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Background-—Consumption of tuna or other broiled or baked fish, but not fried fish, is associated with fewer subclinical brain
abnormalities on magnetic resonance imaging (MRI). We investigated the association between plasma phospholipid omega-3
polyunsaturated fatty acids (PUFAs), objective biomarkers of exposure, and subclinical brain abnormalities on MRI.

Methods and Results-—In the community-based Cardiovascular Health Study, 3660 participants aged ≥65 underwent brain MRI in
1992–1994, and 2313 were rescanned 5 years later. MRIs were centrally read by neuroradiologists in a standardized, blinded
manner. Participants with recognized transient ischemic attacks or stroke were excluded. Phospholipid PUFAs were measured in
stored plasma collected in 1992–1993 and related to cross-sectional and longitudinal MRI findings. After multivariable adjustment,
the odds ratio for having a prevalent subclinical infarct was 0.60 (95% CI, 0.44 to 0.82; P for trend=0.001) in the highest versus
lowest long-chain omega-3 PUFA quartile. Higher long-chain omega-3 PUFA content was also associated with better white matter
grade, but not with sulcal or ventricular grades, markers of brain atrophy, or with incident subclinical infarcts. The phospholipid
intermediate-chain omega-3 PUFA alpha-linolenic acid was associated only with modestly better sulcal and ventricular grades.
However, this finding was not supported in the analyses with alpha-linolenic acid intake.

Conclusions-—Among older adults, higher phospholipid long-chain omega-3 PUFA content was associated with lower prevalence of
subclinical infarcts and better white matter grade on MRI. Our results support the beneficial effects of fish consumption, the major
source of long-chain omega-3 PUFAs, on brain health in later life. The role of plant-derived alpha-linolenic acid in brain health
requires further investigation. ( J Am Heart Assoc. 2013;2:e000305 doi: 10.1161/JAHA.113.000305)
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F indings on magnetic resonance imaging (MRI), including
subclinical (lacunar) infarcts, white matter abnormalities

(leukoaraiosis), and ventricular and sulcal enlargement, that

is, brain atrophy, are common in the elderly. Even in the
absence of overt clinical events, such as transient ischemic
attacks (TIAs) or stroke, these subclinical MRI findings are
associated with impairments in health. Subclinical infarcts
and white matter abnormalities are likely related to vascular
disease of small cerebral vessels1,2 and are associated with
impairments in cognition, gait, and mood with increased risk
of subsequent dementia, stroke, and death.3–8 White matter
changes over time have also been found to accelerate
cognitive decline and increase risk of cardiovascular disease
and death.8–10 Brain atrophy has been associated with
increased risk of physical functional decline, cognitive decline,
and dementia.11–13 Therefore, identification of modifiable risk
factors for these MRI findings would open the possibility of
preventing these devastating outcomes in the elderly.

Fish consumption is associated with lower risk of stroke14

and also of dementia and cognitive decline,15 for which
subclinical brain abnormalities are a risk factor.6 We have
shown that consumption of tuna or other broiled or baked
fish, but not fried fish, was associated with lower risk of
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stroke16 and subclinical brain abnormalities.17 Tuna/other
fish, but not fried fish, also correlated with plasma phospho-
lipid long-chain omega-3 polyunsaturated fatty acids (PUFAs),16

suggesting that these fatty acids could be at least partly
responsible for the benefits of fish consumption.

Circulating biomarkers of omega-3 PUFAs provide objec-
tive measures that reflect both dietary consumption (eg, fish
and fish oil) and relevant biologic processes (eg, elongation of
the intermediate-chain omega-3 PUFA alpha-linolenic acid
[ALA] to longer-chain omega-3 PUFAs). Biomarker levels also
permit direct assessment of specific individual omega-3
PUFAs, including the long-chain eicosapentaenoic acid (EPA,
20:5n-3), docosapentaenoic acid (DPA, 22:5n-3), and doco-
sahexaenoic acid (DHA, 22:6n-3), and the intermediate-chain
ALA (18:3n-3), for which prior data on brain health is limited
and conflicting.18–20 Yet few studies have investigated
associations between circulating omega-3 PUFAs and MRI
findings.21–23 We investigated the association of plasma
phospholipid omega-3 PUFAs, a biomarker for longer-term
circulating concentrations, with subclinical brain abnormali-
ties in older adults, including both cross-sectional and
prospective analyses based on serial MRIs.

Methods

Study Population
The Cardiovascular Health Study (CHS) is a prospective
cohort study of 5888 older adults. The design and
recruitment experience have been described.24,25 Briefly,
5201 men and women aged ≥65 at baseline were randomly
selected and enrolled in 1989–1990 from Medicare eligibil-
ity lists in 4 US communities: Forsyth County, North
Carolina; Sacramento County, California; Washington
County, Maryland; and Allegheny County, Pennsylvania. An
additional 687 black participants were similarly recruited
and enrolled in 1992–1993. Each center’s institutional
review committee approved the study. All subjects gave
informed written consent.

Blood Sample Collection and Fatty Acid
Measurements
Plasma phospholipid omega-3 PUFAs were measured in
stored plasma specimens taken at the 1992–1993 examina-
tion in 3941 participants, as described.26 Blood was drawn
after 12 hours of fasting, stored at �70°C, and shipped on
dry ice for long-term storage at �80°C until analyzed.26 As
previously described,26 lipid fractions were separated by thin-
layer chromatography, and 45 individual fatty acids were
measured as a percentage of total concentrations using gas
chromatography. Phospholipid fatty acids represent a

biomarker of longer-term (4- to 8-week) circulating concen-
trations, with similar responses as fatty acids in erythrocyte
membranes.27 No degradation, lipolysis, or oxidation has
been observed after 10 years in the blood storage conditions
in CHS.28 Interassay CVs were 2.1% for EPA, 1.5% for DPA,
1.6% for DHA, and 3.1% for ALA. Long-term reliability of these
measures has also been described26 and is similar to other
major risk factors such as blood pressure.29

Brain Imaging
All CHS participants were invited to undergo MRI scanning in
1991–1994. The average time between blood collection and
MRI scanning was 112 days (range, �517 to 650 days). A
total of 3660 (62%) underwent scanning and were slightly
younger and healthier than those who did not.1 All partic-
ipants were again invited to undergo MRI scanning 5 years
later, in 1997–1999, and 2313 were scanned. A total of 2116
participants underwent both scans and were healthier than
the 1544 who underwent only the initial scan, including a
lower prevalence of cardiovascular disease, hypertension,
diabetes, current smoking, and higher income and education.5

The cranial MRI scanning protocol included sagittal
T1-weighted localizer images and axial T1-, spin-density-,
and T2-weighted images.30 Without knowledge of partici-
pants’ clinical information, neuroradiologists at the centralized
CHS reading center identified infarcts and estimated white
matter, ventricular, and sulcal grades, as detailed previ-
ously.1,31,32 Brain infarct was defined as an area of abnormal
signal intensity ≥3 mm in size in a vascular distribution that
lacked mass effect.32 Grades were defined using a semiquan-
titative 10-point scale from 0 to 9 (most abnormal) based on
comparison with templates.1 Ventricular grades ranged from
slit-like ventricles (grade 0) to markedly enlarged ventricles
(grade 9). Sulcal grades ranged in a similar fashion. White
matter grades were estimated by the total extent of
periventricular and subcortical white matter signal abnormal-
ity on spin-density-weighted axial images graded by succes-
sive increase from no changes or barely detectable changes
(grades 0 and 1, respectively) to almost all white matter
involved (grade 9).31 As described,33 ventricular and sulcal
grades were grouped for analysis as ≤2, 3, 4, and ≥5 and
white matter grade as ≤1, 2, 3, and ≥4.

To evaluate changes in white matter between the serial
MRI scans, all scans were reread side by side without
knowledge of their order or their previous readings to
minimize any potential reader bias.9 Changes in ventricular
and sulcal grades were not estimated. Because of technical
limitations, 197 of the 2116 paired scans could not be reread.
Demographics, cardiovascular risk factors, and prevalent
cardiovascular disease were similar in the 1919 included
and 197 excluded participants (data not shown).
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Consistent with prior analyses,17 for cross-sectional
analyses of subclinical infarcts, we excluded participants with
prevalent clinical TIAs or stroke or with possible (<3-mm)
infarcts or prior hemorrhage at the first MRI (Figure 1). For
prospective analyses we also excluded participants with
subclinical infarcts at the first MRI or with clinically diagnosed
TIAs or stroke between the 2 MRIs (Figure 2). For cross-
sectional analyses of white matter, ventricles, and sulci, we
excluded participants with prevalent clinical TIAs or stroke.
For serial changes in white matter grade we also excluded
participants with TIAs or stroke before the second MRI.

Diet and Other Risk Factors
All participants underwent extensive baseline evaluations
including standard questionnaires, physical examination,
performance measures, and laboratory testing.24,25,32

Prevalent coronary heart disease, stroke, TIA, hypertension,
and diabetes were defined using patients’ reports and
confirmed by centralized review of hospital and clinic
records.24,25 Dietary habits were assessed by reproducible
and validated semiquantitative food-frequency questionnaires
(FFQ) in 1989–1990 and in 1995–1996.

For the analyses with incident subclinical infarcts in the
secondary analyses with dietary ALA, we calculated the
cumulative average intake of the 2 FFQs or used data from

only 1 if the other was not available. In the analyses with
prevalent subclinical findings, we used data from the first
FFQ. We also examined whether our previously observed
inverse association of consumption of tuna/other fish with
risk of MRI findings in this cohort17 would be affected
by adjustment for phospholipid long-chain omega-3 PUFA.
Fish intake was assessed in 1989–1990 as previously
described.17

Statistical Methods
We explored the univariate relationships between phospho-
lipid EPA+DPA+DHA and ALA and baseline characteristics by
means and linear regression (for continuous variables) or v2

tests (for dichotomous variables). We related the phospholipid
PUFA to the risk of subclinical infarcts and worsening white
matter grade by logistic regression. Only 61 subjects
experienced white matter worsening by ≥2 grades between
scans, so they were grouped with those experiencing
worsening by 1 grade. Risk of number of subclinical infarcts
(range, 0 to 4) was evaluated using ordinal logistic regression.
Sulcal, ventricular, and white matter grades in quartiles of
phospholipid PUFAs were evaluated using analysis of covari-
ance (see list of covariates below). Absolute risk reduction
was calculated by multiplying the absolute risk in the
reference group by the multivariable-adjusted risk reduction
in the comparison group.

Multivariate models included confounders that were
selected on the basis of the previously observed associations
between fish consumption and MRI findings.17 The final
models included age (years), sex, race (white/other), enroll-
ment center (4 sites), diabetes (yes/no), education (<high
school, high school, >high school), smoking (never/former/
current), pack-years of smoking, body mass index (kg/m2),
prevalent coronary heart disease (yes/no), alcohol use
(beverages/week), physical activity (kcal/week), energy
intake (kcal/day), and meat consumption and vegetable
consumption (servings/week in quartiles). Further adjust-
ment for proportions of other phospholipid fatty acid
biomarkers or the time between blood collection and the
MRI scanning did not appreciably alter (<5%) the risk
estimates (data not shown). The cohort mean was used to
replace missing values in covariates (<12.5% in dietary
variables, <3.0% in others). Results were similar if missing
values were excluded. We also conducted a sensitivity
analysis by evaluating the impact of adjusting for phospho-
lipid long-chain omega-3 PUFAs on the previously observed
association between tuna/other fish intake and MRI find-
ings10 in participants with data on both exposures (n=2079).
Likelihood ratio tests using multiplicative interaction terms
were used to explore potential effect modification by age,
sex, race, education, diabetes, coronary heart disease,

History of TIA or stroke

Incomplete data on phospholipid fatty acids

Incomplete data on sulcal, ventricular 
or white matter grades

Possible (<3mm) 
infarcts

Prior hemorrhage

Excluded  698

Excluded  369

Excluded 14

Excluded  286

Excluded 30

Year 1991-1994 MRI, n=3660

N=2676

Prevalence analyses

N=2646 in the analyses with sulcal, 
ventricular or  white matter grades

N=2293 in the analyses
with subclinical infarcts

Figure 1. Participants included in the cross-sectional analyses of
circulating omega-3 polyunsaturated fatty acids and subclinical
magnetic resonance imaging (MRI) abnormalities. TIA indicates
transient ischemic attack.
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hypertension, alcohol intake, smoking, or use of aspirin, lipid-
lowering, or hypertension medications. Correlations were
estimated by Spearman correlation coefficients. All P values
were 2-tailed (a=0.05). Analyses were performed using SPSS
19.0 for Windows (SPSS Inc, Chicago, IL).

Results

Descriptive Data
The mean (�SD) phospholipid proportions were 0.60%
(0.39%) for EPA, 0.84% (0.17%) for DPA, 3.06% (0.98%) for
DHA and 0.15% (0.05%) for ALA of total fatty acids. At
baseline, higher EPA+DPA+DHA proportion was related to
nonwhite race, higher education, and lower triglyceride
concentrations (Table 1). Higher EPA+DPA+DHA proportion
was also positively associated with consumption of tuna/
other fish and estimated EPA+DHA consumption, but not with
fried fish consumption, as well as with lower intake of red
meat and higher intake of fruits and vegetables. Baseline
characteristics according to EPA, DPA, and DHA have been
published previously.26

Higher phospholipid ALA proportion was related to female
sex, white race, current smoking, and higher education
(Table 1). Higher ALA proportion was also related to lower
BMI, serum LDL cholesterol, and intake of red meat; higher
intakes of tuna/other fish, fruits, and vegetables; and higher
estimated intakes of EPA+DHA and ALA.

Phospholipid Long-Chain Omega-3 PUFAs and
Subclinical Infarcts
A total of 534 of 2293 participants (23.3%) had 1 or more
prevalent subclinical infarcts on the first MRI. In multivariable-
adjusted analyses, the odds for having a subclinical infarct
were 40% lower (OR, 0.60; 95% CI, 0.44 to 0.82; P for
trend=0.001) in the highest versus the lowest phospholipid
EPA+DPA+DHA quartile (Table 2). On the basis of an absolute
risk of 27.1% in the first quartile, the absolute risk reduction
for low EPA+DHA+DHA consumption was 10.8%. Evaluating
the number of subclinical infarcts, the odds of each additional
multiple infarct was 41% lower in the highest versus the lowest
quartile (OR, 0.59; 95% CI, 0.44 to 0.80; P for trend<0.001).
When each long-chain omega-3 PUFA was evaluated individ-
ually, only DHA was significantly associated with lower risk
(Table 2) (reference group absolute risk=25.1%; absolute risk
reduction in the highest DHA quartile=8.0%). The OR of each
additional multiple infarct in the highest versus the lowest
DHA quartile was 0.67 (95% CI, 0.49 to 0.90; P for
trend=0.001). Simultaneous adjustment for EPA and DPA
had no effect on this association (data not shown).

A total of 170 participants (16.1%) experienced an incident
first subclinical infarct between the 2 MRI scans. The
associations between total or individual long-chain omega-3
PUFAs and incident subclinical infarct did not achieve
statistical significance (Table 3), but directions of association
were similar to those seen for prevalent subclinical infarcts.

Technical limitations in re-reading the original scans

Excluded  197

Incomplete data on phospholipid fatty acids

Excluded  90

Excluded  357

TIA or stroke before the 1st MRI

Excluded  87

TIA or stroke between the MRIs

Subjects with MRIs both in 
1991-1994 and 1997-1999, n=2116

Incidence analyses

TIA or stroke before the 1st MRI

Excluded 98

Incomplete data on phospholipid fatty acids

Excluded 510

Possible (<3mm) infarcts

Excluded  312

Prior hemorrhage

Subclinical infarcts at the 1st MRI 

Excluded 58

TIA or stroke between the MRIs

Excluded  4

N=1056 in the longitudinal analyses 
of incident subclinical infarcts

Excluded  78

N=1385 in the longitudinal analyses 
of white matter change

Figure 2. Participants included in the longitudinal analyses of circulating omega-3 polyunsaturated fatty acids and subclinical magnetic
resonance imaging (MRI) abnormalities. TIA indicates transient ischemic attack.
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Phospholipid Long-Chain Omega-3 PUFAs and
White Matter, Sulcal, and Ventricular Grades
In cross-sectional analyses, higher phospholipid EPA+D-
PA+DHA was associated with better white matter grade
(Table 4). After multivariable adjustment, those in the highest
quartile had 9.2% better white matter grade, compared with
those in the lowest quartile (P for trend=0.001). The
associations were similar for EPA (difference between the
extreme quartiles 9.3%, P for trend=0.002) and DHA (differ-
ence, 8.5%; P for trend=0.001), but appeared weaker with
DPA (difference, 3.6%; P for trend=0.08). When EPA, DPA, and
DHA were included in the model simultaneously, only
the association with DHA remained statistically significant

(difference, 7.2%; P for trend=0.01). EPA+DPA+DHA or
individual fatty acids were not significantly associated with
markers of brain atrophy, that is, sulcal or ventricular grades
(P>0.05 for each, Table 4).

In prospective analyses, 383 of 1385 participants (27.7%)
experienced a worsening of white matter grade (a decrement
of ≥1 grade) between the MRI scans. In multivariable-
adjusted analyses, participants in the highest EPA+
DPA+DHA quartile had 42% lower odds of developing
worsening white matter (OR, 0.58; 95% CI, 0.40 to 0.84; P
for trend=0.002) compared with the lowest quartile
(Table 5). When individual long-chain omega-3 PUFAs were
evaluated separately, only DHA was significantly associated
with lower risk (Table 5).

Table 1. Baseline Characteristics According to Plasma Phospholipid Omega-3 Polyunsaturated Fatty Acids

Characteristic

EPA+DPA+DHA, % ALA, %

<3.64
(n=573)

3.64 to 4.22
(n=573)

4.23 to 5.04
(n=574)

>5.04
(n=573)

<0.11
(n=580)

0.11 to 0.14
(n=566)

0.15 to 0.18
(n=576)

>0.18
(n=571)

Age, y 75.1 (4.9) 75.3 (5.0) 75.1 (4.9) 75.0 (5.3) 74.9 (4.9) 74.9 (5.0) 75.5 (5.3) 75.2 (4.9)

Male sex, % 44 39 38 39 48 38 39 34*

White race, % 96 92 87 80* 86 88 90 90*

Current smoker, % 11 8 7 8 11 9 7 7*

Education ≥high
school diploma, %

69 70 78 80* 68 74 75 79*

Coronary heart
disease, %

20 21 21 19 21 21 22 18

BMI, kg/m2 26.2 (4.4) 27.0 (4.5) 26.9 (4.7) 26.3 (4.4) 27.5 (4.5) 26.9 (4.6) 26.4 (4.5) 25.6 (4.2)*

Systolic blood
pressure, mm Hg

134 (20) 135 (21) 135 (20) 133 (20) 133 (20) 135 (21) 135 (20) 134 (21)

LDL-C, mg/dL 127 (35) 125 (36) 129 (32) 126 (32) 129 (34) 127 (34) 127 (32) 123 (34)*

Triglycerides, mg/dL 145 (95) 145 (76) 143 (74) 131 (76)* 141 (68) 141 (76) 144 (91) 139 (87)

Leisure-time
activity, kcal/week

1856 (4544) 2042 (7828) 1454 (1608) 1734 (4492) 1889 (6026) 1521 (1840) 1633 (4406) 2039 (6136)

Alcohol, drinks/week 2.0 (4.8) 1.8 (5.0) 2.3 (5.0) 2.2 (4.6) 2.0 (5.0) 1.8 (4.7) 2.2 (4.9) 2.3 (4.9)

Tuna/other fish,
servings/week

1.2 (1.3) 1.3 (1.1) 1.8 (1.4) 2.3 (1.6)* 1.5 (1.4) 1.6 (1.3) 1.6 (1.4) 1.8 (1.5)*

Fried fish,
servings/week

0.3 (0.5) 0.3 (0.5) 0.3 (0.5) 0.3 (0.6) 0.3 (0.5) 0.3 (0.5) 0.3 (0.6) 0.3 (0.4)

Beef or pork,
servings/day

1.0 (0.8) 0.8 (0.6) 0.8 (0.6) 0.6 (0.6)* 0.9 (0.7) 0.8 (0.7) 0.8 (0.7) 0.7 (0.6)*

Fruits, servings/day 2.0 (1.1) 2.1 (1.1) 2.2 (1.1) 2.4 (1.1)* 2.0 (1.1) 2.1 (1.1) 2.2 (1.1) 2.3 (1.1)*

Vegetables,
servings/day

2.3 (1.3) 2.4 (1.3) 2.6 (1.4) 2.8 (1.4)* 2.3 (1.3) 2.5 (1.3) 2.5 (1.4) 2.7 (1.4)*

EPA+DHA, g/day 0.20 (0.21) 0.26 (0.22) 0.32 (0.20) 0.42 (0.25)* 0.28 (0.21) 0.30 (0.23) 0.29 (0.26) 0.31 (0.22)*

ALA, g/day 1.60 (0.53) 1.60 (0.53) 1.60 (0.51) 1.61 (0.54) 1.53 (0.51) 1.59 (0.51) 1.63 (0.55) 1.67 (0.53)*

Values are means (SDs) for continuous variables or percentages for categorical variables. ALA indicates alpha-linolenic acid; BMI, body mass index; DHA, docosahexaenoic acid; DPA,
docosapentaenoic acid; EPA, eicosapentaenoic acid; LDL-C, low-density lipoprotein cholesterol.
*P<0.05 across categories of plasma phospholipid omega-3 polyunsaturated fatty acids.
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Phospholipid and Dietary ALA and Subclinical MRI
Findings
Phospholipid ALA content was not associated with prevalent
or incident subclinical infarcts or white matter grade
(Tables 2 through 5). However, higher phospholipid ALA
was associated with modestly better sulcal grade (in the
highest quartile, 3.8% better; P for trend=0.02) and ventric-
ular grade (3.0% better, P for trend=0.03) compared with
the lowest quartile. Adjustment for phospholipid long-chain
n-3 PUFAs had no effect on these associations (data not
shown).

In secondary analyses, dietary ALA was not significantly
associated with any of the MRI findings, except for a cross-
sectional association with white matter grade, for which those
in the highest quartile of consumption had a 4.4% better grade
(P for trend=0.04) compared with the lowest quartile (other
data not shown).

Sensitivity Analyses
Before adjustment for phospholipid long-chain omega-3
PUFAs, the multivariable-adjusted ORs of prevalent subclinical
infarct across categories of fish intake were 1, 0.95, 0.84, and
0.70 (P for trend=0.09). Adjustment for phospholipid DHA
substantially attenuated the association; the ORs were 1,
0.98, 0.96, and 0.87 (P for trend=0.54). In contrast,
adjustment for fish intake had no effect on the association
between phospholipid long-chain omega-3 PUFAs and MRI
findings. For example, the extreme-quartile OR for prevalent
subclinical infarct in the quartiles of phospholipid DHA was
0.70 (95% CI, 0.51 to 0.96; P for trend=0.003) after
adjustment. Similar results were also observed with the other
MRI findings (data not shown).

We did not find evidence for significant effect modifi-
cation by age, sex, race, education, diabetes, coronary
heart disease, hypertension, alcohol intake, smoking, or

Table 2. Plasma Phospholipid Omega-3 Polyunsaturated Fatty Acids and Risk of Prevalent Subclinical Infarcts

Fatty Acid Quartile

P Trend1 (n=573) 2 (n=573) 3 (n=574) 4 (n=573)

EPA+DPA+DHA, % <3.64 3.64 to 4.22 4.23 to 5.04 >5.04

Number of cases 155 145 126 108

Model 1 1 0.89 (0.68 to 1.16) 0.74 (0.56 to 0.97) 0.60 (0.45 to 0.79) <0.001

Model 2 1 0.91 (0.69 to 1.19) 0.75 (0.57 to 0.99) 0.60 (0.44 to 0.82) 0.001

EPA, % <0.39 0.39 to 0.51 0.52 to 0.68 >0.68

Number of cases 142 147 121 124

Model 1 1 1.05 (0.80 to 1.37) 0.84 (0.63 to 1.11) 0.84 (0.64 to 1.11) 0.12

Model 2 1 1.05 (0.80 to 1.38) 0.87 (0.65 to 1.16) 0.88 (0.66 to 1.18) 0.27

DPA, % <0.72 0.72 to 0.82 0.83 to 0.94 >0.94

Number of cases 141 136 128 129

Model 1 1 0.93 (0.71 to 1.23) 0.84 (0.64 to 1.10) 0.87 (0.66 to 1.15) 0.25

Model 2 1 0.98 (0.74 to 1.30) 0.87 (0.65 to 1.15) 0.92 (0.69 to 1.22) 0.41

DHA, % <2.36 2.36 to 2.88 2.89 to 3.58 >3.58

Number of cases 144 165 112 113

Model 1 1 1.21 (0.93 to 1.58) 0.70 (0.53 to 0.93) 0.69 (0.52 to 0.92) 0.001

Model 2 1 1.22 (0.94 to 1.60) 0.72 (0.54 to 0.96) 0.68 (0.50 to 0.92) 0.001

ALA, % <0.11 0.11 to 0.14 0.15 to 0.18 >0.18

Number of cases 138 126 132 138

Model 1 1 0.91 (0.69 to 1.21) 0.92 (0.70 to 1.22) 1.01 (0.77 to 1.33) 0.85

Model 2 1 0.93 (0.70 to 1.24) 0.95 (0.72 to 1.26) 1.07 (0.80 to 1.42) 0.55

Values are odds ratios (95% CIs). Model 1 adjusted for age (years), sex, and race (white, nonwhite). Model 2 adjusted for model 1 and enrollment center (4 sites), diabetes (yes/no),
education (<high school, high school, >high school), smoking status (never, former, current), smoking history (pack-years), body mass index (kg/m2), CHD at the time of MRI (yes/no),
alcohol use (beverages/week), physical activity (kcal/week), total energy intake (kcal/day), and meat and vegetable consumption (quartiles). ALA indicates alpha-linolenic acid; CHD,
coronary heart disease; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; MRI, magnetic resonance imaging.
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use of aspirin, lipid-lowering, or hypertension medications
(P for interactions>0.05). We also did not find evidence for
interaction between phospholipid long-chain n-3 PUFAs and
ALA proportions (P>0.05). Exclusion of participants who
used fish oil supplements (3.8%) did not change the
associations (data not shown).

Discussion
In this study among older men and women, plasma phospho-
lipid long-chain omega-3 PUFAs, and in particular DHA, were
associated with specific findings consistent with better brain
health, including lower risk of prevalent subclinical (lacunar)
infarcts, better white matter grade, and lower risk of
worsening white matter. Although the direction of the
associations with incident subclinical infarct was similar to
the observed lower risk of prevalent subclinical infarcts in the
present analysis and also incident ischemic stroke,34 the
associations were not statistically significant, possibly
because of lower power in these analyses. The phospholipid

long-chain omega-3 PUFAs were not associated with other
MRI metrics, such as markers of brain atrophy, that is, sulcal
and ventricular grades. Phospholipid ALA, an intermediate-
chain omega-3 PUFA from plants, only had borderline
associations with better sulcal and ventricular grades.

The results from the current study extend our previous
findings that intake of tuna/other fish, but not fried fish, was
associated with lower risk of subclinical infarcts and better
white matter grade, but not with sulcal and ventricular
grades.17 In contrast to tuna/other fish meals, the types of
fish used in fried fish meals, such as fish burgers or fish
sticks, are typically low in EPA+DHA. Tuna/other fish, but not
fried fish, correlated with plasma phospholipid long-chain
omega-3 PUFAs, which suggests that these fatty acids at least
partly mediate the beneficial effects of fish consumption.
This is also supported by the attenuation of the associations
with tuna/other fish consumption after adjustment for
phospholipid DHA.

Fish is the major dietary source of the long-chain omega-3
PUFAs, and DHA is the most abundant in diet and in

Table 3. Plasma Phospholipid Omega-3 Polyunsaturated Fatty Acids and Risk of Incident Subclinical Infarcts

Fatty Acid Quartile

P Trend1 (n=264) 2 (n=264) 3 (n=264) 4 (n=264)

EPA+DPA+DHA, % <3.71 3.71 to 4.31 4.32 to 5.16 >5.16

Number of cases 42 51 43 34

Model 1 1 1.27 (0.81 to 2.00) 1.04 (0.65 to 1.67) 0.78 (0.47 to 1.28) 0.17

Model 2 1 1.23 (0.78 to 1.96) 1.00 (0.62 to 1.61) 0.77 (0.46 to 1.31) 0.20

EPA, % <0.40 0.40 to 0.53 0.54 to 0.70 >0.70

Number of cases 42 51 43 34

Model 1 1 1.28 (0.82 to 2.02) 1.04 (0.65 to 1.67) 0.81 (0.49 to 1.32) 0.21

Model 2 1 1.26 (0.79 to 1.99) 0.99 (0.61 to 1.60) 0.80 (0.47 to 1.34) 0.23

DPA, % <0.72 0.72 to 0.82 0.83 to 0.94 >0.94

Number of cases 42 45 46 37

Model 1 1 1.06 (0.67 to 1.68) 1.08 (0.68 to 1.71) 0.84 (0.52 to 1.37) 0.50

Model 2 1 1.09 (0.68 to 1.74) 1.09 (0.68 to 1.74) 0.84 (0.51 to 1.39) 0.49

DHA, % <2.37 2.37 to 2.96 2.97 to 3.64 >3.64

Number of cases 38 58 41 33

Model 1 1 1.69 (1.07 to 2.66) 1.09 (0.67 to 1.77) 0.84 (0.50 to 1.40) 0.15

Model 2 1 1.62 (1.01 to 2.57) 1.05 (0.64 to 1.71) 0.81 (0.47 to 1.39) 0.17

ALA, % <0.11 0.11 to 0.14 0.15 to 0.18 >0.18

Number of cases 39 40 49 42

Model 1 1 1.06 (0.65 to 1.71) 1.30 (0.82 to 2.07) 1.07 (0.66 to 1.72) 0.71

Model 2 1 1.11 (0.68 to 1.81) 1.38 (0.85 to 2.23) 1.19 (0.72 to 1.97) 0.44

Values are odds ratios (95% CIs). Model 1 adjusted for age (years), sex, and race (white, nonwhite). Model 2 adjusted for model 1 and enrollment center (4 sites), diabetes (yes/no),
education (<high school, high school, >high school), smoking status (never, former, current), smoking history (pack-years), body mass index (kg/m2), CHD at the time of MRI (yes/no),
alcohol use (beverages/week), physical activity (kcal/week), total energy intake (kcal/day), and meat and vegetable consumption (quartiles). ALA indicates alpha-linolenic acid; CHD,
coronary heart disease; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; MRI, magnetic resonance imaging.
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circulation. The endogenous synthesis of DHA from DPA is
very limited,35 so circulating DHA is a good biomarker for fish
consumption. On the other hand, although fish contains small
amounts of DPA, circulating DPA does not correlate with fish
intake,26 because DPA is mainly synthesized endogenously
from EPA.35 Although EPA and DHA are intercorrelated,26 EPA
can also be synthesized endogenously from ALA in limited
amounts, so it correlates less strongly with fish consump-
tion.26,35 On the other hand, DHA is the most abundant long-
chain omega-3 PUFA also in the brain, representing >95% of
omega-3 PUFAs.36 Thus, DHA may truly be most relevant for
brain health. Although EPA and DHA both have physiological
effects that could result in improved brain health, including
reducing inflammation, oxidative stress, and platelet aggre-
gation and improving arterial compliance, DHA also has
favorable effects on blood pressure.35 Hypertension is a major
risk factor for subclinical infarcts and white matter abnormal-
ities.37 However, in our analyses the associations of DHA with
MRI findings were independent of the baseline measure of
blood pressure. Whether benefits could partly relate to

long-term changes in blood pressure deserves further inves-
tigation.

Few studies have investigated the relations of circulating
omega-3 PUFAs with MRI findings, but the cross-sectional
analyses in the Framingham Study21 and the Oregon Brain
Aging Study22 and the prospective analyses in the Three-City
Study23 support the beneficial associations of long-chain
omega-3 PUFAs with subclinical brain abnormalities.

Phospholipid ALA was associated with better ventricular
and sulcal grades but not with other MRI findings, suggesting
potentially specific associations with brain atrophy. Brain
atrophy is associated with increased risk of cognitive decline
and dementia,11,12 and dietary or circulating ALA has been
associated with lower risk of cognitive decline in some38–40

although not all studies.41–43 The associations we observed for
phospholipid ALA were of borderline statistical significance,
and our secondary analyses with dietary ALA did not support
the findings observed with phospholipid ALA. Thus, these
findings should be interpreted cautiously, and confirmation in
additional studies is needed, especially in populations with

Table 4. Plasma Phospholipid Omega-3 Polyunsaturated Fatty Acids and White Matter, Sulcal, and Ventricular Grades

Fatty Acid Quartile

P Trend1 (n=662) 2 (n=661) 3 (n=662) 4 (n=661)

EPA+DPA+DHA, % <3.64 3.64 to 4.24 4.25 to 5.06 >5.06

White matter grade 2.29 (2.18 to 2.39) 2.23 (2.13 to 2.34) 2.23 (2.13 to 2.33) 2.08 (1.98 to 2.19) 0.001

Sulcal grade 3.40 (3.31 to 3.48) 3.33 (3.24 to 3.41) 3.35 (3.27 to 3.43) 3.36 (3.28 to 3.45) 0.93

Ventricular grade 3.53 (3.44 to 3.62) 3.60 (3.51 to 3.70) 3.62 (3.53 to 3.71) 3.53 (3.43 to 3.62) 0.46

EPA, % <0.39 0.39 to 0.51 0.52 to 0.69 >0.69

White matter grade 2.23 (2.13 to 2.34) 2.30 (2.19 to 2.40) 2.23 (2.13 to 2.34) 2.07 (1.97 to 2.18) 0.002

Sulcal grade 3.41 (3.32 to 3.49) 3.39 (3.31 to 3.47) 3.34 (3.26 to 3.42) 3.30 (3.21 to 3.38) 0.10

Ventricular grade 3.60 (3.51 to 3.70) 3.63 (3.54 to 3.72) 3.50 (3.41 to 3.60) 3.54 (3.45 to 3.63) 0.13

DPA, % <0.73 0.73 to 0.82 0.83 to 0.94 >0.94

White matter grade 2.25 (2.15 to 2.35) 2.26 (2.16 to 2.37) 2.15 (2.05 to 2.25) 2.17 (2.07 to 2.27) 0.08

Sulcal grade 3.36 (3.27 to 3.44) 3.43 (3.35 to 3.52) 3.35 (3.27 to 3.43) 3.30 (3.21 to 3.38) 0.07

Ventricular grade 3.69 (3.60 to 3.78) 3.51 (3.42 to 3.60) 3.50 (3.41 to 3.59) 3.59 (3.49 to 3.68) 0.11

DHA, % <2.36 2.36 to 2.90 2.91 to 3.59 >3.59

White matter grade 2.24 (2.14 to 2.35) 2.27 (2.17 to 2.38) 2.26 (2.16 to 2.37) 2.05 (1.95 to 2.16) 0.001

Sulcal grade 3.38 (3.29 to 3.46) 3.35 (3.27 to 3.44) 3.33 (3.25 to 3.41) 3.38 (3.29 to 3.47) 0.75

Ventricular grade 3.55 (3.46 to 3.65) 3.55 (3.46 to 3.64) 3.63 (3.54 to 3.72) 3.54 (3.45 to 3.64) 0.84

ALA, % <0.11 0.11 to 0.14 0.15 to 0.18 >0.18

White matter grade 2.17 (2.07 to 2.28) 2.32 (2.21 to 2.42) 2.21 (2.10 to 2.31) 2.15 (2.04 to 2.25) 0.29

Sulcal grade 3.44 (3.36 to 3.53) 3.36 (3.28 to 3.44) 3.32 (3.24 to 3.40) 3.31 (3.23 to 3.40) 0.02

Ventricular grade 3.62 (3.52 to 3.71) 3.65 (3.56 to 3.74) 3.51 (3.42 to 3.60) 3.51 (3.42 to 3.60) 0.03

Values are adjusted for age (years), sex, race (white, nonwhite), enrollment center (4 sites), diabetes (yes/no), education (<high school, high school, >high school), smoking status (never,
former, current), smoking history (pack-years), body mass index (kg/m2), CHD at the time of MRI (yes/no), alcohol use (beverages/week), physical activity (kcal/week), total energy intake
(kcal/day), and meat and vegetable consumption (quartiles). ALA indicates alpha-linolenic acid; CHD, coronary heart disease; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid;
EPA, eicosapentaenoic acid; MRI, magnetic resonance imaging.
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low fish intake. On the other hand, because the majority of
dietary ALA is oxidized and used for energy,44 dietary ALA
does not correlate well with circulating ALA concentrations.
Thus, circulating ALA concentrations have other metabolic
determinants that could at least partly explain the different
results for phospholipid versus dietary ALA. Few studies have
investigated the associations between ALA and MRI findings.
Recently, plasma ALA was not associated with any of the
studied MRI findings, including brain volume, in elderly
subjects.22 Our findings for ALA build on this preliminary
research and indicate a need for further investigation to
elucidate the potential role of ALA in brain health.

An important strength of our investigation is the use of
circulating biomarkers of omega-3 PUFAs, which provide
objective measures of exposures. Other strengths were the
community-based recruitment, which increased generalizabil-
ity; the large numbers of men and women enrolled, which
increased power; the availability of 2 MRI scans for many
participants for evaluation of longitudinal changes; the

exclusion of participants with clinical TIA or stroke before
MRI scan, which minimizes reverse causation and allowed us
to focus on subclinical findings; and the standardized
measurements of multiple covariates, which allowed us to
adjust for a range of potential factors to minimize con-
founding.

A potential limitation was the availability of circulating
PUFA measurements at only 1 time, which may cause bias by
misclassification because of changes in PUFA concentrations
over time and thus attenuate the associations toward the null
in longitudinal analyses. The participants who underwent MRI
scans were somewhat healthier than those who did not, so
results may not be fully applicable to the sickest individuals in
a general elderly population. We have adjusted for all
measured health-related potential determinants of the second
MRI in multivariate models. This will remove bias from
selection related to these factors. In addition, by examining
interactions of these health-related potential determinants of
the second MRI with PUFAs, we have assessed evidence for

Table 5. Plasma Phospholipid Omega-3 Polyunsaturated Fatty Acids and Risk of Worsening of White Matter by ≥1 Grade Between
the 2 MRI Scans

Fatty Acid Quartile

P Trend1 (n=345) 2 (n=346) 3 (n=346) 4 (n=345)

EPA+DPA+DHA, % <3.70 3.70 to 4.29 4.30 to 5.12 >5.12

Number of cases 116 99 80 88

Model 1 1 0.80 (0.58 to 1.10) 0.59 (0.42 to 0.83) 0.68 (0.48 to 0.96) 0.02

Model 2 1 0.81 (0.58 to 1.14) 0.60 (0.42 to 0.85) 0.58 (0.40 to 0.84) 0.002

EPA, % <0.41 0.41 to 0.52 0.53 to 0.70 >0.70

Number of cases 100 100 96 87

Model 1 1 0.97 (0.70 to 1.36) 0.94 (0.67 to 1.31) 0.85 (0.61 to 1.19) 0.32

Model 2 1 1.02 (0.72 to 1.44) 0.94 (0.66 to 1.34) 0.75 (0.52 to 1.08) 0.09

DPA, % <0.73 0.73 to 0.82 0.83 to 0.94 >0.94

Number of cases 109 96 82 96

Model 1 1 0.83 (0.60 to 1.16) 0.68 (0.49 to 0.96) 0.83 (0.60 to 1.16) 0.21

Model 2 1 0.83 (0.59 to 1.16) 0.72 (0.51 to 1.02) 0.85 (0.60 to 1.19) 0.31

DHA, % <2.38 2.38 to 2.93 2.94 to 3.63 >3.63

Number of cases 105 109 83 86

Model 1 1 1.04 (0.75 to 1.43) 0.73 (0.52 to 1.02) 0.76 (0.54 to 1.07) 0.05

Model 2 1 1.06 (0.76 to 1.49) 0.75 (0.53 to 1.07) 0.64 (0.44 to 0.93) 0.01

ALA, % <0.11 0.11 to 0.14 0.15 to 0.18 >0.18

Number of cases 91 94 101 97

Model 1 1 0.97 (0.69 to 1.36) 1.14 (0.81 to 1.59) 1.05 (0.75 to 1.47) 0.63

Model 2 1 0.97 (0.69 to 1.38) 1.14 (0.80 to 1.61) 1.04 (0.73 to 1.49) 0.69

Values are odds ratios (95% CIs). Model 1 adjusted for age (years), sex, race (white, nonwhite), and white matter grade at initial MRI scan. Model 2 adjusted for model 1 and enrollment
center (4 sites), diabetes (yes/no), education (<high school, high school, >high school), smoking status (never, former, current), smoking history (pack-years), body mass index (kg/m2),
CHD at the time of MRI (yes/no), alcohol use (beverages/week), physical activity (kcal/week), total energy intake (kcal/day), and meat and vegetable consumption (quartiles). ALA
indicates alpha-linolenic acid; CHD, coronary heart disease; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; MRI, magnetic resonance imaging.
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differential effects of PUFA among those with the second
MRI. No such interactions were evident, strengthening the
evidence that the observed findings are generalizable beyond
the subgroup with the second MRI. Because serial MRI scans
were not available for the whole study population, we may
have had insufficient power to find statistically significant
associations with incident subclinical infarcts. Although
interreader reliabilities of white matter and ventricular grades
were good, estimates of sulcal grade have greater interreader
variability,31 which would make it more difficult to detect
associations with this latter end point.

In conclusion, our findings in these older men and women
suggest that circulating long-chain omega-3 PUFA concentra-
tions, a biomarker of regular fish consumption, are associated
with lower risk and could be beneficial for the prevention of
certain subclinical brain abnormalities that are commonly
observed in the elderly. The potential role of the plant-based,
intermediate-chain omega-3 PUFA ALA is less evident. Our
results support the need for additional prospective observa-
tional studies using fatty acid biomarkers, as well as
randomized intervention studies to evaluate the role of
omega-3 PUFAs in subclinical brain health and disease later
in life.
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