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Some of the problems in determining the cancer risk of low-level radiation from studies of
exposed groups are reviewed and applied to the study of Hanford workers by Mancuso,
Stewart, and Kneale. Problems considered are statistical limitations, variation of cancer rates
with geography and race, the "healthy worker effect," calendar year and age variation of
cancer mortality, choosing from long lists, use of proportional mortality rates, cigarette
smoking-cancer correlations, use of averages to represent data distributions, ignoring other
data, and correlations between radiation exposure and other factors that may cause cancer.
The current status of studies of the Hanford workers is reviewed.

There have been several papers in recent years purporting to give evidence that
low level radiation (- 10 rad) is more dangerous than indicated by conventional
estimates like those of the National Academy of Sciences Committee on Biological
Effects of Ionizing Radiation (BEIR) [1], the United Nations Scientific Committee
on Effects of Atomic Radiation (UNSCEAR) [21, and the International Commission
on Radiological Protection (ICRP) [3]. The best known of these is the study by
Mancuso, Stewart, and Kneale [4] (hereafter referred to as MSK) on workers at the
Hanford Laboratory in the state of Washington, and it will be used as an example in
many cases although all the problems to be discussed do not necessarily apply to that
study. It was a proportional mortality study, determining what fraction of all Han-
ford workers who have died succumbed to various diseases, and correlating this with
their accumulated occupational radiation exposure by a complex mathematical
analysis. Their most important results, as well as those of a later paper by that group
[5] designated KSM, are listed in Table 1 (from [6] ). According to [1-3], the doubl-
ing dose for all cancer is about 2,000 rad, and the lowest doubling dose for any type
of cancer is about 400 rad for leukemia, so MSK represents a claim that these esti-
mates are low by about two orders of magnitude.

It is the purpose of this paper to show some of the problems in the MSK and similar
analyses [6-29], and thereby to explain why they have not been accepted by the pres-
tigious groups responsible for [1-3] or by any significant segment of the scientific
community. There will be no attempt to cover the vast body of evidence supporting
the more standard estimates; this has been reviewed in a previous paper [30].
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TABLE 1
Results of MSK and KSM Papers on Hanford Workers

MSK (1977)
KSM (1978)

Total Due to Doubling Dose Doubling Dose
Cancer Type Cases Radiation (rad) (rad)

Bone marrow 14 9.7 0.8 3.6
Pancreas 31 6.0 7.4 15.6
Lung 130 12.6 6.1 13.7
All RES 47 11.1 2.5 -

All cancer 442 25.8 12.2 33.7

STATISTICAL LIMITATIONS

According to usual estimates, a 10 rad exposure increases one's risk of cancer by
about .001. Since the normal cancer risk is about .20, this represents an increase of
one part in 200. To measure such an effect with a statistical confidence of 95 per-
cent, which corresponds to a deviation from the expected number of cases by two
standard deviations, requires a study with a number of cancers, N = (200)2 x 4 =
160,000, or a total population of 800,000, all of whom were exposed to an excess of
10 rad!
Another approach would be to select a favorable type of cancer. The best choice

would probably be leukemia because its normal incidence is rather low, .0084, and it
has a high sensitivity to radiation- 10 rad gives a risk of .0002, or an increased risk
of one part in 42. To measure its effect with 95 percent statistical confidence requires
N = (42)2 x 4 = 7,000 or again a total population of 800,000 all of whom were
exposed to 10 rad. Of course if the radiation risk were larger than given by usual esti-
mates, smaller sample sizes would be adequate.

GEOGRAPHICAL VARIATIONS

Populations of this size are available if one uses natural radiation, taking advan-
tage of its geographical variations. For example, a citizen of CO, WY, NM, or UT
receives about 3 rad/lifetime more than the U.S. average whereas citizens of FL
receive about 1 rad less. Table 2 shows the cancer and leukemia rates in these states
compared with the U.S. average [31]. The third column shows the expected rates for
CO if the U.S. population were a suitable control group, with the only difference be-
ing radiation exposure.

In Table 2 we see that areas with higher radiation exposure have lower cancer and
leukemia rates, and vice versa. From this we may conclude either that radiation
prevents cancer, or that there is something wrong with the methodology. Nearly
everyone would adopt the latter conclusion, but it is interesting to speculate on
whether this attitude would have prevailed if the states with higher radiation levels
happened to have higher cancer rates.

TABLE 2
Cancer and Leukemia Rates (x 10-5/yr) in 1980

FL U.S. CO exp CO WY-NM-UT

All cancer 239 183 183.3 120 120
Leukemia 7.8 7.2 7.25 6.2 4.4
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The problem with our methodology is that the U.S. population is not a suitable
control group for the state of Colorado. This points up the most serious problem in
any study of this type-it is extremely difficult to find a suitable control group.
The reason for this is that cancer incidence varies markedly depending on many

factors. For example, skin cancer is 200 times more prevalent in Queensland, Aus-
tralia, than in Bombay, India; cancer of the esophagus is 300 times more prevalent
in Northeastern Iran than in Nigeria; liver cancer is 70 times more prevalent in
Mozambique than in Norway; and cervical cancer is 15 times more prevalent in Co-
lombia than in Israel.
Even within the U.S. where life styles are rather uniform, there are large variations

between states, as we have seen in Table 2. Some other state rates ( x 10-5/yr) are [31]
RI-239, PA-218, NY-207, NJ-206, as compared with AK-73, UT-106,
CO- 120, TX- 155, VA- 157, and NC- 159. There are also rural-urban differ-
ences: for example, colon cancer rates in the U.S. northeast are 20 x 10-s for urban
and 18 x 10-5 for rural areas. For the U.S. southeast, these numbers are 13.5 and
11, respectively, again emphasizing geographical variations.

RACIAL DIFFERENCES

There are also racial differences. For example [31], in the U.S. blacks have only 81
percent as much risk of bladder cancer as whites; this ratio is 81 percent for kidney
cancer and 94 percent for breast cancer. But blacks have 3.8 times as much cancer of
the esophagus, 2.2 times as much prostate cancer, and 1.9 times as much stomach
cancer as whites. With so much sensitivity to geography, race, and population den-
sity (urban-rural), it is reasonable to expect sensitivity to a large number of other
factors, so extreme caution must be exercised in choosing a control group.

HEALTHY WORKER EFFECT

It is well known that steady employment by a large firm correlates strongly with
good health, in what is called the "healthy worker effect." For example, the ratio of
age-adjusted mortality rates to the U.S. average for some industry groups that have
been studied are [32]:

Hanford workers .75
Steel workers .82
Rubber workers .82
du Pont employees .68
Teamster Union members .74

It is not difficult to deduce contributing reasons for this, such as pre-employment
screening, annual medical exams, better health care because of medical insurance
and company medical facilities, organized recreation, paid vacations, regular hours,
and so on. There are socioeconomic advantages to steady employment, and health is
well known to correlate strongly with socioeconomic status; for example, the ratio
of mortality rates for professionals/unskilled laborers [33] between ages 20-64 is
.82/1.21 for all causes, .36/1.58 for tuberculosis, .50/1.73 for accidents, .57/1.53
for influenza and pneumonia, .89/1.16 for cancer, etc. In addition, drug users and
alcoholics are unlikely to hold a long-term steady job.
The "healthy worker effect" does not apply equally to all diseases, and cancer is

much less affected than most others. Thus, in a proportional mortality study, long-
term steady employees would have a higher probability of dying of cancer. This im-
portant point was ignored in the MSK study.

331



BERNARD L. COHEN

TABLE 3
Age Adjusted Mortality Rates (X 10-5/yr), for U.S. Males

from Lung and Bladder Cancer vs. Time 131]

Year Lung Cancer Bladder Cancer

1950 19 19
1960 32 13
1970 47 9
1976 54 7

TIME VARIATIONS OF CANCER MORTALITY

Table 3 shows the mortality rates in the U.S. vs. time for two types of cancer, and
we see that the variations are very large, sometimes increasing and sometimes de-
creasing. In comparing observed with expected mortality rates, it is therefore very
important to correct for calendar year. For example, MSK used the 1960 rate for
lung cancer although the average calendar year of the deaths in their study was
about 1970. It is clear from Table 3 that this represents an important error. In fact
when it was corrected, their excess lung cancers due to radiation disappeared. There
was also no correction for calendar year of death in the Gofman study of the Han-
ford workers [16].

AGE VARIATIONS OF CAUSE OF DEATH

It is well known that each cause of death has a distinct and separate variation with
age. For example, Table 4 shows the ratio of heart disease to cancer mortality rates
vs. age. It is clear that the fraction of people dying of caticer depends on their age at
death. One can hope that the average age at death was the same for the exposed
group and the controls, but this should be explicitly investigated and corrected for.
This was not done by MSK or by Gofman in his 4nqlysis of the Hanford workers.

CHOOSING FROM LONG LISTS OF STATISTICAL DATA

An example of use of long lists is the Milhamh study of occupation-cause of death
correlations for Washington state [34], a proportional mortality study involving
hundreds of occupations and over a hundred capses of death. Some of the findings
are listed in Table 5. It is very difficult to believe that many, if any, of these corre-
lations is real, and it is not surprising that in such a long list of cases false positives
will be found which apparently have more than 99 percent statistical confidence.
Studies of this sort are interesting as suggestive evidence, but are certainly not con-
clusive. For example, only if similar correlatiofis between poultry farmers and leu-
kemia appeared in other independent studies would they be taken seriously.
To some extent MSK used the long list technique in considering 18 different

cancer types. A portion of their list is shown in Table 6. They paid a great deal of
further attention to the first three entries, but ignored the last three.

TABLE 4
Ratio pf Heart Disease/Cancer Mortality Rates vs. Age for U.S. Males

Age 65-69 70-74 75-79 80-84 >85

Heart dis./cancer 1.72 1.84 2.15 2.65 4.1
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TABLE 5
Occupation-Cause of Death Correlations Reported in [34] (The "min. obs/exp" Ratio Corresponds

to 99 Percent Statistical Confidence That the Ratio Is Larger Than the Number Listed.)

Deaths obs/exp

Occupation Cause of Death obs exp best min

Accountants CA-esophagus 21 9.3 2.27 1.32
Poultry farmers leukemia 7 1.2 5.85 2.34
Insurance agents multiple sclerosis 9 2.2 4.09 1.82
Taxi drivers emphysema 15 6.0 2.50 1.32
Nurserymen CA-pancreas 9 3.5 2.58 1.14

USE OF PMR (PROPORTIONAL MORTALITY RATIOS)

The PMR is defined (for cancer) as

PMR = (cancer deaths/total deaths) for exposed
(cancer deaths/total deaths) for non-exposed

This is an easy type of study to make as all one needs is a stack of death certificates
which are then sorted by occupation. It is much easier than determining the SMR
(standardized mortality ratio) defined as

cancer mortality rate for exposed
SMR =

cancer mortality rate for non-exposed

since the latter requires following up the entire exposed cohort to find out whether
or not they have died. However, the SMR has two important advantages over the
PMR:

(1) It includes those still living which are usually the large majority of the exposed.
The PMR ignores these.

(2) A high PMR can mean a high cancer rate, or a low total death rate, and there
is no way to distinguish between these alternatives.

For these reasons, SMR are nearly always used wherever possible. It was ab initio
highly unusual for MSK to use PMR when the SMR were readily available.
The SMR for the Hanford workers has been given by Gilbert [13] as follows:

Exposure (rad) 0-2 2-5 >5

SMR .81 + .19 1.00 .38 .67 + .29

It is clear from this that there is no indication of a cancer rate increase with dose. Yet
most of the MSK paper is based on an increase of PMR with dose. It is clear that this
PMR increase is due to a decrease in total deaths rather than to an increase in cancer
deaths. It is difficult to avoid the suspicion that MSK purposely avoided use of SMR
to obscure this point.
The treatment of the Hanford data by Gofman [16] suffers from the same prob-

lem. He defines a quantity which we call G

G = cancer deaths/non-cancer deaths

and points out that for the Hanford workers with > 10 rad exposure, G = .42, while
for those with < 10 rad, G = .25. The ratio of these numbers is very similar to the
PMR. However, as for the PMR, one cannot tell whether the high ratio (.42/.25) is

333



BERNARD L. COHEN

TABLE 6
MSK Data on Deaths by Cancer Type among Hanford Workers

Cancer Type obs exp o/e

Bone marrow 22 13.4 1.64
Pancreas 49 37.3 1.31
Lung 192 144* 1.33*

Genito-urinary 15 30.9 .49
Lymphatic leukemia 3 9.4 .32
Other RES 5 20.3 .24

*Based on 1960 statistics, although death year average
- 1970. Correcting for this eliminates the effect.

due to a high cancer rate or to a low non-cancer death rate among the exposed. The
answer to this question is given by Gilbert and Marks [15] with the following rates/
1,000 at risk:

> 10 rad < 10 rad

Cancer 2.8 4 1.1 2.9 4 0.3

Non-cancer 6.8 1.8 9.4 0.5

Ratio (G) .41 .31

The ratios differ slightly from Gofman's because he did not adjust for age and calen-
dar year of death. But the important point is that the difference between the > 10
rad and < 10 rad groups is not in their cancer rates, but in their non-cancer rates.
This point effectively destroys the thesis of the Gofman study.

CIGARETTE-SMOKING-CANCER CORRELATIONS

There are strong correlations between cancer rates and cigarette smoking [33], as
shown in Table 7. It is also well known that some occupational, industrial, or social
groupings smoke more than others. It is therefore important to consider correlations
between radiation and smoking habits, especially when dealing with lung cancer.
There was no such consideration in MSK.

INDISCRIMINATE USE OF AVERAGES IN CALCULATIONS

Some of the statistical treatments used in analyses are rather elaborate, and if one
traces through the derivations on which they are based, it is often found that one
cannot indiscriminately replace a data distribution by its average.

TABLE 7
Ratio of Cancer Mortality Rates, Age 35-84, for Men
Smoking 2 or More Packs of Cigarettes per Day,

to Non-Smoking Men [33]

Cancer Type Ratio Cancer Type Ratio

All cancer 3.2 Pancreas 2.7
Lung 24 Kidney 2.6
Pharynx 22 Prostate 2.4
Buccal cavity 9.3 Stomach 1.7
Esophagus 8.4 Leukemia 1.4
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A flagrant example of the perils in doing this is the treatment of multiple myeloma
in MSK. In the eight cases, radiation exposures were 34, 29, 20, 0.85, 0.23, 0.18,
0.15, and 0.09 rad, a total of 85 rad, which gives an average exposure of 10.7 rad.
MSK treated this as eight cases with 10.7 rad each, and at the end of their complex
analysis concluded that six of the eight cases were due to radiation. This implies that
exposures of 0.18 rad or lower caused multiple myeloma. In fact, if all but the high-
est three exposures were zero, the analysis would be essentially unchanged and the
results would indicate that three cases were due to zero radiation!

Actually, all of the effects reported in MSK were essentially determined by ex-
posures larger than 10 rad. This > 10 rad group included 34 cancer deaths and 80
non-cancer deaths [16], so it is remarkable that MSK tried to draw such far-reaching
conclusions from so little data.

IGNORING OTHER DATA

When one purports to draw scientific conclusions, one is ordinarily obligated to
consider all data bearing on the question rather than just the data being presented.
None of the papers purporting to find that low-level radiation is more dangerous
than indicated by usual estimates does this. For example, MSK pays no attention to
the data on the Japanese A-bomb survivors which provides an abundance of infor-
mation in the same dose range. A comparison for all cancers is shown in Fig. 1
where the dashed line represents the MSK result. It is clearly in sharp disagreement
with the A-bomb survivor data.

CORRELATION BETWEEN RADIATION EXPOSURE
AND OTHER FACTORS THAT MAY CAUSE CANCER

Radiation exposure to the Hanford workers correlates with other factors, and it is
important to consider the possibility that the excess cancers (if any) were due to these
factors rather than to the radiation. This very important point was not considered
by MSK.
A simple example is length of employment at Hanford. Clearly, short-term work-

ers received less total radiation exposure than those who worked for 20 years or
more. But short-term workers are subject to less influence from the "healthy worker
effect," so they can be expected to die more frequently of diseases other than cancer.

0
1.8

, k MS K
= 1.6 (>0)

0

1.4 -

G)i 1.2' FIG. 1. Mortality due to all cancers
vs. radiation exposure according to

i. i, ll MSK (dashed line) and for the Japa-
nese A-bomb survivors (dots, solid

100 200 300 400 500 lines). The x designates the average
Dose (rod) of all data above 200 rad.
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Another important example is the correlation between radiation exposure and oc-
cupation. Radiation is received mainly by "blue collar" workers, like technicians and
operators; there is normally very little radiation exposure to "white collar" workers
like administrators, secretaries, clerical workers, and so on.

But "blue collar" workers are also exposed to more chemical carcinogens, dust,
and abnormal physical conditions, and these might cause excess cancers. Moreover,
occupation correlates with social class and with cigarette smoking habits, and these
have been shown to have an important influence on cause of death. Some evidence
that cancer and total mortality rates, and their ratio, depend on occupation is shown
in Table 8. The occupational orders above the line are all those of a type that might
be expected to receive radiation at Hanford, and those below the line are all those of
a type that would be expected not to be exposed to much radiation. We see that the
first group experiences a larger probability of dying from cancer, even though radia-
tion is not a factor in Table 8.

STATUS OF THE MSK ANALYSIS

There have now been three completely independent analyses of the data on Han-
ford workers used by MSK [15,17,29], and all of them conclude that the only statis-
tically meaningful data are excesses of multiple myeloma and cancer of the pancreas
among those with large exposures. For exposures > 15 rad, the data on these are:

multiple myeloma: 3 obs, 0.4 exp
CA of pancreas: 3 obs, 1.0 exp

The question is whether these excesses are due to radiation or perhaps due to other
exposures such as chemicals experienced by those who work with radiation. The
most obvious approach to settling this question is to check on whether these diseases
occur in excess among other groups exposed to radiation, such as the Japanese
A-bomb survivors.
The data on cancer of the pancreas are shown in Fig. 2 where the dashed line

represents the KSM result [5]; the MSK result is 2.1 times steeper. The open square
shows the 3 obs vs. 1 exp, at an average dose of 28 rad. We see that the A-bomb sur-
vivor data, shown by black dots, includes a point in the same dose range (10-50 rad)
with far better statistical accuracy, and the effect is orders of magnitude smaller
than that among the Hanford workers. This very strongly indicates that the excess
cases of cancer of the pancreas among the Hanford workers are not due to radiation.

TABLE 8
SMR for All Causes of Death and for Cancer for

British Workers (age 15-64) in Various Occupational
Orders [35] (Data are for 1970-72.)

SMR
Cancer

Occupational Order Total Cancer Total

Gas, coke, chemical 107 118 1.10
Furnace, forge, foundry 122 135 1.11
Glass, ceramic 109 119 1.09
Electrical, electronic 104 107 1.03
Machinery operators 103 105 1.02

Clerical 99 87 .88
Administrators, managers 73 74 1.01
Professional, technical 75 72 .96
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On multiple myeloma, the data on the Japanese A-bomb survivors include only 4
cases vs. 1.9 expected, so one can hardly plot a figure. The totals give a doubling
dose of about 100 rad (vs. 0.8 rad in MSK), and predict only .06 cases among the
Hanford workers. Data on medical exposures (at higher doses) predict even smaller
effects. It thus seems clear that the excess cases of multiple myeloma among the
Hanford workers were not due to radiation. Little is known about causes of pan-
creatic cancer or multiple myeloma, but there are reports of increased incidence of
the former among chemists [36] and aluminum workers [37].
The MSK group did an improved analysis of the Hanford worker data which was

said to have been submitted to the British Journal of Industrial Medicine in 1979,
but as of April 1981, it had not yet appeared in print. However, a copy was made
available to the GAO Study Group which comments on it as follows [29]:

. . . Kneale's revised analysis (1979) . . . shows a slight but not statistically
significant effect of dose on "high sensitivity" cancers, and a counter-balancing
negative effect for all other cancers.... [He] also finds a so far unexplained
tendency for surviving workers to have a higher average dose-per-year than
those who have died.

This seems to imply that the MSK group now concedes that there is no significant ex-
cess of cancer among the Hanford workers.
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