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Introduction
The increase in the resolving power of DNA copy number 
profiling techniques has led to the simultaneous discovery of 
the extend of (1) copy number variations (CNVs) of germ-line 
origin in the general population1 as well as (2) focal copy num-
ber aberrations (CNAs) of somatic origin in cancer specimens.2 
The limited size of focal CNAs offers an excellent opportunity 
to pinpoint potential driver genes in cancer.3–6 CNV detection 
usually is an obstacle in the identification of cancer driver genes. 
Unfortunately, with copy number assessment in tumors, a mix 
of focal CNAs and CNVs is detected, of which most have the 
same appearance (Fig. 1). A procedure that partly circumvents 
the interference of CNVs in tumor samples is the simultane-
ous analysis of matched patient normal DNA. However, if the 

diploid balance in a tumor is disturbed, ie, a single copy gain, a 
heterozygous CNV will still give rise to a superimposed focal 
signal. To recognize the CNAs, a negative selective procedure 
can be applied by identifying CNVs detected in the healthy pop-
ulation through the analysis of a series of healthy normal copy 
number profiles, preferably patient group matched, or other wise 
an external database of genomic variants (ie, DGV).7 Alterna-
tively, an effective positive selection is through the identifi cation 
of focal homozygous deletions and high-level amplifi cations 
that differ in amplitude from CNVs.5 This approach however 
neglects many heterozygous focal CNAs.

Despite the great opportunities focal CNAs offer for can-
cer gene discovery, only few software tools are available that 
appreciate them, eg, GISTIC, WIFA, and control-FREEC.8–10 
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Both GISTIC and WIFA were developed for array data 
and can detect focal CNAs in series of samples, but not in 
individual tumor profiles. GISTIC has a dedicated option 
to discriminate focal CNAs from CNVs based on an exter-
nal database. Control-FREEC was developed to calculate 
genome-wide copy number information from whole genome 
sequencing data and can distinguish CNAs from CNVs, pro-
vided a matched patient normal signal is available.

Here, we present FocalCall, which elaborates on commonly 
used segmentation and calling algorithms.11 A user-defined 
size cutoff allows for the identification of focal CNAs in indi-
vidual samples as well as series of samples and can distinguish 
them from CNVs. FocalCall accepts copy number data from 
both high-resolution genome-wide array comparative genome 
hybrizations (aCGH) and single nucleotide polymorphism 
(SNP) arrays as well as data from sequencing data experi-
ments,12 with or without a matched patient normal signal.

methods
patient materials and settings. FocalCall was evalu-

ated with four publicly available data sets: (1) shallow whole 
genome sequencing data (∼0.2 × genome coverage) from 
tumor and normal DNA of a lung cancer patient12; (2) 
SNP array (250K) data of 371 lung cancer patients without 
matched patient normal samples2; (3) aCGH data (244K) 
of 74 glioblastoma multiforme (GBM) patients hybridized 
against its matched normal13; and (4) aCGH data (105K) of 
60 high-grade cervical cancer pre-curser lesions hybridized 
against a pool of 100 healthy individuals.4 Dataset 4 is avail-
able from the Gene Expression Omnibus (GSE34575) and 
used as an example dataset in the R-package.

detection of recurrent aberrations. Standard data 
output as produced by CGHcall11 was used as input for the 
main function focalCall(). Aberrations below the user-defined 
size threshold for focal CNAs (default = 3 Mb) were identified 

0

–2
–1

0
1

2

–2
–1

0
1

2
–2

–1
0

1
2

–2
–1

0
1

2
–2

–3
–1

0
1

2
3

50 100

Genomic location (Mb) Genomic location (Mb)

Chromosomes

A

B

T
u

m
o

r
N

o
rm

al
L

o
g

2 
ra

ti
o

 t
u

m
o

r/
n

o
rm

al

150 200

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19202122

50 100 150 200

0 20 40 60

Chromosome 3 Chromosome 10

Chromosome 10Chromosome 3

80 100 120 140

0 20 40 60 80 100 120 140

Figure 1. Copy number profiles of a lung cancer sequencing sample and matched patient normal signal.12 Panel (A) shows all aberrations in the tumor 
sample. X-axis represents the bins ordered according to their chromosomal location. Y-axis represents the log2 ratio (right side). the red line indicates the 
segmented values as obtained using circular binary segmentation in CGHcall.11 Panel (b) shows chromosomes 3 (left) and 10 (right) both for patient normal 
and tumor sample. the gray arrow in the left panels indicates a focal CnV present in both tumor and matched patient normal sample. somatic focal Cnas 
on chromosome 10 are only present in the tumor and not in the matched patient normal sample. focal Cnas and CnVs were detected using focalCall().
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in each cancer sample and categorized as “gain”, “loss”, 
“amplification”, or “homozygous deletion”. For each region, 
the smallest region of overlap (SRO) was calculated over the 
complete sample set. Complex regions may contain multiple 
SROs (Supplementary Fig. 1 and 2). To determine whether 
focal CNAs were enriched for cancer driver genes, enrichment 
analysis was performed.3 In brief, enrichment analysis was 
implemented whereby 10,000 sets of simulated focal CNAs 
were randomly generated throughout the genome, with the 
same amount and length as the observed focal CNAs in the 
dataset. Overlap was determined of the simulated focal CNAs 
with the published list of cancer sensus genes and the signifi-
cance of enrichment expressed as a P value.

distinction between focal cnAs and cnvs. For 
each SRO (Supplementary Fig. 1), the percentage of over-
lap of focal CNAs with a normal reference or known CNVs 
is returned. If matched patient reference data are available, 
this can be provided in focalCall() as a separate CGHcall 
object. If no matched patient reference is available, focal 
CNAs are compared to a list of genomic locations of known 
CNVs, which can be provided in focalCall() as a flat text or 
bed file.

reporting of focal cnA. The function igvFiles() gener-
ates tracks compatible with the Integrative Genome Viewer 
(IGV, www.broadinstitute.org/igv/home) for CNA frequency, 
focal CNA frequency, and segmentation values per sample 
(Supplementary Fig. 3). This allows the user to visually inspect 
the results generated by FocalCall. The functions freqPlot() 
and freqPlotFocal() generate .png file for CNA frequency and 
focal CNA frequency, respectively (Fig. 2).

computational time. Computational times for the 
detection of focal CNAs in the GBM dataset (n = 74, 244K 
probes) with default parameters are approximately 7 minutes 
on a standard desktop computer with a 1.7 GHz CPU and 
4 Gb of RAM.

results
detection of focal cnAs in single patient and series 

of tumors. The lung cancer sequencing data yielded a total 
of 38 focal gains and losses: 7 were identified as CNVs and 
31 as focal CNAs, of which 6 were high-level amplifications 
(including FGFR1) and 4 were homozygous deletions (includ-
ing CDKN2A, Fig. 1 and Supplementary Table).

The lung cancer SNP array dataset yielded a total of 503 
focal CNAs with a frequency .5%. A total of 43 of the focal 
gains and losses overlapped with the CNV regions as archived 
in the DGV database.7 All genes in focal CNAs detected by 
GISTIC in the original paper were also detected by Focal-
Call.2 The remaining 460 detected focal CNAs were enriched 
for known cancer driver genes (n = 6, P , 0.05) and included 
GNAS and KDM5A.

The GBM aCGH dataset yielded a total of 434 somatic 
focal CNAs and 90 CNVs. The focal CNAs encompassed 
known cancer driver genes like EGFR, PTEN, and CDKN2A. 
All 20 focal CNAs previously reported by GISTIC13 were 
recognized by FocalCall. Additionally detected focal CNAs 
showed a highly significant enrichment for known cancer 
driver genes (n = 38, P , 0.008).

The cervical precursor lesion aCGH dataset yielded a 
total of 94 focal CNAs with FocalCall. Two of the identified 
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Figure 2. frequency plots of the GBm dataset of all aberrations (top) and focal aberrations and CnVs (bottom) as generated by focalCall functions 
freqPlot() and FreqPlotFocal(). red indicates a gain and blue indicates a loss. In the frequency plot of focal aberrations (bottom), the somatic focal 
aberrations are indicated in red for gains and blue for losses. CnVs are indicated in gray, both for gains and losses.
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genes, hsa-mir-375 and EYA2, were functionally tested and 
validated as a new oncogene and tumor suppressor gene.4 The 
data and example scripts for this dataset are available in the 
R-package.

conclusion
Focal CNAs provide an excellent opportunity to detect poten-
tial cancer driver genes.6 Through advances in techniques, 
the resolution of DNA copy number detection has increased 
enormously and the changes we can identify have become 
smaller. Accurate detection and distinction of somatic aberra-
tions from germ-line CNVs are thereby mandatory. FocalCall 
offers researchers a user-friendly tool to detect focal CNAs in 
high-resolution DNA copy number data and provides multiple 
methods to distinguish these from CNVs. FocalCall elaborates 
on a widely used DNA copy number tool CGHcall11 and com-
prehensive genome analysis packages in the R/Bioconductor 
environment. In addition, FocalCall output in the IGV data 
format allows for easy browsing through the data and provides 
a direct link with the genes affected.

In conclusion, we provide an alternative and sensitive 
procedure for the detection of focal CNAs applicable to both 
individual and series of samples analyzed by either array or 
next-generation sequencing.
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