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Chemical and entropic control on the molecular
self-assembly process
Daniel M. Packwood1,2,3, Patrick Han1,4 & Taro Hitosugi1,5

Molecular self-assembly refers to the spontaneous assembly of molecules into larger

structures. In order to exploit molecular self-assembly for the bottom-up synthesis of

nanomaterials, the effects of chemical control (strength of the directionality in the

intermolecular interaction) and entropic control (temperature) on the self-assembly process

should be clarified. Here we present a theoretical methodology that unambiguously

distinguishes the effects of chemical and entropic control on the self-assembly of molecules

adsorbed to metal surfaces. While chemical control simply increases the formation

probability of ordered structures, entropic control induces a variety of effects. These effects

range from fine structure modulation of ordered structures, through to degrading large,

amorphous structures into short, chain-shaped structures. Counterintuitively, the latter effect

shows that entropic control can improve molecular ordering. By identifying appropriate levels

of chemical and entropic control, our methodology can, therefore, identify strategies for

optimizing the yield of desired nanostructures from the molecular self-assembly process.
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M
olecular self-assembly, which refers to the spontaneous
assembly of precursor molecules to form nanostruc-
tured objects1, is controlled by the intrinsic properties

of the molecules and their environment. In order to tailor the
structures that emerge from the self-assembly process, we must
rely on the following indirect strategy: tuning the directionality of
the intermolecular interaction by design of the precursor
molecule structure, and careful choice of the temperature
(Fig. 1). The strength of the interaction directionality and the
height of the temperature can be referred to as the chemical
control and entropic control, respectively, under which
self-assembly occurs. If the entropic control is very weak, then
the self-assembly process is under chemical control and molecules
assemble according to the directionality of the molecule–molecule
interaction (A). If the entropic control is much stronger than the
chemical control, then assembly does not occur and the precursor
molecules remain randomly dispersed across the medium.
However, when the entropic control is neither weak nor strong
compared with the chemical control, it is not possible to guess
what kinds of structures will be produced by the molecular self-
assembly process. Full characterization of chemical and entropic
controls is vital for molecular self-assembly to be used for
systematic fabrication of precise nanomaterials.

Chemical and entropic controls are ultimately related to the
thermodynamics of self-assembly process and are best character-
ized via theoretical studies. However, several problems are
encountered when applying atomistic computational approaches
to molecular self-assembly phenomena. Molecular self-assembly

takes place over enormous, often microsecond-exceeding, time
scales, making the prediction of thermodynamically stable
molecular assemblies with atomistic models prohibitive. While
some remarkable progress has been made in this area2–11, there is
little consensus in the literature on how molecular self-assembly
should be simulated. The lack of molecule-surface force fields
for the important case of molecular self-assembly on metal
surfaces further limits the feasibility of atomistic simulation,
although promising progress is being made here as well12–15. An
arguably more serious issue is that atomic simulations do not
directly address the effects of chemical and entropic controls on
the molecular self-assembly process. Instead, they yield large
volumes of data that require lengthy post-simulation analysis, and
it is not clear what kind of analysis is needed for the study of
chemical and entropic controls. In order to surmount these
difficulties, it is necessary to develop novel computational
techniques that unambiguously separate the effects of chemical
and entropic controls on molecular self-assembly without difficult
post-simulation analysis.

In this paper, we present a theoretical methodology for
molecular self-assembly on metal surfaces that unambiguously
distinguishes the effects of entropic control and chemical control
under low surface coverage conditions. In order of decreasing
chemical control (decreasing interaction directionality), we study
the self-assembly of 10,100-dibromo-9,90-bianthracene (Br2BA)
(refs 16,17), 10,100-diamine-9,90-bianthracene ((NH2)2BA),
and 10,100-dimethyl-9,90-bianthracene (Me2BA) molecules
on copper (111) surfaces (Fig. 1b). We find that, while
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Figure 1 | Chemical and entropic controls in molecular self-assembly. (a) Effect of chemical and entropic controls on the structures formed by molecular

self-assembly. Chemical control refers to the strength of the interaction directionality between molecules, and entropic control refers to temperature.

The blue blocks represent molecules adsorbed to a solid substrate, viewed with the substrate in the plane of the page. (b) 10,100-dibromo-9,90-

bianthracene (Br2BA), 10,100-diamine-9,90-bianthracene ((NH2)2BA), and 10,100-dimethyl-9,90-bianthracene (Me2BA) molecules in their adsorption

conformations on a copper(111) surface, viewed with the surface in the plane of the page. Br2BA molecules represent strong chemical control, (NH2)2BA

molecules represent intermediate chemical control, and Me2BA molecules represent weak chemical control. Grey, green, and orange arrows represent

bianthryl tips, amine groups, and methyl groups, respectively. Br2BA molecules have a strong tendency to interact with each other via their anthryl tips,

giving the molecules a strong interaction directionality. (NH2)2BA molecules can interact with each other via hydrogen bonding between amine groups,

reducing the preference for interactions in the bianthryl tip direction compared with Br2BA. In Me2BA molecules, s-conjugation between the C–H bonds of

the methyl groups and the p-orbitals of the anthryl units spreads the p-system onto the methyl groups, allowing for methyl–methyl and also methyl–anthryl

interactions between molecules and reducing the interaction directionality compared with both Br2BA and (NH2)2BA.
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decreasing chemical control simply decreases the assembly
probability of ordered, chain-type structures compared
with disordered, amorphous structures, entropic control
has two main effects: to degrade amorphous structures into
chain-type structures, and to generate asymmetry in the
adsorption sites of molecules within chain-shaped structures.
Interestingly, the first effect shows that entropic controls can be
used to improve the overall structural quality of assemblies
formed from the molecular self-assembly process. Conversely, the
second effect shows that entropic controls also reduce structural
quality on a fine scale. Moreover, we show that the formation
of amorphous structures is an effect of weak chemical control
rather than strong entropic control. These insights provide
much-needed strategies for the fabrication of nanomaterials on
metal surfaces.

Results
Computational approach. Our computational approach,
which we refer to as GAMMA modelling (¼Generalized block
AsseMbly Machine learning equivalence clAss sampling
modelling), has three components. (1) A general, Ising-type
model for adsorbed molecules on a metal surface (the generalized
block assembly (GBA) model). (2) A molecule-surface and
molecule–molecule interaction energy function constructed by
machine learning of density functional theory (DFT)-derived
data. (3) Equivalence class sampling (ECS), which directly
incorporates free energy into the usual Monte Carlo framework
and deals away with the long-time scales of the self-assembly
phenomenon. Thus, (1) utilizes an approach from the
‘coarse-grained’ end of the computational spectrum, (2) connects
our approach with the ‘atomistic’ end of the spectrum, and
(3) allows for efficient elucidation of the stable assemblies.
GAMMA modelling is specifically intended to study molecular
self-assembly under vacuum conditions, and is not applicable
to self-assembly that occurs in the liquid phase.

Figure 2 describes component (1) of GAMMA modelling,
namely the GBA model. This model considers a grid of
cells, labelled as C1,y, Cm, which correspond to the unit
cells of the surface. Each cell possesses k possible colours, labelled
as s1,y, sm, where each colour corresponds to a possible
adsorption site for the molecule. Moreover, colour sj possesses qj

shades, yj,1,y, yj,qj
. These shades correspond to the possible

orientations that may be adopted by a molecule residing at an
adsorption site corresponding to colour sj. An individual
molecule z corresponds to a single cell Ci and a colour-shade
combination (sj, yj,h). A configuration is any choice of N
molecules, where N is fixed. The energy of a configuration c is

given by the energy function

E cð Þ ¼
X
z2c

v zð Þþ 1
2

X
zi;zj2c

u zi; zj
� �

ð1Þ

where the first sum runs over all molecules and the second
sum runs over all pairs of molecules. The term v(z) measures
the adsorption energy of the molecule to the surface, and
u(zi, zj) measures the interaction energy between molecules zi and
zj. equation (1) assumes that a ‘surface-assisted molecular
self-assembly’ is operating, in which the adsorption sites
and orientations for the molecules are determined by the
surface–molecule interaction rather than the intermolecular
interactions. This assumption has been shown to apply to
bianthracene molecules adsorbed to metal surfaces16,17.

Component (2) of GAMMA modelling relates to
the construction of the energy function in equation (1).
DFT calculations identified nine adsorption sites per unit cell
for dibromo-bianthracene molecules adsorbed to Cu(111), each
permitting one or two stable orientations for the molecule. These
stable adsorption sites and orientations correspond to the colour-
shade combinations that were used in the model (see the Methods
section, Supplementary Notes 1 and 2, Supplementary Figs 1–6,
and Supplementary Tables 1 and 2). For each of these colour-
shade combinations, v(z) in equation (1) was calculated directly
via DFT. v(z) typically has values between � 1.8 to � 2.2 eV. This
strong surface–molecule interaction justifies the major assump-
tions in equation (1) (see Supplementary Note 3, Supplementary
Figs 7–9, Supplementary Tables 3–5). As for the molecule–
molecule interaction function u(zi, zj), note that if we allow for
2,500 cells in the model, then there are B3� 108 possible
pairwise interactions (zi, zj) to consider. With the computational
resources available to us, it would take over 4,000 years to
calculate u for every possible pairwise interaction. We, therefore,
employed a machine learning approach, in which a random
sample of 4,000 to 5,000 pairs of molecules was generated,
with each molecule in the fixed conformation as described above.
The interaction energy for each pairwise interaction was
calculated via DFT, again with the molecular conformation kept
fixed. Then, we fit a function û that approximates the true
(unknown) interaction energy function u. û was validated against
test data obtained by DFT (see Supplementary Note 4 and
Supplementary Figs 10–14 for a description of the fitting
procedure). Coulomb matrices were used to represent pairwise
interactions18,19. The interaction energies ranged between about
� 0.25 to � 0.05 eV for attractive (uo0) interactions.

Figure 3 describes component (3) of GAMMA modelling,
namely ECS20 (see Supplementary Note 5 and Supplementary
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Figure 2 | Generalized block assembly model. (a) Metal(111) surface with unit cells highlighted. The ovals represent molecules adsorbed to the surface.

The adsorption site of the molecules lie directly beneath the center of mass of the molecule, which is indicated by the black spots. (b) The configuration of

the generalized block assembly model corresponding to the adsorption pattern in a. The grid corresponds to the unit cells of the 111 surface and the

coloured cells correspond to unit cells which carry an adsorbed molecule. The colour indicates the adsorption site for the molecule, and the symbols

y1, y2,y correspond to an orientation for the molecule.
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Figs 15–22). The fundamental principle of ECS is the elimination
of superfluous information from the configuration space O.
As well as dramatically improving Monte Carlo convergence
times, this information reduction procedure embeds
a configurational entropy term (and hence configurational free
energy) into the Monte Carlo framework. To carry out the
information reduction procedure, we define an island as a group
of molecules in which no molecule separated from the others in
the group by a distance greater than Mc, where Mc is an
intermolecular interaction cut-off (see the Methods section).
Two configurations c1 and c2 are said to belong to the same
class if their islands can be superimposed by two-fold rotation
and translation. A reduced configuration space H is then obtained
by considering only the unique classes of configurations.
The space H only contains information on the combinations of
islands that can occur, and does not contain any information
on the position or orientation of the islands on the surface. The
latter information is irrelevant under conditions of low surface
coverage, in which the interaction between molecular islands is
insignificant. Following this information reduction procedure,
the probability that class q (or island combination q) occurs at
equilibrium works out to be

v qð Þ ¼ 1
Q

exp
�A qð Þ

kBT

� �
; ð2Þ

where Q is a normalizer constant, T is the thermodynamic
temperature and A(q) is the configurational free energy of island
combination q. Explicitly, we have A(q)¼ E(c: q)�TS(q), where
E(c; q) is the energy for any configuration c that contains island
combination q (given by equation (1)), and

S qð Þ ¼kB ln n qð Þ ð3Þ

is a configurational entropy arising from the number of ways
n(q) of arranging the island combination q on the surface.
ECS then involves sampling island combinations from the
reduced configuration space H via Monte Carlo sampling.
Because GAMMA modelling employs frozen molecular and
surface geometries, it excludes conformational contributions
to the entropy such as dissipation of heat into the metal lattice
or into the internal modes of the molecules. However,
the molecular self-assembly phenomenon occurs on the scale
of molecule configurations, and, therefore, effects that occur on
the scale of molecule conformations are not expected to be
relevant to this study.

The most important feature of our formalism is that the effect
of entropic control on the molecular self-assembly process in the
intermediate regime can be completely characterized by inspec-
tion of the formula for n(q). For simplicity, we consider the
special case where q contains two islands I1 and I2. For now, we
fix the orientations o1 and o2 for islands I1 and I2, respectively.
Under conditions of low surface coverage, in which the surface
area occupied by islands is negligible, we can calculate n(q) by
‘shrinking’ the islands so that they occupy a single unit
cell (Supplementary Note 5). Then, the number of ways to
arrange I1 and I2 on the surface in this fixed orientation under
low coverage conditions is the simply number of ways to choose
two cells from the grid, that is,

n q; o1; o2ð Þ� ¼ d !

d� 2ð Þ ! 2 !
ð4Þ

where d is number of cells in the model. Actually, equation (4) is
only correct when the islands I1 and I2 are indistinguishable upon
interchange, that is, I1 can be superimposed onto I2 by translating
it across the grid. If I1 and I2 are distinguishable upon
interchange, then equation (4) under-counts the number of
ways to arrange the islands on the surface. Equation (4) should
then be replaced with the formula

n q; o1; o2ð Þ ¼ 2 !

A1 ! A2 !
n q; o1; o2ð Þ�: ð5Þ

Here, A1¼ 2 and A2¼ 0 if I1 and I2 are indistinguishable
upon interchange, whereas we have A1¼ 1 and A2¼ 1 otherwise.
Equation (5) holds when I1 and I2 are in fixed orientations o1 and
o2, respectively. The total number of ways to arrange the
islands I1 and I2 on the surface is then obtained by summing (5)
over all island orientations, that is,

n qð Þ ¼n q; o1; o2ð Þþ n q; o01; o2
� �

þ n q; o1; o02
� �

þ n q; o01; o02
� �

;

ð6Þ
where o0k is the other orientation available to island Ik (k¼ 1 or 2).
The orientation o0k is obtained by rotating island Ik in orientation
ok by 180�. If Ik possesses twofold rotational symmetry, then the
terms in equation (6) involving o0k will not be present. Therefore,
n(q) (and hence the entropy S(q)) is large when the islands do
not possess twofold symmetry or are indistinguishable under
twofold rotations and translations; in the former case more terms
will appear in equation (6), whereas in the latter case the terms in
equation (6) will be large because the factors in the denominator
of equation (5) will be equal to 1. Equations (5 and 6) have
essentially the same form for the case where the number of
islands is not equal to 2. In the general case of more than two
islands, we also find that S(q) tends to grow as the number of
islands increases. As entropic control become stronger and the
contribution of the entropy S(q) to the free energy increases, the
formation of large numbers of rotationally asymmetric, distin-
guishable islands becomes thermodynamically favourable. This
general result characterizes entropic control regardless of the type
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Figure 3 | Identification of high-probability island combinations via

equivalence class sampling. c1 and c2 are two possible configurations of the

generalized block assembly model. Islands are groups of molecules

contained in the black boxes. O represents the configuration space, in which

each black points represents a single configuration. Configuration c1 can be

transformed into configuration c2 by twofold rotation and translation of

islands about the grid. Under this transformation, the configuration

space O is partitioned into so-called equivalence classes (indicated by

dividing lines inside of O). A reduced configuration space H is created by

considering only the unique equivalence classes. The points inside

of H represent entire equivalence classes, and can be interpreted as

possible island combinations in the GBA model. Monte Carlo sampling

from H then identifies the high-probability island combinations.
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of molecule under consideration. By running simulations for
different kinds of molecules and looking for effects exterior to the
above, we can, therefore, unambiguously characterize the effect
chemical control on the molecular self-assembly process.

In order to unambiguously characterize the effects of entropy
on the molecular self-assembly process, it is necessary for simple,
analytic formulas for the entropy (such as equations (4–6)) to be
available. The reason why we restrict ourselves to low-coverage
conditions is because it appears impossible to obtain closed-form
expressions for the degeneracy factors under higher coverage
conditions. More general formulas for the entropy are available
in the literature (for example, ref. 21), and they could be used
in place for formula (4) without any other alterations to the
theory. However, these formulas are not in closed form and,
therefore, do not permit a straightforward and unambiguous
interpretation.

Note that the image in Fig. 2b should be treated as shorthand
notation for the real space configuration of the molecules on
the surface. In particular, the apparent fourfold symmetry of the
GBA model in Fig. 2b is never imposed during our calculations.
Given a set of molecules (cell, colour and shade combinations
in the GBA model), we always map back to the real
three-dimensional space where the surface and molecule atoms
lie and perform our energy calculations there. The ‘grid’ on which
our calculations are performed consists of the actual adsorption
sites on the surface (Supplementary Note 2 and Supplementary
Fig. 6), which is determined directly from the surface–molecule
interaction potential. The entropic component is calculated
by first condensing each unit cell into a single point, and
then calculating n(q) by considering the number of ways

of choosing distinct sets of points from this lattice. This is
a typical combinatorial calculation and does not depend upon
the symmetry of the lattice. Our calculation, therefore, do not
suffer from any artificial fourfold symmetries.

Molecular self-assembly under strong chemical control.
Chemical control cannot be unambiguously measured, however,
it can be qualitatively regarded as the tendency for two molecules
to align in the direction of their bianthryl tips in the limit of
0 K, at equilibrium. Chemical control will be large for Br2BA
(since the Br substituent interacts only weakly with the Br atoms
and bianthryl tips of other molecules), of intermediate size
for (NH2)2BA (since the N atom can form hydrogen bonds
with the H atoms of other NH2 groups), and small for Me2BA
(since the anthracene p electrons can feed into the CH bond of
CH3 via s-conjugation, removing the specificity for p–p inter-
actions in the direction of the bianthryl tips). We assume that
chemical control can be expressed in units of energy. We
first consider the case of Br2BA self-assembly on Cu(111), in
which the chemical control is the strongest of all cases
studied here. Figure 4a presents typical, low free energy island
combinations for this case at low temperatures (200 K). At
this temperature, we estimate a roughly 70% chance of forming
chain-shaped islands and a 30% chance of forming amorphous
islands (islands which lack a clear chain shape). These amorphous
islands typically consist of multiple small chains closely
packed together, and are expected to absent when chemical
control is extremely strong. As we strengthen the entropic
control, the probability of forming amorphous islands decreases.
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Figure 4 | Self-assembly under strong chemical control. (a,b) Two typical, low free-energy island combination resulting self-assembly of Br2BA molecules

on Cu(111). In a both islands have a chain shape. In b the top island has an amorphous shape. (c) Probabilities for assembly of chains and amorphous

islands. (d,e) STM (scanning tunnelling microscope) image of Br2BA islands on Cu(111). The scale bars correspond to 43 nm. STM conditions: Sample bias

voltage¼ 1.1 V, tunnelling current¼ 10 pA, STM imaging temperature¼ 5.6 K, annealing temperature¼ 360 �C (d) and 400 �C (e). (d) Shows mainly

amorphous islands, whereas (e) shows mainly chain-shaped islands.
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On the other hand, the probability of forming chains increases
to a maximum and then decays as entropic controls are enforced.
Scanning tunnelling microscopy (STM) data in Fig. 4d,e indeed
suggest the presence of amorphous islands of Br2BA molecules
on Cu(111) at low temperatures, and an increased fraction of
chains following a comparable (B40 K) temperature jump. Note
that the STM images were collected under higher surface
coverages than those considered in our calculations, and,
therefore, the temperature range over which self-assembly occurs
differs between theory and experiment. In Supplementary Note 5,
it is shown that the predictions of our theory will still be relevant
for slight deviations from low-coverage conditions, which
accounts for the fact that our theory can explain some aspects of
the STM data.

The results in Fig. 4 can be understood by considering
Fig. 5a,b, which show that as the temperature increases the
low-free energy islands tend to become smaller (contain fewer
molecules) and more numerous. This phenomenon is exactly
within the characterization of entropic controls given in
the previous section, and is, therefore, not exclusive to the
Br2BA molecule. As entropic control is enforced, large
amorphous islands necessarily break up into smaller islands.
Moreover, these small islands prefer to take on a chain shape
due to the strength of the chemical control. As entropic control

is strengthened even further, chain assembly becomes increas-
ingly repressed. This accounts for the maximum in the chain
formation probability at around 240 K seen in Fig. 4b, and
shows that entropic controls can be used to improve the
structural quality of islands formed from the molecular
self-assembly process. The analysis in the previous section also
identified a symmetry breaking effect of entropic controls. This is
evident in Fig. 5c,d, which shows the adsorption sites of the
molecules (‘colours’) in a typical chain-shaped island. The
disorder in the adsorption sites shows that these islands do not
possess rotational symmetry despite their gross appearance in
Fig. 4a. The effect of entropic controls under strong chemical
control (that is, where the chemical control is large compared
with kBT) can, therefore, be summarized as follows: to break
up amorphous islands into a number of smaller, chain-shaped
islands, and to generate asymmetry in the adsorption sites
of molecules within chain-shaped islands. The latter effect alters
the fine structure of these islands but without significantly
affecting their gross shape.

Molecular self-assembly under intermediate chemical control.
Figure 6 presents results for the case of (NH2)2BA self-assembly,
in which the chemical control is intermediate between Br2BA case
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and the Me2BA case considered next. The weakened chemical
control allows for amorphous island formation to occur with
higher probability, however, the response of the chain-forming
probability to entropic controls is essentially identical to the
Br2BA case. These results, therefore, highlight the fact that
amorphous islands form in response to weak chemical control
and not strong entropic control (large kBT). Entropic control
supports the formation of asymmetric islands, however, this
asymmetry can be expressed through the fine structure of chain-
shaped islands, and does not necessarily require the formation of
amorphous islands.

Molecular self-assembly under weak chemical control. Figure 7
presents the case of Me2BA self-assembly, in which the chemical
control is the weakest of all cases studied here. In this case,
amorphous island formation dominates at all temperatures
studied, and the molecules assemble so that they are surrounded

by other molecules. As with the previous cases, these amorphous
islands typically contain several short chains due to a weak pre-
ference for the bianthryl–bianthryl interaction directionality
between molecules. Enforcement of entropic controls (tempera-
ture) again breaks amorphous islands down into their constituent
chains, which accounts for the increase in chain-formation
probability with temperature. However, a maximum in the chain
formation probability is not seen in the present calculations, and
hence a very wide temperature window is necessary in order to
observe all effects of entropic controls on this system. The results
for the Me2BA case, therefore, show that island shape becomes
very unresponsive to entropic control when the chemical control
is weak.

Summary of chemical and entropic controls. Table 1
summarizes the effects of chemical and entropic controls on the
structures (islands) that emerge from the molecular self-assembly
process under low surface coverage conditions, as unambiguously
determined by our theoretical methodology. Chemical control
affects the gross shape of the islands by increasing the likelihood
of forming chain-shaped structures compared with amorphous
islands. Contrary to intuition, the formation of amorphous
islands was found to be a result of weak chemical control
rather than strong entropic control, at the temperatures
studied here. Instead, entropic control affects the fine structure of
a chain-shaped islands by generating asymmetry in the molecule
adsorption sites. Entropic control also degrades large amorphous
islands and into large numbers of short, chain-shaped islands.
The latter effect provides a method for improving the structural
quality of islands via entropic controls. We also find that when
the chemical control is weak, entropic controls become much less
effective at controlling the gross island shape. While this study
has characterized entropic and chemical controls in terms of
chain-shaped islands, there is obvious interest for controlling
the formation of other more other types of structures as well.
By continued development of our code and theory, we expect
to obtain increasing detailed rules for controlling molecular
self-assembly and aiding the bottom-up nanomaterials fabrication
process.

Methods
Identification of colour-shade combinations for the GBA model. First,
a realistic, symmetrized conformation for a single molecule adsorbed to the
Cu(111) surface was identified using DFT calculations (Supplementary Fig. 2).
Using the center of mass of the molecule as a reference point, the molecule was
then scanned above the unit cell in various orientations, with the adsorption energy
calculated on the fly via DFT (Supplementary Figs 3–5). The molecular con-
formation remained fixed during this process. Nine adsorption sites were identified
via this procedure, each permitting one or two stable orientations for the molecule
(Supplementary Fig. 6).

Equivalence class sampling. ECS was performed with in-house code written for R
(ref. 20) using routines from various packages22–27 (code is available upon request).
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Figure 7 | Self-assembly under weak chemical control. (a) Typical low-

free energy island combination formed by self-assembly of Me2BA

precursors on Cu(111) at 300 K. The island on the right-hand side has an

amorphous shape. (b) Assembly probability for chain-shaped and

amorphous islands. (d) Scanning tunnelling microscopy (STM) image of

amorphous islands formed by Me2BA self-assembly on Cu(111) at high

temperature. The scale bar corresponds to 43 nm. STM imaging conditions:

sample bias voltage¼0.1 V, tunnelling current¼ 10 pA, imaging

temperature¼ 77 K, annealing temperature¼400 �C. Only amorphous

islands are seen in c.

Table 1 | Effects of chemical and entropic control on molecular self-assembly.

Weak entropic control Intermediate entropic control Strong
entropic
control

Strong chemical control Mainly chain formation Asymmetry in the adsorption sites of molecules in chains
Amorphous islands break into small chains (occurs easily)

Poor island
formation

Intermediate chemical control Mixture of chains and
amorphous islands form

Asymmetry in the adsorption sites of molecules in chains
Amorphous islands break into small chains

Poor island
formation

Weak chemical control Mainly amorphous island
formation

Asymmetry in the adsorption sites of molecules in chains
Amorphous islands break into small chains (does not occur easily)

Poor island
formation

‘Occurs easily’ and ‘does not occur easily’ means that the effect is easy or difficult to induce via entropic control (temperature), respectively.
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Simulation output was visualized using VESTA28. The calculations reported in the
following section considered 10 (initially isolated) molecules, a surface of
d¼ 50� 50¼ 2,500 unit cells (which corresponds to a surface coverage of about
3%). These calculations were ran for 600,000–1,200,000 steps of the ECS algorithm.
The cut-off distance Mc was set to 8 Å. The ECS algorithm was supplemented with
the parallel tempering algorithm described in ref. 29. To characterize the low
free-energy states of the molecular self-assembly process, 100 island combinations
randomly selected from the final 300,000 steps of the simulation and used
to calculate formation probabilities of chain-shaped islands and amorphous
(non-chain-shaped) islands. We restrict our calculations to ten molecules and
a single adsorption chirality, which is sufficient for studying chemical and entropic
controls on the molecular self-assembly process in the intermediate regime.
All DFT calculations were performed in VASP30 using the rev-vdW-DF2
exchange-correlation functional31–33. This approach accounts for the van der
Waals component of the intermolecular and molecule–surface interaction.
Simulation output was visualized using VESTA28.

Note that the cutoff distance Mc should be large enough for ‘weakly interacting’
molecules to be present in the islands. These molecules are just close enough to the
island to feel and attractive interaction, and require little energy to remove from the
island. If Mc is too small, then the molecules within the island will always be close
together, and it will become difficult to break the island apart, resulting in longer
convergence times for the Monte Carlo simulation. Moreover, ‘loosely packed’
islands, which might be expected to appear at high temperature, might not appear
in the simulation when Mc is very small. We recommend cutoff distances of at least
5 Å to reliably implement the GAMMA modelling approach.

Data availability. The data and codes that support the findings of this study are
available upon reasonable request to the corresponding author.
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