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Resolving the Coronavirus Disease 2019 (CAU : PleasenotethatCOVID � 19hasbeendefinedasCoronavirusDisease2019inthesentenceResolvingtheCoronavirusDisease2019ðCOVID � 19Þpandemicis::::Pleasecheckandcorrectifnecessary:OVID-19) pandemic is hamstrung by emerging

Severe Acute Respiratory Syndrome Coronavirus 2 (SAU : PleasenotethatSARS � CoV � 2hasbeendefinedasSevereAcuteRespiratorySyndromeCoronavirus2inthesentenceResolvingtheCoronavirusDisease2019ðCOVID � 19Þpandemicis::::Pleasecheckandcorrectifnecessary:ARS-CoV-2) variants with the potential

to evade both natural and vaccine-induced immunity. Variants occur naturally from replica-

tion errors by viral polymerases and escape variants arise when virus mutations allow evasion

of recognition by the immune system or therapeutic treatment. The selective pressure of vac-

cines, innate immune responses, and clinical interventions fosters the emergence of mutations

that confer the capacity to continue infecting new hosts [1]. These variants of concern (VOCs)

add complexity to public health responses when they are more transmissible, deadlier, or

when they decrease the efficacy of vaccines and treatments. These variants also stoke public

uncertainty and fear as well as increase vaccine hesitancy. While SARS-CoV-2 variants have

dominated the news recently, variants have driven more transmissive versions of Ebola [2],

affected vector tropism for the chikungunya virus [3], and made many other viruses more

likely to cause pandemics.

Rapid characterization of variants for future viruses is therefore essential to an effective

pandemic response. If we can predict and characterize VOCs before they arise, monoclonal

antibodies and potential vaccine antigens could be developed to proactively neutralize these

variants. Furthermore, better understanding of the molecular characteristics of each variant

could guide more precise public health policies.

Currently, variants are identified and functionally tested using a combination of viral

sequencing, cell-based assays, protein engineering methods, and computational tools.

Sequencing of viral genomes from infected hosts identifies mutations away from the earliest

reported genome of the virus, called the reference genome, highlighting possible variants.

After identifying these mutations, cell and protein-based assays are used in the lab to test

whether these mutations enable escape from neutralizing antibodies, which are antibodies cre-

ated by the immune system from previous infection or vaccination [4,5]. Mutations of interest

are generated in a virus or pseudovirus and convalescent plasma containing neutralizing anti-

bodies from people previously infected or vaccinated are tested for efficacy of neutralization

[6,7].

As methods for variant characterization become increasingly powerful, we have yet to see

effective coordination of the research groups conducting these studies across disciplines.

Although the United States spends billions of dollars annually on infectious disease research
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and development, including genomic surveillance for identifying variants [8], this investment

has resulted in remarkably poor results for genomic surveillance. The Centers for Disease Con-

trol and Prevention (CAU : PleasenotethatCDChasbeendefinedasCentersforDiseaseControlandPreventioninthesentenceTheCentersforDiseaseControlandPreventionðCDCÞrecentlyupgraded::::Pleasecheckandcorrectifnecessary:DC) recently upgraded their surveillance system in January of 2021 but

is still only able to accommodate sequencing of 750 viral samples per week through their NS3

system [9]. While the US has one of the highest capacities for sequencing between the private

and academic sectors, the rate of sequencing ranks 33rd in the world with a rate of sequencing

at less than 2% of total cases, well below the necessary mark for identifying variants early

[10,11]. One cause of this poor response comes from the complicated interactions between

diagnostic labs/clinics and the facilities performing sequencing. Health Insurance Portability

and Accountability Act (HIPAA) and Institutional Review Board (IRB) approvals along with

patient consent must be obtained. Additionally, the cost of the sequencing needs to be funded

by someone. These complications slowed sequencing and therefore identification of VOCs.

In preparation for future pandemics, we propose establishing a consortium of research

groups with expertise in both computational and experimental techniques to more exhaus-

tively map the landscape of variants upon the emergence of a new virus and predict which var-

iants are most likely to arise. This would enable a rigorous set of standard analyses for

assessing potential VOCs, as well as allow for early design of vaccines with efficacy against the

variants deemed most likely to arise. While this work is currently being done for SARS-CoV-2

at multiple universities, companies, and government agencies, we can use lessons from this

pandemic to propose a more rapid and coordinated response for future emerging viruses.

Below, we highlight recent technological advances in these fields. By combining existing tech-

nology and new technologies, we envision a collaboration of groups employing computational

and experimental tools to quickly predict and characterize likely VOCs, which could be used

to aid initial identification of neutralizing monoclonal antibodies and vaccine design when a

new virus emerges and inform policy decisions as variants arise.

Proposed workflow to predict variants of concern

An efficient approach to predict viral variants would be for the US to invest in a new system

for predicting and testing likely VOCs immediately upon identification of a new virus. This

workflow would be handled by experts in the individual technologies working collaboratively

and sharing data in real time. While we propose technologies that already exist, they are imple-

mented in different labs around the world with different levels of expertise, requiring commu-

nication, collaboration, and sharing of information. One delay in the US response is bringing

together these experts, allowing access to clinical surveillance samples and coordinating efforts

between labs in a meaningful manner. The current variant response approach in the US is

reactive since these collaborations take time to develop after a new virus becomes a concern to

public health, increase the administrative burden for hospitals and diagnostic laboratories who

are already overstretched in a pandemic and have to ensure compliant sample handling and

patient consent to surveillance studies, and could ultimately cost thousands of lives, billions of

dollars, and extend a pandemic because the nascent collaboration is not fast enough to prevent

the spread of new variants.

Instead, this proposed workflow, described in Fig 1 and below, would take a viral genome,

as soon as it is first sequenced, as an initial input to the computational models to predict likely

VOCs. Below, we discuss several technological approaches that seek to define regions of the

genome where mutations are likely to occur and identify specific point mutations that would

likely create VOCs, similar to how flu vaccines are predicted each year [12]. Another output

would be regions of the virus that are likely to remain stable and would be ideal epitope targets

for vaccines. These predictions would be fed into and complemented by lab-based
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technologies to evaluate candidate VOCs, provide additional data for generating improved

predictions, and ultimately identify optimal viral epitopes for vaccine targets as continued

rounds of computational prediction and experimental verification will support higher cer-

tainty around which variants are of most concern. Combining expertise and technologies into

one consortium with predetermined methods for sharing data, collaborating, and working

efficiently when called upon will minimize delays between groups and allow efficient sharing

of samples. The consortium would conduct routine viral surveillance for influenza and other

Fig 1. Proposed workflow of consortium to predict and characterize viral VOCs. Starting with an input of a viral sequence, computational tools and lab-based assays

can be implemented to predict VOCs. The results from these approaches, run by experts on the methods, can be fed back into each other to further refine predictions.

VOC, variant of concern.

https://doi.org/10.1371/journal.pcbi.1009624.g001
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seasonal viruses during nonpandemic times, establishing workflows and shared resources,

maintaining active collaboration, and improving and testing computational prediction mod-

els. By rapidly expanding this coordinated workflow immediately upon the World Health

Organization (WHO) declaring a virus reached Phase IV of the pandemic scale (triggered by

evidence of sustained human to human transmission), initial vaccines and therapeutics can be

designed with maximal efficiency against predictable VOCs, saving lives and shortening

pandemics.

Current technologies for assessing variants

Cutting-edge computational tools

Computational approaches can rapidly identify VOCs early in a pandemic, especially given the

reduced need for time, resources, and safety regulations associated with many computational

approaches. Computational tools are a necessity since there are approximately 20^n single

coding mutations, let alone multiple mutations and indels. While experimental tools are still

the gold standard, the best experimental approaches, including pooled screening experiments,

would not be able to handle every possible mutation.

We envision this coordinated response would be activated upon obtaining the genetic

sequence for a new virus. With only the genome, computational tools such as BLAST [13] and

other well documented algorithms and models can be applied to predict identity, structure,

and function of proteins from the genome [13–16], including those developed explicitly for

annotating single viral genomes [17,18]. From there, other computational tools could predict

regions that would likely change in VOCs.

One notable recent study implemented a deep learning algorithm known as a language

model to build a powerful predictor of variants [19]. The model, trained on protein sequences

from different viruses, relies on the principle that viruses within the same family use a com-

mon set of proteins (encoded in their genome) to replicate. By learning the sequence patterns

of proteins for other viruses in a family, the model can assess whether a new genome is likely

to encode functional viral proteins. These viral proteins could then be fed into a language

model like the one described by Hie and colleagues [19]. This type of model was first built to

learn the grammars of languages—for example, learning the syntax of the English language

and being able to classify whether a new sentence is grammatically correct. The authors uti-

lized the large collection of previously sequenced genomes for viral families to train their pre-

dictor, which showed impressive performance in distinguishing known escape mutations

from the set of all mutations seen in a virus. The approach is generalizable, successfully identi-

fying known VOCs for multiple viral families. Importantly, training the model did not require

explicit data on what variants exist and were VOCs, but relied on large amounts of sequencing

data from other viruses, making it an ideal first step for mapping the mutation landscape early

in a pandemic, before genomic surveillance has provided evidence of mutations.

Another promising computational technique for early interrogation and prediction of viral

changes are models based on nucleotide composition. It is known that nucleotide and dinucle-

otide compositions of viruses evolve to match their host species to evade detection and subse-

quent clearance by cellular defense systems [20,21]. Accordingly, computational models have

been developed that use quantification of viral genome nucleotide compositions to predict

sequence changes in viral strains as they adapt to humans from other animal hosts [22,23].

These methods were successful in retroactively identifying adaptive sequence changes most

likely to occur for influenza. Thus, training a model for a newly emerged pathogen to score

new mutations based on their change to nucleotide composition is an appealing possible

approach for characterizing the likelihood of emergence of new variants. Importantly, the
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composition of dinucleotides has been shown to be a property of virus family more so than

host species [20], suggesting that training a computational model on viral sequences identified

from nonhuman hosts could be informative in the early days of a pandemic, before the virus

has had time to spread and sequences identified from hosts are sparse and highly similar. How-

ever, these models are limited in that they do not incorporate any molecular or structural

details into which mutations are more or less likely to arise. Mutations at different sites in the

genome that similarly increase or decrease the composition of a given nucleotide pattern

would be scored identically. These models would therefore best be used in combination with

other computational approaches to refine rankings of VOCs.

Computational modeling of the structural effects of mutations is another approach that

provides rapid molecular characterization of a large set of viral variants. For example, molecu-

lar dynamics (MD) simulations have characterized the change in binding affinity of the

SARS-CoV-2 spike receptor-binding domain to the human entry receptor angiotensin con-

verting enzyme 2 (AAU : PleasenotethatACE2hasbeendefinedasangiotensinconvertingenzyme2inthesentenceForexample;moleculardynamicsðMDÞsimulationshave::::Pleasecheckandcorrectifnecessary:CE2) upon mutation [24], and in one case, the ensemble of energies calcu-

lated by the MD trajectories was used to train a neural network to predict the apparent KD of

interaction [25], achieving correct variant classification of>80% for a blind test set of 54 vari-

ants. Structures of the spike protein [26] and the spike–ACE2 complex [27] were available

remarkably early in the pandemic, with structure coordinates being deposited in the Protein

Data Bank for public access on February 10, 2020 and February 21, 2020, respectively, less

than 3 weeks after WHO declaration of a public health emergency on January 30, 2020. Thus,

computational protein modeling techniques are readily accessible tools for use early in the

pandemic for predicting the molecular details of variants that may increase transmissibility or

disease severity. Determining which molecular details are most relevant for predicting VOCs

may be highly dependent on the virus of interest, underlining the benefit of following up on

computational modeling predictions with experimental studies.

As the pandemic progresses and novel variants arise, their genomes will be collected into data-

bases [28] and fed into these computational models as additional training data to improve their

accuracy and aid design of booster vaccines if necessary. In the later stages of the pandemic when

many strains have been collected, the accumulation of sequences will also permit additional

computational techniques for predicting the long-term evolution of a virus. For example, comput-

ing the Shannon entropy for each amino acid position of the spike protein across a large number

of sequences (>310,000) from GISAID’s EpiCoV database [29] enabled one group to identify

mutational hotspots, including many positions at which mutations had already occurred in VOCs

[30]. Of note, the L452R and E484K mutations that were recognized in VOCs in 2021 lie in

regions that the model identified as hotspots despite only using data from 2020. This study high-

lights the ability of a large number of sequences to provide information on future evolutionary tra-

jectories of viruses. Lastly, if a viral strain becomes endemic, fitness models can be used to predict

the evolution of different clades of a virus each year, as is done for influenza [31].

In sum, these computational methods provide an enormous opportunity to support efforts

to predict and identify VOCs, traditionally driven by experimental techniques. For example,

finding suitable animal models posed an initial challenge for studying SARS-CoV-2 because it

was unable to infect mice due to differences in the ACE2 receptor protein used for viral entry.

Computational techniques allow for molecular insight independent of the access to these and

other resource-intensive experimental techniques. Furthermore, computational approaches

offer the unique opportunity to integrate information on the virus sourced from many differ-

ent types of analyses, such as incorporating observed VOC frequencies from genomic surveil-

lance to refine the predictions made by the models, thus accounting for human-specific factors

that are not captured by the molecular mechanisms that form the basis of the computational

techniques. Importantly, incorporating continuous low-level surveillance in the proposed
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consortium model will allow continuous refinement of computational methods, across several

families of viruses that occur seasonally. This could also help better model seasonal influenza

strain development.

Lab-based experimental tools

Complementing the computational tools, lab-based technologies could simultaneously predict

variants and feed additional information to the computational tools. The most straightforward

approach to mapping the mutational landscape is to simply test each one in turn, using a tech-

nique known as deep mutational scanning or saturation mutagenesis. In a series of studies, the

group of Dr. Jesse Bloom at the University of Washington used an exhaustive library of single

nucleotide variants of the SARS-CoV-2 spike protein receptor-binding domain expressed on

the surface of yeast to test for binding to the entry receptor ACE2 [32], for escape from thera-

peutic antibodies [33,34], and for escape from neutralizing monoclonal [35] and polyclonal

[36] antibodies derived from SARS-CoV-2 convalescent patients. This approach has also previ-

ously been used to predict fitness for human influenza variants [37]. These studies showcase

the benefits of mutation mapping using saturation mutagenesis, namely that the exhaustive

library can be rescreened for measurement of several different properties. The results from the

various screens can be integrated into a more complete description of the molecular properties

of each potential VOC, which may inform therapeutic strategies.

To map the escape landscape of a whole viral genome, laboratory researchers incubate the

virus with cells and potential treatments to examine how the virus mutates to adapt to selective

pressures [5]. This approach has been used to identify mutations in HIV [38], influenza [39],

and for escape variants of SARS-CoV-2 elicited under the selective pressure of remdesivir, a

widely used therapeutic targeting the RNA-directed RNA polymerase of SARS-CoV-2 [40]. By

screening for increased viral fitness in the presence of remdesivir challenge, the authors iden-

tify mutations to the RNA polymerase and, surprisingly, mutations in the spike protein. These

known spike protein mutations as well as those in the exonuclease nsp12 are rare, but have

been observed in the broader population and could arise without stringent selective pressure.

This selection can additionally be performed using panels of common drugs and treatments

for a wide range of viruses [41]. Proactively mapping the escape landscape under the selective

conditions of multiple therapeutics and combination of therapeutics used worldwide not only

helps us better predict viral evolution but may afford us crucial time for designing new drugs

with improved potency against variants before they become widespread.

Lab-based assays can also be performed to identify epitopes for vaccine targets that would

be less prone to mutations by finding epitopes and antibodies that have high binding affinities

across related viral species. Recently, Wang and colleagues identified the main antigens of the

SARS-CoV-2 spike (S) protein targeted by the immune system, which were distinct from anti-

gens that are more conserved between SARS-CoV-2 and SARS-CoV-1 [42]. By eliminating the

main epitopes in a lab strain of the virus and infecting mice, the mouse immune cells produced

antibodies that targeted the conserved antigens and were more broadly neutralizing against

both SARS-CoV species. Additional lab-based assays find that antibodies targeting more con-

served regions help to elicit cross-reactive neutralizing antibodies efficacious against variants,

providing excellent information on what epitopes to use as the basis for a vaccine [4,6,43].

While some of the conserved epitopes could induce weaker immune responses, using these

techniques to identify conserved epitopes that elicit strong responses will be critical for design-

ing durable efficacious vaccines. These types of studies identify those domains of viral proteins

most likely to develop variants, as well as which regions are more stable and therefore could be

better targets for vaccines and therapeutics.
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Implementation and safety considerations

To implement this system, strong computational expertise, tools, and access to computing

power are needed within the consortium so that results can be quickly utilized by all assays to

predict variants and vaccine candidates. The consortium would be active at a “maintenance”

level continuously, characterizing the yearly influenza pandemic as well as several cold virus

strains, conducting surveillance and optimizing training algorithms on the emergence of vari-

ants. This could improve the influenza vaccine selection and our response to other seasonal

pathogens. We could also learn a lot about virus surveillance, transmission and mutagenic

behavior of viruses, potentially informing public health recommendations for nonpandemic

viruses that still cause significant morbidity (i.e., common cold coronaviruses). A consortium

conducting continuous low-level virus surveillance in the population could easily ramp up

activities when a virus reaches Phase IV of WHO’s pandemic phase designation, which

includes sustained human to human transmission. The sequence of this virus will be immedi-

ately fed into the computational models above (by the labs in the consortium with expertise in

the computational models) while simultaneously being used in the lab-based assays (by other

labs in the consortium with appropriate biosafety labs and expertise), with results being shared

automatically among all members. These results will be fed into a central database maintained

by the consortium and distributed to each member to update their respective work. Ultimately,

a list of most likely variants and potential phenotypes associated (i.e., more transmissible,

more severe disease, etc.) will be output along with potential vaccine and therapeutic targets

within a few weeks to months.

There are examples of many successful consortia, including The Broad Institute’s Interdis-

ciplinary Research Consortium, the Enzyme Function Initiative funded by the National Insti-

tute of General Medical Sciences, and many others. The Viral Hemorrhagic Fever Consortium

(VHFC) is a great example of a nonprofit consortium starting from an initial grant, spanning

multiple universities, countries, and agencies and has since expanded to include many addi-

tional partners. The majority of existing consortia focus on a single virus or group of viruses,

while this consortium could be expanded to include a broad range of experts spanning all viral

families. Using lessons learned from these successful consortia as well as best practices for gov-

ernance, reward structures, and implementation of consortia [44,45], we believe this consor-

tium can be supported sufficiently with funding from an organization such as the National

Institutes of Health (NAU : PleasenotethatNIHhasbeendefinedasNationalInstitutesofHealthinthesentenceUsinglessonslearnedfromthesesuccessfulconsortia::::Pleasecheckandcorrectifnecessary:IH) or CDC. Labs with varying expertise to cover the computational

and experimental methods can be identified by the funding organization and invited to join,

with appropriate governance and reward structures to allow members to still publish results.

Splitting the consortium among different labs and organizations allows the best experts across

different fields collaborate while minimizing the burden placed on any single lab. Importantly,

a focus on computational methods would allow immediate results that could be used for vac-

cine antigen selection—for cell-based studies, a virus sample has to be obtained together with

the required safety approvals, and then a permissive cell line needs to be found and an animal

model established. This can take significant time and delay the generation of data needed to

develop optimal vaccines and therapeutics. As sequencing does not require culture of the

virus, sequence data can be obtained directly from clinical samples. Within the proposed con-

sortium, initial predicted algorithms could be run within hours after a sequence is available,

allowing rapid response times and a more informed choice of vaccine antigen, for example.

The ability to centralize consent forms, IRBs, and other documentation while gaining access

to large data sets will entice many labs to join this consortium. This consortium would be

formed with NIH support, which could help develop “blanket” IRBs and consent forms to

increase sequencing of samples throughout future pandemics by clinical and diagnostic labs.
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By working with these labs, the consortium could facilitate increased sequencing, improving

surveillance for VOCs while providing additional data for the computational models and

increasing efficacy of the consortium. These computational methods were applied to SARS-

CoV-2 even at the poor sequencing rates in the country, so the additional sequencing would

not be critical, but would certainly help policy makers and the consortium.

There are many documented benefits to collaborative research, and this consortium would

improve access to different resources, increase professional networks, minimize burdens on

individual labs, provide additional funding for labs, provide opportunities for publishing, and

ultimately speed up research that has the potential to impact the entire world. However, the

consortium needs to be managed and funded well, be ready to act when called upon, and

established structures and workflows (i.e., access to clinical surveillance samples) need to be

sufficiently robust to support a rapid expansion of activities in case of a pandemic. Best prac-

tices mentioned above and a significant amount of learnings from the COVID-19 pandemic

can help implement a system that helps prepare for and mitigate future pandemics.

Additionally, virology and basic biology expertise is required, especially related to the lab-

based assays working with high containment pathogens at Biosafety Level 3. The verification

experiments we propose would comprise in vivo lab technologies requiring a Biosafety Level 3

and use mainly pseudovirus assays to avoid working with dangerous live viruses. It is of utmost

importance that more virulent virus strains are only generated using precautions such as pseu-

dovirions and appropriate containment and that once the computational tools are trained to

be highly predictive, safety measures against abuse are taken, and both details of the tools

themselves and sequences of highly virulent proposed viruses are appropriately safeguarded

together with NIH and other government institutions. However, if the consortium is successful

in predicting early variants that are moderately efficient at evading selective pressure and this

informs improved vaccine design with future variants in mind, the risk of developing a highly

virulent strain is in practice significantly reduced. Allowing a virus to “fester” with only par-

tially effective vaccines over long periods of time will increase risk for more virulent variants.

Another important consideration for VOC prediction is the different selective pressures

experienced by the virus in parallel as it infects different hosts. For example, variants of SARS-

CoV-2 are thought to have arisen in farmed minks before transmitting back to humans in

Denmark [46] and Poland [47]. Despite arising in a nonhuman reservoir, the spike protein

receptor-binding domain mutation Y453F from the Denmark variant showed enhanced bind-

ing to the human ACE2 receptor, which mediates SARS-CoV-2 entry into cells and may have

increased its transmission potential among humans. These types of mutations have been seen

for many viruses before SARS-CoV-2, including the chikungunya virus [3], influenza [48], and

others. While most of the computational tools do not specifically include host species differ-

ences, many of them are agnostic to the host they arise in and mainly focus on the effects in

humans. Genetic heterogeneity within human communities is an additional confounding fac-

tor as host genetic factors have been shown to have an impact on vaccine efficacy [49,50]. As

initial vaccine rollout progresses, areas with high incidence of infection among vaccinated peo-

ple due to decreased vaccine efficacy would result in viral selection under a partially effective

immune response. A similar effect may occur in reinfected individuals, who may have a wan-

ing immune response. Communities with significant numbers of these types of infections are

likely to generate VOCs and thus should undergo increased genomic surveillance.

Additionally, computational modeling and prediction efforts separate from the broader

workflow may be warranted: While the computational models described above showed success

in separating viral sequences from different host species for both influenza viruses and corona-

viruses [14], the ability to actively predict how the presence of heterogeneous reservoirs influ-

ences viral evolution and variant selection globally is still a challenge. Incorporating animal
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data in the yearly surveillance studies proposed under this consortium could help model virus

transmission also in animals living in close proximity to humans.

Conclusions

The vision we present for an ideal response to the identification and sequencing of a new virus

is to maintain at a low level and in case of pandemic, rapidly deploy both a computational and

a lab-based assay pipeline to predict and characterize the most likely VOCs, and define optimal

monoclonal antibody and vaccine targets. While many of these technologies were created for

previous viruses and pandemics, they have been updated and now include many more compu-

tational aspects because of SARS-CoV-2. We have highlighted many older and newer tech-

niques that would benefit from integration in a consortium of experts that could be activated

at a specific time after new a virus is identified. This coordinated approach would combine the

power and speed of computational methods with the accuracy and translation of lab-based

assays. By preemptively organizing this group around recurring influenza and other seasonal

virus outbreaks, algorithms could be trained and workflows optimized for continuous low-

level virus surveillance, allowing a rapid and efficient ramp-up during outbreaks that could

become pandemics. A coordinated effort could predict VOCs early to aid vaccine design and

guide public health policies. These candidate vaccines would have a greater likelihood of being

able to prevent and treat variants that arise or even prevent variants from arising by squashing

transmission early in a pandemic. This approach could also be used to design booster shots for

a pandemic even after initial vaccines are available. Additionally, the characterization of each

viral variant can also provide critical data to guide public health messaging as new variants do

begin circulation. This broadly applicable workflow would ultimately cost a fraction of what

the US is spending on infectious disease work in addition to saving lives during future out-

breaks and generate unprecedented insight into virus transmission and evolution.
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