section, we focus our attention on the system-
wide perturbations that are induced by changes in the preferred direction of motion of the leader. To analyze 
them, we consider a random reorientation of the leader’s heading by an angle �θL , performed in the steady state 
corresponding to a given value of the noise intensity η , and measure the subsequent rearrangements that this 
perturbation induces in the heading of the rest of fish, as given by the turning angle ϕi(t) = θi(t + 1)− θi(t) 
projected on the interval [0,π ].

In Fig. 4a we represent the probability density of SPPs turning angles P(ϕ) in the steady state, for different 
values of the noise intensity η . In this plot we consider the model with a fixed, non-turning leader (dashed lines), 
and the case of a periodically perturbed leader (full lines), in which the leader experiences a random rotation 
�θL of its heading, uniformly distributed in the interval [−π ,π ] , every 250 time steps, a time lapse larger than 

Figure 3.   Leadership probability χi computed for each fish i in the three data series considered A, B and C 
columns, left to right) and for different values of the turning threshold ϕth = 0.25, 0.5, 1.0 and 1.2 (rows, top 
to bottom). Symbols are color-coded with the number Nα of actual avalanches in which each fish participates. 
Full lines represent the average leadership probability in a null model of uncorrelated avalanches. The shadowed 
regions represents the 99% confidence interval of this value.
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the maximum avalanche duration recorded in simulations. As we can see, for fixed η , the two distributions are 
almost identical for small ϕ , while they differ drastically regarding the behavior of the tails beyond a given cut-off 
turning angle ϕc(η) . A numerical analysis performed for different values of L allows to estimate this cut-off as 
ϕc(η) ≃ 2.4πη . The presence of this turning angle cut-off, not available in empirical data, permits to distinguish 
the changes of heading due to the effect of the leader perturbations, and suggests that the proper definition of 
avalanches should consider turning thresholds larger than the cut-off ϕc(η) . In the following, we will fix the 
value of the threshold to ϕth(η) = 2.5πη . We notice that for large η ≥ 0.5 , the angular distributions with and 
without perturbations are identical, compatible with a large noise masking external perturbations and making 
avalanches non discernible.

In Fig. 4b we plot a sample of the number of SPPs that turn an angle larger than ϕth(η) as a function of time. 
This curve emphasizes the heterogeneous character of the avalanche sizes in response to the leader’s changes 
of direction, akin to what is observed in fish schools: Sometimes a perturbation is followed by a small number 
of SPPs reorientations; but other times, it triggers the reorientation of a large number of particles. As expected, 
the strength of the effects of the leader perturbations decreases with increasing noise, indicating that interesting 
avalanche behavior will only occur for moderate levels of noise.

We compute the cumulative probability distributions Pc(s) and Pc(t) , Eq. (3), of observing an avalanche of 
size and duration larger than s and t, respectively, plotted in Fig. 4c,d for a turning threshold ϕth(η) and different 
values of η . As we can see from these plots, the values η = 0.2 and 0.3 lead to size an time distributions analogous 
to that observed in rearrangement avalanches in real fish schools, with a shape that can be approximated by a 
power-law form for intermediate values, followed by a crossover to a sharp decrease for large s and t above a 
characteristic size or time. The behavior for η = 0.1 is more complex, probably due to the fact that for small noise 
one expects a fairly homogeneous response with many SPPs following a leader perturbation. We thus discard 
this value in the following analysis.

The fact that we work now with a numerical model, allows us to explore the behavior of the system for dif-
ferent systems sizes L at a fixed turning threshold, which was not possible in our fixed size empirical data. In 
Fig. 5a,b we plot the cumulative size and duration distributions in avalanches in the Vicsek model with a turning 
leader for a turning threshold ϕth(η) , η = 0.2 and different system sizes. As we can observe, the behavior of the 
distributions is analogous to that observed in real fish schools, compatible with a power-law decay but that are 
now truncated by a size and time cut-offs that are functions of the system size L. Inspired again by self-organized 
criticality29, we can assume now that the distributions obey a finite-size scaling form

Figure 4.   (a) Probability density of the turning angles ϕ for the Vicsek model with a leader, for different values 
of the noise intensity η , in a system of size L = 220 . Dashed lines correspond to a non-turning leader. Full lines 
represent a leader perturbed periodically every 250 time steps. Vertical lines, indicating the departure of the 
distributions for perturbed and non-perturbed leaders, are estimated at a value ϕc(η) ≃ 2.4πη . (b) Number of 
SPPs turning an angle larger than ϕth(η) = 2.5πη in a sequence of 10,000 simulation time steps in the Vicsek 
model with a periodically perturbed leader, for different values of η . (c) Cumulated distribution of sizes Pc(s) of 
avalanches induced by a periodically perturbed leader in a system of size L = 220 with turning threshold ϕth(η) , 
for different values of the noise intensity. (d) Cumulated distribution of durations Pc(t) of avalanches induced by 
a periodically perturbed leader for different values of the noise intensity.
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where D and z are new characteristic exponents that define the characteristic size sc(L) ∼ LD and time tc(L) ∼ Lz 
as a function of the system size29,41. The better statistics in numerical simulations allow to estimate the char-
acteristic exponents applying the more precise moments analysis technique42, see “Methods”. Application of 
this method leads to the characteristics exponents reported in Table 1. We check the accuracy of these values 
performing a data collapse analogous to that performed for the avalanches in real fish, which, for the cumulated 
distributions, takes the form,

see Fig. 5c,d for η = 0.2 ; the case η = 0.3 is presented in SF 3. As we can see from these values, the exponents 
show a dependence on the value of the noise η , although the size exponents appear to be compatible within error 
bars. It is important to notice that the presence of a rotating leader in necessary to obtain scaling avalanche dis-
tributions. Even in the absence of a leader, the heading fluctuations due to noise and interactions in the standard 
Vicsek model allow to define avalanches for a given threshold. These avalanches, however, show a simple, short 
ranged exponential distribution, as shown in SF 4.

We have finally checked the effects of changing the turning threshold in the scaling of the distributions as a 
function of the system size. In SF 5 and SF 6 we show the results for a turning threshold ϕth = 2.8πη , summa-
rized in Table 1. As we can see, the scaling exponent τs and τt in our model depend on the value of the threshold. 
This fact is in contrast with the behavior of the fish school, in which the characteristics exponents appear to be 
independent of the threshold, and thus allowing for a scaling solution of the form given by Eq. (4). Interestingly, 
the exponents D and z appear to be rather detail independent, taking the approximate values D ≃ 2 and z ≃ 1/2 
for any value of η and ϕth , which would indicate that avalanches in this model are compact29.

Discussion
Behavioral cascades, taking the form of intermittent rearrangements (avalanches) in the patterns of movement 
are an important, albeit sometimes neglected, feature of collective motion in animals. Here we have shown that 
behavioral cascades can be observed in the rearrangement dynamics of swimming fish schools. Such avalanches, 
defined in terms of a turning threshold for the heading of the fish, have distributions of sizes and times exhibiting 
a scaling behavior compatible with a power-law tail truncated by a cut-off that is an increasing function of the 
turning threshold. A data collapse analysis allows to determine the exponents characterizing the scaling form. 
We conjecture that such avalanche behavior can be due to the presence of effective leadership in the schools. In 
order to support this conjecture, we introduce a measure of leadership, based in the concept of avalanche initia-
tors, and observe that, indeed, some fish have consistently an unusually large probability to initiate any avalanche 
in which they participate. These predominant initiators can be interpreted as effective leaders, determining the 
start of sudden rearrangements of the school headings. Leadership in the context of avalanche initiation could 

(7)P(s) = s−τsGs

( s

LD

)

, P(t) = t−τt Gt

(

t

Lz

)

.

(8)LD(τs−1)Pc(s) = F ′s(sL
D), Lz(τt−1)Pc(t) = F ′t(tL

z),

Figure 5.   (a) Cumulative probability distribution of size Pc(s) of avalanches induced by a perturbed leader in a 
system with η = 0.2 , turning threshold ϕth(η) and different values of L. (b) Cumulative probability distribution 
of durations Pc(t) of avalanches induced by a perturbed leader. (c) Check of the scaling of the cumulated size 
distribution as given by Eq. (5). (d) Check of the scaling of the cumulated time distribution as given by Eq. (5). 
Statistics are performed over at least 105 different avalanches.
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account for individuals having sudden behavioral changes or specific information about the environment, such 
as the proximity of a wall.

To check whether the presence of leaders is enough to induce avalanche behavior in collective motion, we 
have considered a very simple model, consisting in a variation of the classical Vicsek model with the addition of 
a global leader, which influences the movement of all other particles, subject to random changes in its heading. 
Interestingly, this simple model displays an intermittent behavior qualitatively similar to that observed in real 
schools, with avalanche size and duration distributions displaying a self-similar scaling form.

Our results provide a new perspective on the avalanche behavior observed in real collective motion 
situations10, which can be associated to a simple mechanism of leadership that exerts a long range influence, 
observed in many natural situations, indicating the possibility of a direct relation between these phenomena. 
Leadership in the present context of a moving school corresponds to those individuals that first react to any 
external input, or that first exhibit a random behavioral change, and preferentially start sudden rearrangements 
of the trajectories of other fish in the school. Such interpretation is validated by the numerical results from our 
model. It is also worth emphasizing that, while it does not offer a perfect quantitative prediction of the charac-
teristic exponents, it nevertheless allows to reproduce the scaling form of the avalanche distributions within a 
minimalist modeling framework.

Different venues of future research stem from the results presented here. From an empirical perspective, 
it would be interesting to further study the nature of the avalanches observed in real schools, and to correlate 
them with other physical properties measured in similar systems43,44, as well as with other measures of lead-
ership devised in other contexts of collective motion38. From a numerical point of view, our results present 
new challenges in the understanding of the properties of the proposed model. Indeed, a clearly open question 
remains to ascertain the ultimate origin of the scaling behavior observed in avalanches in a system in which no 
apparent critical transition exists. Another interesting question regards the effects of leader switching strategies. 
We expect the scale-free nature of the observed avalanches to be preserved, provided that the influence of the 
leader, sensory wise, remains rather long-ranged. In this sense, as we have numerically checked (data not shown), 
a short-ranged leader, only with local influence over its nearest neighbors, is not able to induce system-wide 
orientation rearrangements. On the other hand, the value of the exponents associated to the size and duration 
cutoffs are apparently independent of the noise intensity imposed on the system. These observations hint towards 
a possible partial universality, which is not shared, however, by the power-law decay exponent. Further work in 
this direction is clearly needed in order to clarify these issues.

Methods
A null model of fish avalanches.  In the absence of any sort of dynamical correlations between the turn-
ing angles of fish, the evolution of avalanches is purely determined by the independent turning probability P(ϕ) 
of each fish. As a null model of avalanche behavior, we consider the case in which each fish independently turns 
an angle ϕ at each time step. Consider an avalanche of duration t and size s, starting at time t ′ = 1 . If the ava-
lanche lasts t time steps, it means that at least one fish turned an angle larger than ϕth every frame from t ′ = 1 
to t ′ = t , and that no fish turned an angle larger than ϕth at frame t ′ = t + 1 . Under these conditions, the prob-
ability that a fish turns an angle larger than ϕth in any frame is

and the probability that at least one fish turns an angle larger than ϕth in a given frame is

where N is the number of fish. Therefore, the normalized probability that an avalanche lasts for t frames in this 
null model is

where we consider that avalanches have a minimal duration of one frame. That is, in the uncorrelated null 
model, the avalanche duration distribution has an exponential form, with average avalanche duration 
�t�0 =

∑∞
t=1 tP0(t) = 1/(1− Q)

Consider now a frame in an avalanche of finite duration. In this frame, at least one fish turned an angle larger 
than ϕth , therefore the probability of observing s1 large turns in this frame is

If the avalanche has duration t, at each frame a number s1 of fish, distributed with the probability Eq. (12), will 
turn a large angle. Therefore, the distribution of sizes in avalanches of duration t, P0(s|t) will be given the convo-
lution of the probability Eq. (12) t times with itself. The form of this expression is hard to compute. However, we 
can approximate the avalanche size distribution as follows: Since Eq. (12) is similar to a binomial distribution, 
it is bell-shaped and centered at the average value

(9)q =

∫ π

ϕth

P(ϕ) dϕ,

(10)Q = 1− (1− q)N ,

(11)P0(t) =
(1− Q)Qt

∑∞
t′=1(1− Q)Qt′

= (1− Q)Qt−1, t = 1, 2. . . . ,∞,

(12)p1(s1) =
1

Q

(

N
s1

)

qs1(1− q)N−s1 , s1 = 1, 2, . . . ,N ,
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Therefore, the average size of an avalanche of duration t is

linear with t. Assuming that the relation between size s and duration t is tight, given the bounded distribution 
p1(s1) , we can use relation s ≃ Nq

Q t and the distribution P0(t) from Eq. (11) to obtain the probability transforma-
tion P0(t)dt = P0(s)ds , leading to

that is, an exponential decay with a characteristic size

Numerical data collapse analysis.  We start from a set of avalanche size (or duration) distributions, that 
we assume to fulfill the scaling relation, at the level of the cumulated distributions,

In order to find the exponents τs and σs , we proceed as follows: We consider general exponents xs and ys , from 
which we can write the new rescaled expressions

where F ′s(z) = z−τs+1Fs(z) . Plotting ϕys(1−xs)
th

Pc(s) as a function of sϕys
th

 , the curves for different values of ϕth 
will collapse onto the universal function F ′s(z) when xs = τs and ys = σs . We can estimate these exponents by 
considering the difference of the curves for the different values of ϕth and choosing the exponents τs and σs as 
the values of the exponents xs and ys that minimize this difference. To compute the difference, we locate the 
interval of values of sϕys

th
 common for all ϕth . In this interval, we compute a spline of order k for each quantity 

ϕ
ys(1−xs)
th

Pc(s) and interpolate a fixed number n of equispaced points. The difference is defined as the sum of the 
variances of the values of ϕys(1−xs)

th
Pc(s) in each point of the interpolation, for the different values of ϕth . In the 

results presented here, we consider splines of order k = 2 and interpolate n = 10 points for each Pc(s) curve.

Leadership probability in the null model of avalanche behavior.  In the avalanche null model 
defined above, consider a fish that participates in a given avalanche. To estimate its leadership probability we 
have to compute the probability that it leads the avalanche (i.e. it is active in its first time step), provided that it 
participates in it. To compute it, we use Bayes’ theorem to write

where P(p) is the probability that the fish participates in a given avalanche, P(l|p) the probability of leading an 
avalanche in which it participates (the probability we are seeking), P(l) the probability of leading an avalanche, 
and P(p|l) the probability that a fish participates in an avalanche provided that it leads it. Obviously, P(p|l) = 1 . 
To estimate the rest of probabilities, we need information about the duration t of the avalanche. Thus, we have 
P(p) = 1− (1− q)t , the probability that the fish turns at least once in the development of the avalanche, and 
P(l) = q , the probability that the fish is active (performs a large turn) in the first time step of the avalanche. 
Therefore, from Eq. (19) we obtain

Within this null model, consider a fish that participates in Na avalanches, each of duration tα , α = 1, . . . ,Na . 
The probability of leading any of these avalanches is pα = q/[1− (1− q)tα ] . Therefore, the probability P(ℓ) of 
leading ℓ of the Na avalanches is given by a Poisson binomial distribution, representing the probability distribu-
tion of a sum of independent Bernoulli trials that have different success probabilities pα45. The Poisson binomial 
distribution has a rather convoluted form, but its mean and variance can be easily expressed as

The average leadership probability of a fish in this null model is thus given by χ0 = �ℓ�/Na , where �ℓ� =
∑

α pα 
is the average number of avalanches led by the fish. In Fig. 3 we show the actual values of χi computed for each 
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fish. The full line and shaded region represents the null-model average value χ0
i  computed for each fish, taking 

into account the number of avalanches in which it participates, and its 99% confidence interval, respectively.

Vicsek model with leadership.  In the classic Vicsek model28,39, N self-propelled particles (SPPs) move 
in a two dimensional space. The dynamics is overdamped and defined in discrete time, with the instantaneous 
position ri(t) , i = 1, . . . ,N , of each particle being related with its velocity vi(t) by

where �t is an integration time step, arbitrarily fixed to �t = 1 . Velocities have a constant modulus, |vi(t)| = v0 , 
and thus are fully determined by their direction, given by the heading angle θi(t) that the velocity forms with, say 
the x axis, such that vi(t) = (v0 cos θi(t), v0 sin θi(t)) . Heading is assumed to belong to the interval [−π ,π ] . In 
this model each particle i tends to orient its direction of motion along the average direction Vi(t) of the particles 
located inside a circular area Vi of radius R centered at its own position and including itself, i.e.

where ni(t) is the number of particles in the neighborhood Vi at time t. This dynamics is implemented in the 
update rule for the heading angle

where the function �[V] represents the angle of vector V and ξi(t) a random noise, uniformly distributed in the 
interval [−π ,π ] , and η ∈ [0, 1] a parameter gauging the strength of the noise term.

This model exhibits an order-disorder phase transition defined in terms of an order parameter (polarization) 
given by

the brackets representing a temporal average. The transition separates an ordered phase for noise strength smaller 
than a critical value ηc , corresponding to a flocking (schooling) phase, from a disordered phase for η > ηc , cor-
responding to a swarming, disordered phase.

In the variation of the Vicsek model we consider, one of the SPPs, say particle 1 plays the role of a leader which 
influences the orientation of the rest of SPPs in the system, independently of their relative distance. Therefore, 
in the heading update rule Eq. (24), the average velocity of the neighbors is replaced by the average VL

i (t) com-
puted in the set VL

i = Vi ∪ {1} , including the global leader and all the particles in the local neighborhood of 
i. The heading and velocity of this leader is constant in time, θ1(t) = θL , and it represents a privileged direction 
it wants to follow.

Simulations of the model are performed in square boxes of different size L with periodic boundary condi-
tions. We fix the density of particles ρ = N/L2 = 1 , the radius of interaction R = 1 , and the constant speed of 
the SPPs v0 = 0.03.

Moments analysis technique.  The finite-size scaling (FSS) method41 assumes that the dependence on 
system size L of the avalanche size and time distributions is of the form

where Fx(z) are scaling functions that are approximately constant for z < 1 , and decay very fast to zero for z > 1 . 
The quantities sc(L) and tc(L) are the cut-off characteristics size and time, which are assume to depend on system 
size as sc(L) ∼ LD and tc(L) ∼ Lz , thus defining the standard critical exponents τs , τt , D (the fractal dimension) 
and z (the dynamic critical exponent)29.

Assuming the scaling form given by Eqs. (26) and (27), we can compute numerically the associated critical 
exponents applying the moment analysis technique42. One starts by defining the q-th moment of the avalanche 
size distribution on a box of size L as

where we have introduce the FSS form in Eq. (26), and taken the continuous approximation for the s and t vari-
ables. The exponents σs(q) ≡ D(q+ 1− τs) can be estimated as the slope of the numerical evaluation of 〈sq〉L as 
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a function of L in a double logarithmic plot. Then, for sufficiently large values of q, we can perform a linear fit 
of the exponent σs(q) to the form

with A = D and B = D(1− τs) , from where D and τs can be directly estimated. Along the same lines, the expo-
nents associated to the avalanche time distribution can be evaluated considering the q-th moment of the time 
distribution, �tq�L ∼ Lσt (q) , with σt(q) ≡ z(q+ 1− τt).

Data availability
The datasets used in this study are available from the corresponding authors upon reasonable request.
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