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INTRODUCTION

Increasingly, the life sciences rely on data science, an emerging discipline in which visualization plays
a critical role. Visualization is particularly important with challenging data from cutting-edge
experimental techniques, such as 3D genomics, spatial transcriptomics, 3D proteomics,
epiproteomics, high-throughput imaging, and metagenomics. Data visualization also plays an
increasing role in how research is communicated. Some scientists still think of data visualization
as optional; however, as more realize it is an essential tool for revealing insights buried in complex
data, bioinformatics visualization is emerging as a subdiscipline. This article outlines current and
future grand challenges in bioinformatics data visualization, and announces the first publication
venue dedicated to this subdiscipline.

Over the past two decades, life science data have increased rapidly in volume and complexity, with
the result that data analysis is often the major bottleneck (O’Donoghue et al., 2010a). For example,
“All major genomics breakthroughs so far have been accompanied by the development of ground-
breaking statistical and computational methods” (Green et al., 2020). Thus, in the remaining decades
of the 21st century, life scientists will become increasingly reliant on the emerging tools and methods
of data science (Blei and Smyth, 2017; Altman and Levitt, 2018).

One of these methods is data visualization (a.k.a. DataVis), which plays a critical role in
transforming data and analysis outcomes into insight (Card et al., 1999). Data visualization
involves analysis, design, and rendering, as well as observation and cognitive processing
(Figure 1). Some scientists think of DataVis as an optional step mostly aimed at aesthetics —
however, there is growing recognition that it is an essential tool in the analysis of complex data; two
indicators of this recognition are the recent sales of DataVis companies Looker and Tableau for US$3B
and $16B, respectively.

Currently, however, most attention is focused on another aspect of data science, namely, the use of
machine learning to develop artificial intelligence systems. Such systems have recently led to exciting
advances in the life sciences (e.g., Callaway, 2020a)— but also to some hyperbole. Clearly, machine
learning methods are increasingly critical for research; but these methods also have limitations
(Challen et al., 2019; Heaven, 2019; Yu and Kohane, 2019). More fundamentally, automated methods
are insufficient, since analysis outcomes must be observed and understood by an analyst before
insight can occur (Figure 1). Most analysts use data visualization as an integral part of their cognitive
processes—especially important is manual validation, which involves checking for errors and outliers
in raw data, and for wrong assumptions used in automated analysis methods (Anscombe, 1973).

Automated data analysis (including machine learning) and data visualization are just components
of the larger goal of data science, which the eminent computer scientist Fred Brooks argues should
focus on ‘Intelligence Amplification’ (a.k.a. I.A.) — i.e., on amplifying our abilities to manage more
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FIGURE 1 | The data science cycle. Analysis of newly acquired data increasingly relies on integration with large, accumulating volumes of complex, pre-existing
data, and requires frequent re-analysis and re-rendering. Visualization is the main way researchers observe both raw and analysed data; an overarching grand
challenge of data visualization is to leverage human visual capabilities—which involve most of the brain and can process ∼10 million bits per second (Koch et al.,
2006) to recognize patterns within ∼100 ms (Healey and Enns, 2012)— thereby transforming data into insight. These insights, in turn, lead to new hypotheses,
thus continuing the cycle. Unfortunately, the critical step of manually validating derived models by visually comparing raw vs. analysed data (Anscombe, 1973) is
often overlooked.

FIGURE 2 | Six data visualization methods currently used in bioinformatics grand challenges. (A) Amolecular-scale, 3D model of the human genome may soon be
feasible; in preparation, visualization tools are being developed to enable interactive, multiscale exploration of such models (adapted from Asbury et al. (2010)). (B) t-SNE
analysis of scRNA-seq data on breast cancer metastasis (adapted from Valdes-Mora et al. (2019)). (C) Spatiotemporal graph of phosphorylation events in fat cells
following insulin stimulation (adapted from Ma et al. (2015), by Jenny Vuong). (D) Here, an interactive, web-based data integration environment is used to explore
and curate a molecular-scale model of a subcellular landscape showing HIV-host interactions (Klein et al., 2018; Autin et al., 2020). (E) Portion of spatial transcriptomics
analysis showing expression of two genes in an anterior slice from mouse brain (adapted from Vandenbon and Diez (2020)). (F) Disease trajectory graph showing
progression from heart pain to cardiac arrest across the entire Danish population (adapted from Jensen et al. (2014)).
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complex data (Brooks, 1996). In my opinion, helping achieve the
goal of I.A. is the overarching grand challenge of DataVis.

PRIORITIZING GRAND CHALLENGES IN
BIOINFORMATICS

Since data visualization aims to amplify human intelligence, we
could ask ourselves1: of all our colleagues working across different
life sciences, whose intelligence most needs amplifying? Or,
humor aside, which fields are creating data that are both
important and urgently need improvements in visual analysis?

Addressing this question is the core mission of an annual series
of international meetings on ‘Visualizing Biological Data’ (VIZBI2).
From my perspective as chair of this meeting series, it is clear that
the biological and biomedical sciences are currently awash with
vexing data challenges where current analysis methods and tools
are fundamentally inadequate. Thus, researchers looking for grand
challenges in bioinformatics data visualization (a.k.a. BioVis) are
spoilt for choice; of verymanyworthy challenges, below are six that
have been highlighted repeatedly by VIZBI speakers over the past
decade, as cases in which innovations in visual analysis are likely to
lead to significant breakthroughs in our understanding of life.
Figure 2 showcases some of the visual methods currently being
used to partly address these challenges. This list of challenges is far
from comprehensive; researchers already focused in a particular
field of the life sciences (e.g., drug design, medicine, ecology) would
likely prioritize very different lists of worthy challenges.

I. In genomics, there is rapid progress towards the goal of
determining the spatiotemporal organization of chromosomes at
molecular-scale resolution (Figure 2A); this is driven by advances
in sequencing technologies that can infer spatial contacts
(Lieberman-Aiden et al., 2009), as well as in high resolution
imaging (Ou et al., 2017). Integrating these multiscale and
multimodal data poses formidable visualization challenges (Ay
and Noble, 2015; Serra et al., 2015); however, achieving this goal
would transform our understanding of what gets transcribed, and
how and when transcription is controlled in different cell types.

II. In transcriptomics, rapid advances in single-cell RNA-seq
(scRNA-seq) techniques nowmake it possible to track behaviors of
individual cells in unprecedented detail, providing a window into
events that were previously hidden (Wills et al., 2013). For example,
scRNA-seq can be used to track cell differentiation and the
evolution of cell-cell contacts during the growth of cancerous
tumours (e.g., Valdes-Mora et al., 2019). Also, in combination
with imaging methods, these techniques can be used to resolve the
spatial location of RNA transcripts within single cells (Chen et al.,
2015). Each type of scRNA-seq experiment produces data that are
both highly multidimensional but also very specific; tailoring
effective data analysis strategies for each type of experiment
requires development of innovative visual analysis methods to
overcome limitations with existing, generic approaches such as
t-SNE (‘t-distributed stochastic neighbor embedding’; Figure 2B)

(Van der Maaten and Hinton, 2008) or diffusion maps (Coifman
et al., 2005). This challenge currently engages many
bioinformaticians, driven by the promise of discovering the key
mechanisms used to control cellular processes.

III. In proteomics, advances in high-throughput mass-
spectroscopy (Kim et al., 2006; Morelle et al., 2006; Olsen et al.,
2006) have begun to provide first glimpses into the highly dynamic
epiproteome, i.e., the set of all post-translational modifications
(PTMs)made to all proteins in a cell (Zheng et al., 2016; Kaur et al.,
2019). So far, at least 200 distinct types of PTMs are known3, and
related advances are revealing that comparable levels of complexity
occur in modifications seen to both RNA (Roundtree et al., 2017)
and lipids (Shevchenko and Simons, 2010). Currently, most of
these modifications are poorly studied; even phosphorylation of
human proteins—one of the best studied PTMs—gives rise to a
phosphoproteome that is still largely unknown or ‘dark’ (Needham
et al., 2019). However, this is set to change rapidly over the next few
years, although extracting insights from the dynamic, highly
multidimensional datasets from epiproteomics (Figure 2C),
epitranscriptomics, and lipidomics remains a major challenge
(Kaur et al., 2019; Kaur et al., 2020). Nonetheless, the insights
gained are likely to fundamentally advance our understanding of
cellular processes in health and diseases—for example, by revealing
molecular events that occur during illness or following therapeutic
interventions.

IV. In cell biology, a convergence of several experimental
techniques and computational methods are driving work towards
an audacious goal: determining the spatiotemporal organization
of a human cell at molecular resolution (Tomita, 2001; Singla
et al., 2018). The spatial location of proteins can be mapped at
sub-cellular resolution using imaging and mass-spectrometry
techniques (Boisvert et al., 2012; Gatto et al., 2019; Lundberg
and Borner, 2019); the molecular structure of these proteins can
be determined using cryogenic electron microscopy (Bai et al.,
2015; Callaway, 2020b) — even when they occur in large
complexes. Transient protein complexes can be either
measured experimentally, inferred from sequence information
(Elofsson, 2021), or modelled in large-scale molecular
simulations (e.g., McGuffee and Elcock, 2010; Feig et al.,
2015). Still largely unmet (Figure 2D) is the formidable
challenge of developing visual methods that integrate these
data with information on protein-protein interactions
(Gehlenborg et al., 2010; Ghosh et al., 2011), protein-small
molecule interactions (Krone et al., 2016), protein 3D
structure (O’Donoghue et al., 2010b; Johnson et al., 2015;
Kozlíková et al., 2017; Olson, 2018), and protein dynamics
(Humphrey et al., 1996; Rysavy et al., 2014; Ferina and
Daggett, 2019). If this challenge can be met, this would
provide a structural framework for understanding the
molecular basis of cell behavior; this, in turn, could have
profound impact, similar to how the structure of DNA
advanced our understanding of the molecular basis of
information storage and replication (Watson and Crick, 1953).

1Paraphrasing from Fred Brooks (1996).
2https://vizbi.org/ 3https://www.uniprot.org/docs/ptmlist
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V. Multiple advances in tissue-scale imaging are driving other
audacious goals: for example, two-photon fluorescence
microscopy (Pittet and Weissleder, 2011) is being used to
construct 3D maps of neural connectivity in mammalian brains
(e.g., Economo et al., 2016), and also to track real-timemovements of
cells and subcellular structures within living tissues, including tumors
(e.g., Kedrin et al., 2008; Conway et al., 2018). In addition, combining
tissue imaging with fluorescence in situ hybridization methods now
enables spatial mapping of RNA transcription (Ståhl et al., 2016;
Burgess, 2019) at near-cellular resolution (Figure 2E) (Stickels et al.,
2020; Marx, 2021). Combining these data with tissue-scale or whole-
body kinetic modeling (Alqahtani, 2017) has potential to
revolutionize our understanding of physiology and the body’s
responses to events such as tumor growth or therapeutic
interventions. However, extracting insight from such massive,
complex datasets requires development of highly tailored,
innovative visual analysis methods (e.g., Santos et al., 2015; GTEx
Consortium, 2017; Uhlen et al., 2017) to address the many challenges
of bridging molecular information with tissue- and whole-organism
scale data (Walter et al., 2010; O’Donoghue et al., 2018).

VI. Finally, a set of daunting challenges lie in comparing
temporal changes in clinical records across cohorts (Karczewski
and Snyder, 2018). The complexity and volume of these data are
increasing rapidly due to wearable devices (Kim et al., 2019; Ray
et al., 2019); however, data dimensionality dramatically increases
when microbiome analysis is also included (e.g., Schüssler-
Fiorenza Rose et al., 2019). Current visual analysis methods
are often inadequate even when exploring the microbiome of a
single person (Procter et al., 2010; Pasolli et al., 2019). Addressing
these many challenges calls for innovative new approaches in how
we visualize phylogenetic (e.g., Rosindell and Harmon, 2012;
Letunic and Bork, 2019) and pan-genomic relationships (e.g.,
Ding et al., 2018), how we compare microbiomes (e.g., Caporaso
et al., 2010; Darling, 2004; Waterhouse et al., 2009), and how we
explore clinical information gathered from large cohorts
(Figure 2F) (e.g., Jensen et al., 2014).

COMMUNICATING SCIENCE VISUALLY

Once any of the above grand challenges are addressed, a new
challenge is created: how to convey the significance of this
breakthrough to others. “Science isn’t complete until it’s
communicated” (Day, 1998); but the highly specific nature of the
life sciences can make it difficult to communicate a breakthrough
even to researchers working in closely related fields, let alone to the
general public. Here again data visualization plays an increasingly
central role. Many of the visualization methods and tools designed
for analysis can be repurposed for communication; but often
dedicated communication approaches need to be developed to
address specific data challenges, especially when conveying
complex or unfamiliar ideas.

For example, an intrinsic difficulty with communicating insights
from amolecular-scalemodel of a human cell (challenge IV, above) is
that ‘mesoscale’molecules (Johnson et al., 2015; Goodsell et al., 2018)
behave very differently to macroscopic objects. This difficulty is
driving development of innovative communication approaches to

convey these dynamic behaviors, e.g., via 2D illustration (e.g.,
Gardner et al., 2018) or 3D graphics (Goodsell et al., 2020; e.g.,
Muzic et al., 2015; Waldin et al., 2019). In turn, such methods are
being used to create informative and inspiring videos4 (McGill, 2008;
Johnson and Hertig, 2014; Iwasa, 2015) and to build interactive
environments that can be explored with virtual reality techniques
(Johnston et al., 2018).

In contrast to visual analysis, subjective qualities such as
aesthetics and novelty become important when using visual
methods for outreach. However, the impact of visual
storytelling goes beyond outreach; the difficult process of
assembling our hypotheses into clear, visual narratives (Nayak
et al., 2020) invariably involves integrating pre-existing data in
new ways, often revealing hidden assumptions and knowledge
gaps. This, in turn, often leads to new insights and hypotheses
(e.g., Reilly and Ingber, 2017), thereby continuing the data science
cycle (Figure 1). Thus, visual communication should also be
considered as an intrinsic part of any grand challenge in
bioinformatics data visualization.

BRIDGING BIOINFORMATICS AND
VISUALIZATION RESEARCH

Addressing the above grand challenges requires combining
expertise in visual analysis with specific knowledge about the
biological context of each experiment, and about what can be
inferred, given expected errors and given prior knowledge. This,
in turn, requires an exchange of knowledge between researchers
in computer science and in various life sciences. Unfortunately,
these communities rarely attend the same meetings, have very
different publication practices, and are strongly disincentivized to
collaborate, since their work performance and funding are
assessed using fundamentally different metrics.

To help counteract these obstacles, a range of resources have
been created for life scientists that showcase how data
visualization is transforming biology; these include: special
issues of Nature Methods5 (Evanko, 2010) and of the Journal
ofMolecular Biology6; a section of BMCBioinformatics dedicated
to advances in either data visualization or image analysis7; a
Nature Methods article series on visualization issues8; and the
VIZBI9 meeting series (mentioned above), which was highlighted
in Nature News (Callaway, 2016). Corresponding resources have
also been created for computer scientists, including several
Dagstuhl reports (Görg et al., 2013; Aerts et al., 2018) and
regular meetings, including the VCBM10 (‘Visual Computing

4https://clarafi.com/showcase/
5https://www.nature.com/collections/iecaaechei
6https://www.sciencedirect.com/journal/journal-of-molecular-biology/special-
issue/10VZQRR6PS7
7https://bmcbioinformatics.biomedcentral.com/articles/sections/imaging-image-
analysis-and-data-visualization
8http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.
html
9https://vizbi.org/
10https://dblp.org/db/conf/vcbm
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for Biology and Medicine’) and BioVis11 workshops, co-located
with the annual conferences Eurographics12 and ISMB13/IEEE
VIS14, respectively. In addition, other international meetings
bridge related communities, but with more targeted focus—for
example, biomedical data visualization (Holzinger, 2012;
O’Donoghue et al., 2018) is the focus of MediVis15, while
molecular graphics (Olson, 2018; Martinez et al., 2019) is the
focus of MolVA16 and of several Shonan meetings (Schafferhans
et al., 2016; Baaden et al., 2018).

These activities have catalyzed adoption of emerging visualization
methods in the life sciences; notable examples include: use of ggplot2
(Wickham, 2009) for offline analysis, use of D3 (Bostock et al., 2011)
for interactive data exploration in websites; use of virtual reality in
molecular graphics (Muzic et al., 2015; Sommer et al., 2018); use of
augmented reality in surgery (Bernhardt et al., 2017; Maier-Hein
et al., 2017); and the use of interactive volume rendering for full-body
virtual autopsies (Ljung et al., 2006).

Looking forward, advances in computer hardware and software
are set to provide greatly improved graphics as well as new paradigms
for user interaction. One of the overarching grand challenges in
BioVis is to use these advances to improve research, communication,
training, and clinical practices.

PUBLISHING ADVANCES IN
BIOINFORMATICS DATA VISUALIZATION

As with all frontier, interdisciplinary work, publishing advances in
BioVis can be problematic. Publication venues in computer science
often reject manuscripts describing novel methods that lack broad
applicability, or describing novel tools that lack a user study—even
when the advances described are obviously of very high value to
domain experts. Life science journals often reject manuscripts
describing novel visual analysis approaches that are too technical
or have not yet been used to derive significant, novel biological
insights—even when the advances described are highly innovative or
required enormous effort. Even journals specializing in
bioinformatics often reject manuscripts that describe user studies,
design studies, or improvements to existing tools.

Advances in BioVis could lead to tremendous impact, by
improving the tools used by life science researchers. However,
publication decisions are often driven by perceived potential
impact, a criterion that frequently rejects even the most ground-
breaking work (Bjørk, 2020). To address this issue, several open-
access publishers such as Frontiers17, BMC18, and PeerJ19 have

emerged in the past decades with the mandate to base publication
decisions solely on scientific rigor and reproducibility.

As part of this process, this ‘grand challenge’ article has been
written to accompany the launch of the Data Visualization section in
the newly created journal Frontiers in Bioinformatics—the first
publication venue dedicated to bioinformatics data visualization.
By collecting advances across all life sciences, the Data
Visualization section will facilitate exchange of knowledge and
best practises between research groups that may otherwise never
cross paths; mostly, these groups will comprise bioinformaticians,
biomedical researchers, computer scientists, and science
communicators—but BioVis also engages educators, user-
experience designers, as well as visual arts practitioners,
particularly graphic designers and medical illustrators.

CONCLUSION

It is fortunate that bioinformatics data visualization engages a
broad community with diverse backgrounds and perspectives,
since one of our core processes is to overcome current cognitive
biases in analysis, and to find more effective ways of seeing,
analyzing, and thinking about our data. A historical exemplar of
this process is the inspiring, interdisciplinary work of Jane and
David Richardson20, who devised a method for transforming
complex, all-atom representations of large protein structural
models into ribbon representations that are greatly simplified
and often insightful (Richardson, 1981; Richardson and
Richardson, 1989).

Our task going forward is to find analogous ways to reimagine
the much larger and more complex datasets in today’s grand
challenges, and—using current and future advances in computer
graphics—to invent simplifying transformations that are also
insightful. Each such invention can be thought of as a step in
creating a new visual language (Lima, 2011) that will enhance
how we explore, describe, and communicate the processes of life.

Given the daunting data challenges already at hand, creating this
visual language will likely be difficult, and will require considerable
creativity combinedwith statistical andmathematical rigor. Given the
evenmore daunting data challenges that are set to come, we could say
that bioinformatics data visualization has barely begun (O’Donoghue
et al., 2010a).
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