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Abstract

Mycoplasma haemofelis is a mycoplasmal pathogen (hemoplasma) that attaches to the host’s erythrocytes.
Distributed worldwide, it has a significant impact on the health of cats causing acute disease and, despite
treatment, establishing chronic infection. It might also have a role as a zoonotic agent, especially in
immunocompromised patients. Whole genome sequencing and analyses of M. haemofelis strain Ohio2 was
undertaken as a step toward understanding its survival and persistence. Metabolic pathways are reduced, relying
on the host to supply many of the nutrients and metabolites needed for survival. M. haemofelis must import
glucose for ATP generation and ribose derivates for RNA/DNA synthesis. Hypoxanthine, adenine, guanine, uracil
and CMP are scavenged from the environment to support purine and pyrimidine synthesis. In addition,
nicotinamide, amino acids and any vitamins needed for growth, must be acquired from its environment. The core
proteome of M. haemofelis contains an abundance of paralogous gene families, corresponding to 70.6% of all the
CDSs. This “paralog pool” is a rich source of different antigenic epitopes that can be varied to elude the host’s
immune system and establish chronic infection. M. haemofelis also appears to be capable of phase variation, which
is particularly relevant to the cyclic bacteremia and persistence, characteristics of the infection in the cat. The data
generated herein should be of great use for understanding the mechanisms of M. haemofelis infection. Further, it
will provide new insights into its pathogenicity and clues needed to formulate media to support the in vitro
cultivation of M. haemofelis.

Introduction
Mycoplasma haemofelis is a hemotrophic mycoplasmal
pathogen (hemoplasma) of the cat. There are two phylo-
genetic clusters of hemoplasmas, the haemofelis cluster
and suis cluster, which appear to have descended from a
common ancestor. They are most closely related to
members of the pneumoniae group, albeit only peripher-
ally. Specific characteristics distinguish the hemoplasmas
from other mycoplasmas, including unique tropism for
erythrocytes as well as relatively low sequence similarity
of their 16S rRNA genes when compared to the closest
related mucosal mycoplasma species. Nonetheless, like
other mycoplasmas, M. haemofelis has no cell wall and
is related to Gram-positive bacteria [1] from which they
evolved by a reduction of their genome size [2]. Despite

numerous attempts, in vitro culture of M. haemofelis
has not been achieved.
M. haemofelis infection in the cat causes an acute

hemolytic anemia, either directly or by initiating
immune mediated destruction of red blood cells; it
might also trigger the suicidal death of infected erythro-
cytes (eryptosis), as recently suggested for M. suis [3]. A
wide range of clinical signs, including anemia, pyrexia,
lethargy, and splenomegaly characterizes the disease,
which if left untreated may result in death. M. haemofe-
lis is also recognized as a pathogen in conjunction with
retroviruses such as feline immunodeficiency virus
(FIV), feline leukemia virus (FeLV), or other debilitating
diseases [4]. Based on polymerase chain reaction (PCR)
testing, 20% to as high as 40% of anemic and/or sick
cats are infected with M. haemofelis [5-7]. Currently,
there is no treatment that effectively clears the microor-
ganisms from an infected host. Chronic infection is well
recognized and even in pet cats showing no clinical
signs, the prevalence of M. haemofelis infection may be
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as high as 4% [8]. While transmission of M. haemofelis
from an infected cat to a human host has been reported
[9], it appears to be a rare event and likely requires
immune suppression ([10], Santos AP, unpublished
observations).
Although mycoplasmas have reduced genomic sizes

[1] resulting in the loss of many of their biosynthetic
abilities, they retain genes important for their survival,
virulence and pathogenesis. It is believed that genes
encoding lipoproteins and membrane binding proteins
are key factors in inducing immunity. In particular, lipo-
proteins are considered one of the most important
pathogenic elements for mycoplasmas [11]. Phase and
antigenic variation of surface proteins is thought to be
pivotal to the adaptive strategies and survival of these
microorganisms [12,13]. Until recently, very little was
known about the membrane lipoproteins or any other
proteins encoded by the genome of M. haemofelis [14]
and related hemoplasmas [15]. Hemoplasma genes that
were retained or acquired during the process of reduc-
tive evolution may be particularly valuable to under-
standing mycoplasmas in general and red blood cell
parasitism by hemoplasmas in particular.
This study was undertaken as a step toward under-

standing how M. haemofelis has adapted to erythrocyte
parasitism and persists in the blood despite the host’s
immune response. Furthermore, information about the
biochemical pathways used by these bacteria will pro-
vide valuable clues about culture conditions needed to
support their growth in vitro. Herein, we present the
whole genome sequence, annotation, and bioinformatic
analyses of M. haemofelis strain Ohio2 [16] and a com-
parative analysis with the recently published genome of
M. haemofelis strain Langford 1 [17,18].

Materials and methods
Bacteria and DNA extraction
M. haemofelis was obtained from a cat experimentally
infected with the Ohio2 strain; this was the second in
vivo passage of blood originally obtained from an
acutely ill animal. The cat was infected by intravenous
injection of a thawed aliquot (1.0 mL) of infected blood
from a -80°C stored stock. Prior to experimental infec-
tion, PCR testing for all feline hemoplasmas performed
on 3 separate occasions was negative [19-21]. Peripheral
blood was collected into EDTA tubes on 13th day post
infection when 60% of the erythrocytes were infected.
Infection was confirmed by microscopy and a PCR
assay specific for M. haemofelis [19]. Microorganisms
were detached and harvested from blood using a combi-
nation of filtration and ultracentrifugation procedures
[22]. High-molecular-weight (HMW) M. haemofelis
genomic DNA (gMhf) was extracted using QIAGEN
Genomic-tip 100/G kit (QIAGEN Inc., Valencia, CA,

USA) according to the manufacturer’s recommendations
and purified by drop dialysis. The quality and quantity
of gMhf was assessed by two methods - gel electrophor-
esis and scanning UV spectrophotometry (NanoDrop®

ND-1000 UV/Vis Spectrophotometer, Thermo Fisher
Scientific Inc, Wilmington, DE, USA). The cat was trea-
ted and adopted according to our animal use protocol
(Purdue Animal Care and Use Committee, protocol
#08-003).

Sequencing and assembly
Whole-genome sequencing of M. haemofelis was per-
formed by Purdue University’s Genomics Core Facility
using a GS-FLX (454) and Titanium chemistry to
sequence a 3 kb paired end library. Sequences were
assembled using Versions 2.3 of the Roche’s GS De
Novo Assembler (454 Life Sciences, Roche Applied
Science, Branford, CT, USA). The assembly was exam-
ined using consed [23] and where sufficient overlap
between adjacent contigs was found, they were joined
into a single contig.

Finishing and validation
Gap closure was performed by primer walking directly
on the genomic DNA combined with PCR followed by
bidirectional Sanger sequencing of amplicons. Gross
genome validation was achieved by comparing the vir-
tual fingerprint patterns of M. haemofelis genomic DNA
to that of fragments derived from pulse-field gel electro-
phoresis (PFGE) using the restriction enzymes, NruI,
SalI, and NotI, and with physical map data from an
independently derived bacterial artificial chromosome
(BAC) library [22]. In addition, the sequencing of 21
inserts (0.2 to 4.5 kb) from two Lambda ZAPII libraries
of M. haemofelis [24] was accomplished and compared
to the M. haemofelis genomic sequence.

Optical map
Finally, a high resolution, optical map was used to pro-
vide a purely independent means of sequence validation
(OpGen Technologies Inc, Madison, WI, USA) [25].
Briefly, the optical map was constructed from individual
M. haemofelis DNA molecules cleaved with NcoI. In
silico NcoI restriction map of the assembly contig of M.
haemofelis’ complete genome was constructed and com-
pared to the NcoI optical map using MapSolver version
2.1.1 (OpGen Technologies Inc).

Genome annotation
First-pass annotation was achieved using blast2GO. To
confirm the results provided, the scaffold sequence of
M. haemofelis was submitted to the annotation service,
Manatee, provided by the Institute for Genome Sciences
(IGS) at the University of Maryland, School of Medicine.
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Manual curation of each gene was achieved using the
annotation tool.

Genome analyses
To make functional assignments of predicted protein
coding sequences (CDSs) several approaches were used.
Assignment of the origin of replication was performed
using the Ori-finder tool with parameters adjusted to
specific DNA boxes for Escherichia coli and Myco-
plasma species and 1 or 2 unmatched sites permitted
[26]; bases in the genome were numbered starting with
dnaA as the first gene. Comparative analyses with other
bacterial genomes were performed based on genome
annotations deposited in the databases at National Cen-
ter for Biotechnology Information (NCBI, Bethesda,
MD, USA). Paralogous gene families were assigned
using BLASTclust tool at the Max-Planck Institute for
Developmental Biology [27], with 30% sequence identity
and 70% covered length thresholds. To identify struc-
tural features of the genome a set of software was used:
Tied Mixture Hidden Markov Model, TMHMM Server
v. 2.0 [28] and Dense Alignment Surface method, DAS
[29] were used to predict transmembrane helices; the
tandem repeats finder program was used to identify
repeated sequences throughout the genome [30]; and
LipoP and SignalP algorithms were used to predict lipo-
proteins and signal peptides, respectively [31,32]. Predic-
tion of protein sorting signals and subcellular
localization was performed using PSORTb v.3.0 [33,34].
Predictions of metabolic pathways were based on the
KEGG pathway database [35] and the study performed
by Yus et al. [36]. Comparative analyses of the whole
genome of M. haemofelis strains Ohio2 and Langford 1
[GenBank: FR773153] were performed using the same
methods described above. Global genomic comparisons
were achieved by constructing in silico restriction maps
using MapSolver version 2.1.1 (OpGen Technologies
Inc).

Results and discussion
Sequencing and assembly
From a quarter PicoTitrePlate GS-FLX run, a total of
214 186 filter-pass sequence reads were generated with
an average read length of 350 bp. This generated
roughly 67 million bases of sequence after the removal
of adaptor sequence. In total, 219 contigs were gener-
ated, including 55 linked by paired-end reads into a sin-
gle scaffold derived from M. haemofelis DNA and
comprising 85% of the reads. The balance of the contigs
was derived from cat DNA. The draft assembly of M.
haemofelis was 1 150 927 bp, however there were still
30 gaps and areas of questionable sequence fidelity. Due
to the presence of repeated sequences, some difficulties
were experienced in assembling the sequences to close

one gap. Nonetheless, we were ultimately able to close
all 30 gaps by PCR and primer walking, which resulted
in a final sequence assembly of 1 155 937 bp.

Validation
The optical map constructed from individual M. haemo-
felis DNA molecules cleaved with NcoI gave rise to 110
optical contigs with an average fragment size of 10 316
bp that were assembled into one circular consensus
chromosome (Additional file 1, Figure S1). The average
depth of coverage of the map was 74×, and no region in
the map was less than 34× coverage. The genome size
was 1 134 779 bp. In comparison, the in silico map of
the M. haemofelis sequence generated herein consisted
of 140 fragments with an average fragment size of 8 198
bp. The average length of the in silico map is 2 118 bp
shorter than the average fragment length of the optical
map. Since restriction fragments shorter than 500 bp
cannot be detected by optical mapping, this likely
explains the observed differences. Optical mapping iden-
tified an assembly error in the M. haemofelis sequence
consisting of a large inversion in the sequence assembly,
permitting the re-orientation of the data and correction
of the genome sequence (Additional file 2, Figure S2).
The optical map, otherwise, verified the 454 sequence
assembly.
In previous studies, a bacterial artificial chromosome

(BAC) library and a physical map of M. haemofelis was
completed [22]; the size of the genome was calculated
to be approximately 1 113 kb and the average GC% of
coding sequences was 38.5%. Thus, our assembled
sequence in this study was 3.9% larger than that pre-
dicted by restriction enzyme maps but only 1.9% larger
than the estimated size by optical mapping.

General features
The general genome features of the M. haemofelis strain
Ohio2 are shown in Figure 1 and compared with other
mycoplasmas in Table 1. The genome of M. haemofelis
consists of a single circular chromosome with a size of 1
155 937 bp and an overall guanine and cytosine percen-
tage (GC%) of 38.8. These are typical characteristics of
mycoplasmas, which have small genomes and GC% ran-
ging from 23.8 to 40%. During the analyses of the gen-
ome of M. haemofelis strain Ohio2, the strain Langford
1 was reported [18]. To compare both genomes, we first
constructed in silico restriction maps of each genome
(Additional file 3, Figure S3). The restriction maps
revealed 10 regions of the genome with significant dif-
ference in the nucleotide sequence while no inversions
were observed. There is also an overall difference in size
between the two genomes; the Ohio2 genome size is 1
155 937 bp, which is 8 678 bp bigger than Langford 1.
Regions of gene duplications from paralogous families
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Figure 1 Diagram of overall structure of Mycoplasma haemofelis genome. The dnaA gene is at position zero. The distribution of genes is
depicted on two outermost concentric circles: First concentric circle: predicted coding regions on the plus strand. Second concentric circle:
predicted coding regions on the minus strand. Predicted coding regions are classified by functional categories (TIGR roles) according to the
color code. Moving inwards, the third circle displays the genes that are within paralogous gene families, where same color means CDSs from the
same family, except for light green representing all the families with 5 or less members. The fourth circle represents the tandem repeats (red),
the 17 predicted lipoproteins (orange), rRNAs (black) and tRNAs (blue). The innermost circle represents the GC skew. The figure was generated
using DNAPlotter version 1.4 from Artemis 12.0, Sanger Institute.
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Table 1 General features of Mycoplasma haemofelis strain Ohio2 genome compared to members of pneumoniae, hominis and mycoides phylogenetic groups
of Mycoplasmas.

Pneumoniae group Hominis group Mycoides group

Feature M.
haemofelis

M.
suis

M.
pneumoniae

M.
gallisepticum

M.
genitalium

M.
penetrans

M.
hominis

M.
hyopneumoniae

M.
synoviae

M.
pulmonis

M.
mycoides

Genome size (bp) 1 155 937 742
431

816 394 1 012 800 580 076 1 358 633 665 445 897 405 799 476 963 879 1 211 703

G + C content (%) 38.8 31.1 40 31 31.7 25.7 27.1 28 28 26.6 24

Total of genes 1584 883 733 817 524 1069 577 701 715 815 1053

Coding sequences 1549 844 689 763 475 1037 523 657 659 782 1017

Pseudogenes 22 4 0 14 6 0 14 11 15 0 0

Gene density (%) 94.2 89.9 88.7 91 90 88 89.8 88 91 91.4 83

Average gene length (bp) 693 783 1011 1,206 1,040 NRa 1,107 1,178 1,058 1,115 982

CDS with predicted
function

299
(19.3%)

293
(34.7%)

333
(48.3%)

469
(61.46%)

323
(68%)

585
(56.4%)

345
(65.9%)

412
(62.7%)

464
(70.4%)

486
(62.1%)

581
(57.1%)

No. of tRNAs 31 32 37 32 36 29 33 30 34 29 30

No. of rRNAs

16S 1 1 1 2 1 1 2 1 2 1 2

23S 1 1 1 2 1 1 2 1 2 1 2

5S 1 1 1 3 1 1 2 1 3 2 2

Genes in paralogous
families

1103
(71.2%)

361
(42.8%)

132
(19.1%)

110
(14.4%)

25
(5.2%)

245
(23.6%)

38
(7.2%)

106
(16.1%)

121
(18.3%)

101
(12.9%)

266
(26.1%)

Data was obtained from the GenBank database using the following accession numbers: M. haemofelis (CP002808), M. suis (CP002525), M. pneumoniae (U00089), M. gallisepticum (AE015450), M. genitalium (L43967), M.
penetrans (BA000026), M. hominis (FP236530), M. hyopneumoniae (AE017243), M. synoviae (AE017245), M. pulmonis (AL445566), M. mycoides (BX293980). Paralogous gene families were assigned using BLASTclust, with
30% sequence identity and 70% covered length thresholds.
a NR, not reported.
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throughout the genome are largely responsible for the
size difference.
A total of 1549 CDSs have been computationally and

manually predicted. Putative biological function was
assigned to 299 CDSs (19.3%), whereas 80.25% were
hypothetical proteins showing no significant identity in
the databases; there were 0.45% conserved hypothetical
proteins (Additional file 4, Table S1). These results indi-
cate that M. haemofelis genome likely encodes a large
number of unique proteins. This is not surprising con-
sidering that, unlike other mycoplasmas, M. haemofelis
has a tropism for red blood cells of the host which
probably demands a different set of genes to adapt to
the blood environment. Predicted CDSs are summarized
by role in Table 2. Besides the differences in the genome
size, all the CDSs with known function are conserved
between the strains Ohio2 and Langford 1 of M. haemo-
felis. The 2 strains were manually compared, gene by
gene, and only a few genes with known functions had
different annotations. However, the CDSs coding
hypothetical proteins varied in size and numbers; this
was mainly due to gene duplications in one or the other
genome (Additional file 5, Table S2).
The average gene length for M. haemofelis is shorter
than other mycoplasmas but comparable with that of M.
suis [37] (Table 1). This is a result of the presence of a
large number of paralogous genes with sequences
shorter than the average length; in the largest gene
family the average size is 634 bp, ranging from 384 to
882 bp, while the average size of genes that are not in
paralog families is 855 bp. For most bacteria, the

number of paralogous genes also correlates to its gen-
ome size. However, the Mycoplasmas represent an
exception to this tendency, having small genomes with a
larger than expected percentage of paralogs [38].
Remarkably, the genome of M. haemofelis has the lar-
gest percentage of paralogous genes of any fully
sequenced bacteria to date. This is due to the expansion
of a few gene families with the largest gene family hav-
ing 800 members. The presence of an extensive network
of paralogs in the genome of M. haemofelis suggests a
mechanism to support its survival as an extracellular red
blood cell-associated pathogen that is continually bom-
barded by the host immune system.

Replication, transcription and translation
We have assigned the origin of replication (oriC) based
on homologous gene searches to other mycoplasma gen-
omes and GC-skew graph predictions [39]. A conserved
gene order for rpmH, dnaA and dnaN was observed in
M. haemofelis genome and typically, oriC is located near
these genes. The analysis of the GC skewing (Figure 1)
showed a significant inversion near the dnaA gene, pro-
viding additional evidence that the origin of replication
was properly located. We also attempted to identify
dnaA-box motifs, which typically are found within the
intergenic regions around dnaA gene. The Ori-finder
tool did not predicted dnaA-box motifs when allowing 1
unmatched site nor when using mycoplasma or Escheri-
chia coli specific dnaA-boxes. When a more open search
was used (2 unmatched sites), dnaA-box motifs were
predicted in several areas of the genome. Thus, we

Table 2 Protein coding sequences of Mycoplasma haemofelis strain Ohio2 genome classified by role category (TIGR
roles).

Category Number %

Purines, pyrimidines, nucleosides, and nucleotides 29 1.85%

Fatty acid and Phospholipid metabolism 6 0.38%

Biosynthesis of co-factors, prosthetic groups, and carriers 7 0.45%

Energy metabolism 22 1.41%

Transport and binding proteins 32 2.04%

DNA metabolism 52 3.32%

Transcription 18 1.15%

Protein synthesis 97 6.20%

Protein fate 19 1.21%

Regulatory functions 3 0.19%

Signal Transduction 2 0.13%

Surface structures 7 0.45%

Cellular processes 10 0.64%

Unknown functions 8 0.51%

Conserved hypothetical proteins 7 0.45%

Hypothetical proteins 1246 79.62%

Total 1565a 100.00%
a Some of the CDSs have more than one role.
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found no convincing dnaA-box motifs around the dnaA
gene by this method. M. suis posseses a intergenic
region of 134 bp between genes rpmH and dnaA, with
only 18% of GC content, and the presence of 3 dnaA-
box motifs within this area [37] leading to the prediction
of the oriC upstream the dnaA gene. The origin of repli-
cation was inferred to be upstream of the dnaA gene in
M. haemofelis strain Langford 1 [18]. However, this
region has only 5 bp of intergenic space between rpmH
and dnaA genes in both strains. Thus, we manually
searched the 28 bp region between dnaA and dnaN
genes; this intergenic space is exclusively composed of
AT. Within this area, we identified 3 dnaA-box motifs
with the consensus sequence pattern T(T/A)(T/A)A(T/
A)AA. Thus, as with other bacteria, including Molli-
cutes, the origin of replication of M. haemofelis was
mapped to an intergenic region downstream of the
dnaA gene. Nevertheless, experimental validation is
needed to conclusively locate the oriC of M. haemofelis.
Only few transcriptional factors are described in

Mycoplasma spp. [40]. We identified 13 putative genes
involved in transcription, including 3 transcriptional
antitermination factors (NusA, NusB and NusG), the
transcriptional elongation factor GregA, and the heat
inducible transcriptional repressor HrcA. Like other
mycoplasmas, M. haemofelis has the transcription initia-
tion factor, the sigma factor 70 (RpoD). We also identi-
fied CDSs for the subunits of the RNA polymerase
RpoA, RpoB, RpoC, and a member of the extracytoplas-
mic function (ECF) subfamily RpoE. The latter responds
to signals from the external environment, presence of
misfolded proteins and heat/oxidative stress in other
bacteria [41-44] and presumably performs similar func-
tions for M. haemofelis.
Several components of the translational system were

identified, including the 5S, 23S and 16S ribosomal
RNA genes, which are present as single copies located
within the same operon, and 48 ribosomal proteins. We
also identified 31 transfer RNAs (tRNAs) covering all 20
amino acids and the tRNA-SeC for the translation of
the amino acid selenocysteine. The tRNAs and rRNAs
are also conserved between the 2 strains of M. haemofe-
lis, however 2 tRNAs are annotated differently in Lang-
ford 1 strain: HF1_t18, annotated as tRNA-Tpr instead
of tRNA-Sec and HF1_t20, annotated as tRNA-Cys
instead of tRNA-Arg (Additional file 6, Table S3). As in
all other mycoplasmas sequenced to date [1], the opal
stop codon (UGA) is used to encode tryptophan in M.
haemofelis. The tRNA-SeC also uses the opal stop
codon to insert selenocysteine in bacteria [45], but
whether hemoplasmas use selenocysteine is still unclear.
Other CDSs of the translation system are: 23 tRNA
synthetases and 12 translation factors including the 3
prokaryotic initiation factors (IF-1, IF-2 and IF-3) and 5

GTP-binding proteins, including LepA, EngA and EngB.
The peptide release factor 1 (RF-1), responsible for the
recognition of stop codons UAA and UAG to terminate
translation, was identified in M. haemofelis genome,
while the peptide release factor 2 (RF-2) is missing. The
RF-2 helps terminate the translation at UGA codons in
other bacteria and is absent in all mycoplasmas
sequenced to date.

Restriction and modification (R-M systems)
The mechanisms of regulating gene expression are
poorly understood in Mycoplasmas. The low number of
transcription factors suggests that other regulation
mechanisms might occur in these organisms. Mechan-
isms of restriction and modification are known to pro-
tect the bacteria against invading DNA or phage
infection, but might also be responsible for genome
rearrangements [46]. Phase variation of these mechan-
isms is proposed to increase the variability of proteins
expressed [40], and ultimately adaptation to the host
niche.
Type I restriction systems are multifunctional enzymes

complexes that can catalyze both modification/methyla-
tion and restriction. The system activity is performed by
a holoenzyme with 3 subunits for specificity (HsdS),
modification (HsdM) and restriction (HsdR), which
cleaves double stranded DNA randomly through out the
genome [47]. M. haemofelis genome have 2 areas con-
taining type I restriction enzymes; however, only one
area contains the entire complex HsdS/HsdM/HsdR.
Within this area we identified 21 CDSs for the HsdS
subunit (9 are truncated), 2 CDSs for the HsdM, and 2
CDSs for the HsdR subunit. Interestingly, 19 CDSs of
the HsdS subunit are within a family of paralogs and
contain several inter and intragenic tandem repeats.
This might indicate that the expression of these genes is
regulated by phase variation. Phase-variable type I
restriction enzymes were also identified in the M. pul-
monis genome, for which an association with antigenic
variation was suggested [48].
Type II restriction activity, the simpliest of the R-M

systems, is performed by two distinct enzymes, a
sequence-specific endonuclease and a DNA methyltrans-
ferase [40]. We identified enzymes of the type II R-M
system in 2 areas of the genome of M. haemofelis, how-
ever only one area had the gene pair - a deoxyribonu-
clease, Sau96I-like and a C-5 cytosine-specific DNA
methylase. The second location had only the DNA
methylase. A Sau96I-like endonuclease also has been
reported in the genome of M. mycoides subsp. mycoides
and subsp. capri [GenBank: NC_005364.2 and
NC_015431.1]. Type III restriction enzymes were not
identified in the genome of M. haemofelis. In the pneu-
moniae clade, the Type III R-M system related
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sequences were also not found in the genomes of M.
genitalium, M. pneumoniae, and M. gallisepticum [40].

Protein homeostasis
Chaperone and protease families are highly conserved
across most bacterial genomes and play important roles
in stabilizing protein conformations, refolding misfolded
proteins and degrading protein that may be detrimental
to the cell’s survival [49]. While two prominent chaper-
one systems (GroE and DnaK) are present in most bac-
teria, the members of the GroE protein homeostatic
network, GroEL/GroES, are absent from M. haemofelis
genome. Several other mycoplasmas have been reported
to specifically lack the GroE chaperone system [50].
GroE system was also absent from the genome of M.
suis [37], although the presence of GroEL protein has
been reported previously [51]. The complete DnaK cha-
perone system was found in the genome of M. haemofe-
lis, suggesting that the DnaK-DnaJ-GrpE complex may
provide significant control over protein folding for this
and other GroE chaperone deficient mycoplasmas.
Another chaperone, the trigger factor (Tig) was also
identified in the genome of M. haemofelis, but was
absent in M. suis. Tig is involved in shielding nascent
polypeptides on the ribosome, thereby preventing their
degradation. Unlike the GroE and DnaK chaperone sys-
tems, Tig functions independently of ATP and its
expression is upregulated in cold shock [52]. Thus, it
seems unlikely that Tig could replace the missing func-
tions of the GroE system in M. haemofelis.
Proteases also play a key role in the viability of bacter-

ial cells, especially as it relates to degrading misfolded or
aggregated proteins [53]. In the genome of M. haemofe-
lis, the proteases identified included the heat-shock
ATP-dependent protease Lon and a membrane
anchored FtsH. The ATPases from the Clp family, HslU
and HslV, on the other hand, are missing from the gen-
ome. It is likely that these proteases in M. haemofelis
might also function to assist with the breakdown of
imported peptides for protein synthesis.
It has been suggested that loss of specific proteases

and the chaperone GroEL/GroES system may result in a
shift toward proteolysis rather than protein folding as a
means of maintaining protein homeostasis in mycoplas-
mas [52]. These shifts might play a contributing role to
both survival and pathogenesis, leading some groups to
investigate their potential as antimicrobial targets [54].
The functional consequences of these gene losses in M.
haemofelis are unknown.

Secretion and transport
M. haemofelis appears to use the general secretion (Sec)
pathway [55] for translocation of newly synthesized pro-
teins across the cytoplasmic membrane. The essential

membrane receptor ATPase SecA, and members of the
integral membrane complex SecG, SecY, and SecD
(responsible for release of the mature peptide) are pre-
sent. Whereas, like most other mycoplasmas, SecE (also
part of the integral membrane complex), SecF and the
non-essential chaperone SecB are missing. The absence
of SecB suggests that the export is via signal recognition
particle (SRP) [56]. The presence of the associated inner
membrane protein translocase YidC [57] and 2 signal
recognition particle proteins (FtsY and Ffh), that are
responsible for delivering protein to SecA, reinforces
this hypothesis. The Sec-independent twin arginine
translocation (Tat) secretion pathway is an alternate
route for folded proteins and co-factor-bound enzymes
secretion [58] in bacteria. Only one member of the Tat
pathway, TatD, was identified in the M. haemofelis gen-
ome, while essential components of the translocase,
TatA, TatB, and TatC, which in conjunction with TatE
form a translocation pore, are all missing. Since the
TatD protein does not appear to be required for opera-
tion of the Tat transport system, we speculate that the
TatD probably performs a different function, unrelated
to protein transport in M. haemofelis, and a functional
Tat secrection pathway is absent. Perhaps TatD in M.
haemofelis can function as a magnesium-dependent
DNase as previously described, thus suggesting a role
for this protein in DNA metabolism [59].
Transporter systems are conserved among bacteria

and are responsible for the transport of a wide range of
molecules across the membrane, including the import of
nutrients and export of toxins. Therefore, they are cru-
cial for bacterial metabolism and play a role in virulence
[60]. Mycoplasmas are known to have fewer transporters
than other bacteria, suggesting that their transporters
may have broader substrate specificity [36]. M. haemofe-
lis also dedicates only 2.2% (34/1549) of its CDSs, con-
figured as operons, to transport and binding proteins.
As with most other mycoplasmas, ABC transporters in
M. haemofelis represent more than 50% of all membrane
transport proteins [61]; they are 70.6% (24/34) for M.
haemofelis. The phosphotransferase transport system
(PTS) is also represented in the genome of M. haemofe-
lis, suggesting that sugar is acquired from the environ-
ment and translocated across the cell membrane [62]
for use in energy metabolism.

Energy metabolism
M. haemofelis uses the Embden-Meyerhof-Parnas (EMP)
pathway (glycolysis) for energy metabolism (Additional
file 7, Figure S4a). The presence of CDSs in M. haemo-
felis for the PTS and enzymes responsible for the con-
version of glucose into pyruvate molecules is consistent
with an organism that undergoes glycolysis. Interest-
ingly, a non-phosphorylating NADPH-dependent

Santos et al. Veterinary Research 2011, 42:102
http://www.veterinaryresearch.org/content/42/1/102

Page 8 of 16



glyceraldehyde-3-phosphate dehydrogenase (GAPN),
responsible for a shunt in the glycolysis pathway by con-
verting glyceraldehyde-3-phosphate into 3-phosphogly-
cerate, is present. This enzyme reduces NADP to
NADPH and has been described in some mycoplasmas
and a few other bacterial species as a means of oxidative
damage resistance and NADPH regeneration [63-65]. As
described in other Mollicutes, the F0F1 ATP synthase
complex is present, which can also generate ATP.
The pyruvate metabolism of M. haemofelis does not

appear to be complete. Orthologs to the pyruvate dehy-
drogenase complex and acetate kinase are absent.
Enzymes of the coenzyme A metabolism are also not
present, which supports the lack of a pyruvate dehydro-
genase complex.

Nicotinate/Nicotinamide metabolism
Molecules of NAD+ and NADP+ are end-products of the
niacin (nicotinate and nicotinamide) metabolism (Addi-
tional file 7, Figure S4b). We speculate that due to the
absence of two key enzymes from the nicotinate meta-
bolism (nicotinate phosphorybosyltransferase and NAD+

synthase), M. haemofelis is more likely to use nicotina-
mide as a precursor for NAD+ and NADP+. This latter
pathway would include the use of the purine nucleoside
phosphorylase, which also participates in the purine
metabolism, and the use of a yet to be identified ribosyl-
nicotinamide kinase, followed by the nicotinate-nucleo-
tide adenylytransferase. Metabolic pathway comparisons
show that M. suis has the same enzymes to produce
NAD+, but a NAD+ kinase, present in M. haemofelis, is
absent in the pig pathogen [37]. This enzyme is respon-
sible for the interconversion of NAD+ and NADP+,
which plays a critical role in maintaining the NADH/
NADPH pool balance inside the bacterial cell. Thus,
nicotinamide is likely to be the only requirement for
NAD+ and NADP+ production in M. haemofelis,
whereas in M. suis, NADP+ is possibly also needed.

Vitamin metabolism
Although the nine vitamins (nicotinate spermine, thia-
min, pyridoxal, thioctic acid, riboflavin, choline, folic
acid and coenzyme A/panthothenate) are necessary for
optimal growth, none of these are synthesized by myco-
plasmas [36]. The only enzyme related to vitamin meta-
bolism present in M. haemofelis is the serine
hydroxymethyltransferase of the folate metabolism,
which was not found in M. suis. Consequently, M. hae-
mofelis may interconvert L-serine to glycine, but to do
so it needs folate derivatives that are likely acquired
from its environment. Thus, the author’s speculate that
folate derivatives and other vitamins must be imported
from the bacteria’s environment to support its growth
and survival.

Like M. suis [37], M. haemofelis possesses spermidine/
putrescine transport system consisting of a membrane
associated ATPase (PotA), two transmembrane proteins
(PotB and PotC), and a periplasmic substrate-binding
protein (PotD). All of these proteins are necessary for
the uptake of spermidine and putrescine, which play a
vital role in the DNA and RNA metabolism and regula-
tion of RNA and protein synthesis [66]. However, the
enzymes necessary for the synthesis of spermidine/
putrescine are missing, suggesting that M. haemofelis
imports these polyamines from the environment. Simi-
larly, M. haemofelis possesses a transporter for cobala-
mine, suggesting this vitamin is also essential for its
survival.

The pentose phosphate pathway
As observed in phytoplasmas [67] and in M. suis [37],
the pentose phosphate pathway is absent in M. haemofe-
lis. This mycoplasma is likely to use other means of
NADPH regeneration and ribose production, including
acquiring it from the environment. Since a ribokinase
was not found in the genome of M. haemofelis, it is
more likely that this organism imports deoxyribose or
ribose/deoxyribose 5’ phosphate than ribose to produce
phosphoribosyl pyrophosphate (PRPP). The latter
enzyme plays a critical role in purine/pyrimidine nucleo-
tides synthesis (Additional file 7, Figure S4c and d).

Purine metabolism
Several studies have demonstrated that Mollicutes lack
the ability to synthesize de novo purine and pyrimidine
nucleotides resulting in the development of unique
mechanisms used to import precursors from their envir-
onment [68-70]. Of particular interest, CDSs for
enzymes of purine nucleotide production from hypox-
anthine are present in the M. haemofelis genome (Addi-
tional file 7, Figure S4c). This pathway may represent an
adaptation to the blood environment; hypoxanthine is a
metabolite secreted as an end product from red blood
cell nucleotide metabolism and is required for the in
vitro growth of Plasmodium spp, another red blood cell
parasite [71,72]. M. haemofelis posseses 2 copies of the
enzyme hypoxanthine phosphoribosyltransferase that
not only converts hypoxanthine into inosine 5’ mono-
phosphate, but can also convert guanine into guanine 5’
monophosphate (GMP). However, hypoxanthine by itself
is able to serve as a precursor for purine nucleotides. M.
haemofelis is also capable of producing GTP and dGTP
from guanosine and ATP and dATP from adenine. The
latter reaction is catalyzed by the enzyme adenosine
kinase, which is unique to M. haemofelis among the
other mycoplasmas sequenced to date.
Interestingly, guanine and adenine can also possibly

serve as unique precursors of all purine nucleotides if
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the first 2 reactions of each pathway have reversibility.
In this case, if guanine is used, glutamate must be avail-
able. Whereas, if adenine is used, fumarate must be
available: fumarate can be acquired from the L-aspartate
metabolism. These data suggests that M. haemofelis
might import hypoxanthine, adenine and/or guanine to
be used as precursors for the purine nucleotides ATP/
GTP (RNA) and dATP/dGTP (DNA).

Pyrimidines metabolism
Like most mycoplasmas, M. haemofelis lacks orotate-
related genes needed for the synthesis of pyrimidines
[73]. Uracil, however, can serve as precursor for uracil
and cytosine nucleotides for RNA production in M. hae-
mofelis (Additional file 7, Figure S4d). Regarding DNA
production, the absence of the enzyme thymidine phos-
phorylase suggests that thymidine is likely the precursor
imported for dTTP production. Despite the similarities
to the M. suis pyrimidine metabolism, M. haemofelis has
a cytidylate kinase, which can convert cytidine 5’ mono-
phosphate (CMP) to cytidine 5’ diphosphate (CDP). The
absence of this enzyme in M. suis [37] led to the specu-
lation of the use of a phosphofructokinase to generate
CDP from cytidine 5’ triphosphate (CTP) [74], which
implies that uracil can be used to produce cytosine
nucleotides. In M. haemofelis, dCDP is likely produced
from cytosine derivatives, not from uracil. However,
enzymes responsible for the generation of CMP from
cytidine or cytosine were not found. It is thus unknown
which cytosine derivative (cytosine, cytidine or CMP)
must be imported for dCTP production.
Thus, the addition of hypoxanthine, adenine, guanine,

uracil, cytosine derivatives, and thymine/thymidine
could theoretically help to sustain M. haemofelis DNA
and RNA production in future attempts to cultivate this
organism in vitro.

Lipid metabolism
Phospholipids, glycolipids and sterols, are the three major
lipid constituents of cell membranes. Mycoplasmas are
thought to be completely incapable of fatty acid biosynth-
esis from acetyl-CoA, probably due to the loss of genetic
material [75]. Although some of the enzymes are missing,
M. haemofelis is likely to synthesize phospholipids from
glycerol (Additional file 7, Figure S4e). The presence of
CDS for glycerol kinase indicates that M. haemofelis pro-
duces glycerol-3-phosphate, an important precursor for
phosphatidate, the simplest phospholipid to be incorpo-
rated into biological membranes. There are some gaps in
this pathway, which include the enzymes: glycerol-3-phos-
phate O-acyltransferase, 1-acyl-sn-glycerol-3-phosphate
acyltransferase. These enzymes perform acylation of gly-
cerol compounds using the acyl-carrier protein (ACP) as a
donor. This protein, as well as the coenzyme A (CoA)-

biosynthesis pathway that acylates it, are absent in M. hae-
mofelis. Likewise, the ACP is missing in M. hyopneumo-
niae, but other enzymes of the CoA metabolism are
present. It is likely that M. haemofelis uses another
mechanism of acyl transfer. From phosphatidate to cardio-
lipin formation, there is only one enzyme missing, the
phosphatidyl glycerophosphatase. The role of this enzyme
may be replaced by the enzyme cardiolipin synthase,
which can convert cytidine 5’ diphosphate diacylglycerol
directly to cardiolipin in the presence of phosphatidylgly-
cerol. Thus, we speculate that phosphatidylglycerol is
acquired from the blood or another enzyme might pro-
duce this phospholipid.
Given the presence of choline kinase and choline-

phosphate cytidylyltransferase, phosphatidylcholine is
also probably synthesized. In addition, we predict that
M. haemofelis, like other mycoplasmas, require the addi-
tion of exogenous sterols for their in vitro growth.

Amino acid metabolism
Like other mycoplasmas, M. haemofelis has lost the
genes required for amino acid metabolism, and is unable
to synthesize any of the amino acids. Surprisingly, only
one amino acid permease ABC transporter was identi-
fied in the genome of M. haemofelis. Since amino acids
are essential for optimal growth of mycoplasmas [36], it
is likely that ABC transporters in the genome of M. hae-
mofelis having unknown substrate specificity or other
transporters yet to be identified, may be responsible for
this uptake.

Potential virulence factors
Bacteria have evolved several virulence factors that
enable them to establish an infection, which include the
production of cytolysins, toxins, and invasins. Myco-
plasma genomic repertoires, as a general feature, appear
to contain few of these genes [76]. Nonetheless, we
identified 2 CDSs of primary virulence genes in the gen-
ome of M. haemofelis. The first of these, endopeptidase
o-sialoglycoprotein, was also found in the M. suis gen-
ome [37]. This enzyme might be directly involved in
erythrocyte lysis by cleavage of glycoproteins such as
glycophorin A, which is an abundant component of the
erythrocyte membrane. Secondly, we confirmed the pre-
sence of a CDS for the superoxide dismutase (SOD)
gene that was previously described in a sequencing sur-
vey of M. haemofelis [22]. The gene encoding this
enzyme has not been found in genomes of other myco-
plasmas despite finding evidence of its activity [77] and
is absent from the genome of M. suis, the only other
fully sequenced hemoplasma [37]. This might suggest a
role for SOD in detoxifying reactive oxygen species,
thus protecting M. haemofelis from the onslaught of
oxidant damage that it encounters in its red blood cell
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niche. The contribution of this enzyme to the virulence
of M. haemofelis, particularly its role as a primary
pathogen, is an intriguing question for future investiga-
tions. M. suis, on the other hand, is not a primary
pathogen and requires splenectomy of the pig for devel-
opment of acute disease.
Lipid-associated membrane proteins are well described

in mycoplasmas and are the preferential target for the
host’s immune response [78]. A total of 17 putative lipo-
proteins were identified in the genome of M. haemofelis
(Figure 1). In addition, some putative surface lipopro-
teins were recently identified by immune screening of
an expression library of M. haemofelis [24].
To allow for the presence of diverse subpopulations

that can quickly respond to changing environmental
conditions, a common virulence feature in the genome
of several Mycoplasma species is the presence of strate-
gically located tandem repeats [79]. Likewise, we identi-
fied 61 variable number tandem repeats (VNTR) in the
genome of M. haemofelis (Additional file 8, Table S4)
whereas M. suis had 33 (Guimaraes AMS, unpublished
observations). Most of the VNTRs were within inter-
genic regions of hypothetical proteins (Figure 1). Addi-
tionally, VNTRs flanking the CDS for RNA polymerase
sigma factor RpoD were identified. This feature was also
found in the genome of M. hyopneumoniae [50]. Several
VNTR’s were identified within the Type I restriction
system operon, as described above. Since the gain or
loss of nucleotides in the promoter region would act as
an on/off switch for promoter activity, it is speculated
that these genes might code for phase variable surface
proteins in M. haemofelis. Thus, as with other myco-
plasmas, the strategic placement of these repetitive
sequences may be related to size and phase variation
[80]. While these repetitive sequences are somewhat
scattered throughout the genome, there are distinct
clusters (Figure 1). Palindromic structures, overlapping
of repeats and degenerate repeats were found in the
genome of M. haemofelis as well as that of M. suis (Gui-
maraes AMS, unpublished observations); these struc-
tures also have been shown to be related to virulence
and bacterial gene regulation [79]. The role that these
structures might play in helping M. haemofelis evade
host defenses, adapt to its microenvironment, and estab-
lish chronic infection is an area of current investigation.
Despite their relatively small size, a high proportion of

the genome in many mycoplasmas is dedicated to para-
logous genes [73]. There is strong evidence to support a
role for these genes in the development of antigenic
diversity and the ability of the organism to avoid the
host’s immune response [80]. Search results using
BLASTclust showed that 1093 out of the 1549 (70.6%)
predicted proteins formed 46 paralogous gene families,
ranging from 2 to 800 CDSs per family (Additional file

9, Table S5). Although the genome of M. suis is much
smaller, this closely related hemoplasma relative of M.
haemofelis still devotes 42.8% of its genome to paralogs
[37]. Using the same analysis conditions for identifica-
tion of paralogs, the genomes of other mycoplasmas
were analyzed and compared to M. haemofelis (Table 1).
M. haemofelis has more genes organized in paralogous
families than all the mycoplasmas sequenced to date.
The paralogs in the M. haemofelis genome are mostly
hypothetical proteins, including the 3 largest families.
Most of them have members with internal alpha helices
or signal peptides, except for one family (family 3) with
CDSs predicted to be cytoplasmic (Table 3). Interest-
ingly, CDSs of family 5 have conserved motifs matching
with the Staphylococcus aureus fibrinogen-binding pro-
tein A (clumping factor), an adhesin responsible for its
attachment to fibrinogen/fibrin [81]. Thus, this family of
membrane-associated putative proteins might act as
adhesins in M. haemofelis.
Using the same BLASTclust parameters, the total num-
ber of genes of in M. haemofelis strain Langford 1
within paralog families is 1042 (67.5% of CDSs). The
paralogous gene families are conserved between the 2
strains of M. haemofelis, except that strain Langford 1
has 723 CDSs in its largest family compared to 800
CDSs in Ohio2 (family 1). Further, strain Langford 1 has
2 additional families of 25 and 17 hypothetical proteins;
in strain Ohio2, these proteins are within family 1.
Strikingly, M. haemofelis devotes a high percentage of

its genome to paralogous gene families, a feature sug-
gesting that evasion of the immune response is a high
priority for this pathogen. While these findings provide
evidence to support the presence of antigenic variation
by M. haemofelis, experimental studies are still needed
to understand the role and/or function of these
structures.
Only one gene related to antimicrobial resistance, a

ribosomal RNA adenine dimethylase family protein
(MHF_1613), was identified in the genome of M. hae-
mofelis. The product of this gene is a methylase, respon-
sible for modification of the 16S rRNA, optimizing
ribosome function and consequently translation. Lack of
methylation by this enzyme modifies the ribosomal
binding site for the aminoglycoside antimicrobial kasu-
gamycin, leading to resistance [82]. Whether or not this
enzyme plays a role in antimicrobial resistance for M.
haemofelis must be experimentally confirmed.

Bacterium-host interactions
M. haemofelis, unlike most other hemoplasmas, is cap-
able of acting as a primary pathogen and can cause
acute disease in immunocompetent hosts. Our labora-
tory recently proposed a new model based on genomic
findings for the acute disease caused by M. suis in pigs
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Table 3 Analyses of the largest paralogous gene families (n > 5) in Mycoplasma haemofelis strain Ohio2 genome.

Family Number of CDSs Predicted function Predictiona Subcellular Localizationa

Internal Helix (> 1) Non-Cytoplasmic (signal peptide) Cytoplasmic Cytoplasmic Membrane Extracellular Unknown

1 800 Hypothetical proteins 673 136 30 15 70 685

2 99 Hypothetical proteins 94 43 8 8 9 74

3 26 Hypothetical proteins 22 0 23 0 0 3

4 18 Type I restriction enzymes 0 0 15 0 0 3

5 17 Hypothetical proteins 2 10 1 13 0 3

6 11 Hypothetical proteins 8 1 0 2 0 9

7 10 Hypothetical proteins 10 4 2 0 0 8

8 8 Hypothetical proteins 8 1 3 0 2 3

9 7 Hypothetical proteins 1 3 2 0 0 5

10 6 Hypothetical proteins 4 2 3 1 0 2

11 5 Hypothetical proteins 5 2 0 0 0 5
a PSORTb version 3 software.
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[37]. We believe that a nutrient competition and scaven-
ging mechanism reduces the production of energy by
the erythrocyte leading to oxidative stress and shortened
life span of the cells, which are prematurely removed
from the circulation, contributing to the development of
anemia. The depletion of energy and oxidative stress
may also be a trigger to eryptosis, as recently proposed
for M. suis infection in pigs [3]. Based on the genomic
information herein, it is likely that M. haemofelis exerts
similar damage to the cat’s red blood cells. Additionally,
it is possible that the increased virulence of M. haemofe-
lis (its ability to act as a primary pathogen) is due to
decreased susceptibility to reactive oxygen species gen-
erated by the host or by the bacteria itself. The superox-
ide dismutase activity, thus, contributes to survival of M.
haemofelis, and indirectly to its virulence. Since the end
product of SOD activity is H2O2, the possibility that the
enzyme is contributing to the virulence of M. haemofelis
cannot be discounted [18].
The disease presentation and genomic evidence sug-

gest that the pathogenesis of M. haemofelis is also linked
to its antigenically dynamic cell surface. Thus, the ability
of this microorganism to change its surface features
might explain the cyclic bacteremic episodes that are
characteristic of M. haemofelis infection [83-85] and
persistence of the organism despite the host’s immune
response and/or antimicrobial treatment [86]. It is of
particular interest that cattle infected with Anaplasma
marginale, another red blood cell bacteria, have a persis-
tent infection characterized by cyclic bacteremic bouts.
Each of these bouts appears to be associated with the
emergence of new antigenic variants, which are derived
from paralogous gene family recombination [87]. Given
that the genome of M. haemofelis is replete with para-
logs as well as tandem repeats, we speculate that either
phase and/or antigenic variation may be involved in the
development of cyclic episodes and persistence of infec-
tion. The host presumably clears some of the microor-
ganisms (nadir of the cycle), but M. haemofelis
expressing variant antigens, not yet identified by the
immune system, persist and multiply (peak of the cycle).
The failure of several groups [88,89] to find microorgan-
isms sequestered in tissues, other than on erythrocytes
in the blood, adds further support to this hypothesis.
Although antigenic variation might explain the initial

fluctuations in bacteremia, it does not explain why the
cycling progressively declines and may disappear with
time. It is possible that the host establishes an antibody
response against non-variable antigens that helps to
maintain a low bacterial load or that antibodies formed
against variable antigens cross-react to some extent and
are able to partially control the bouts of bacteremia.
Another possible explanation is that the prolonged high
loads of bacteremia during infection of M. haemofelis

result in a functional dysregulation of specific CD4+ T
cell response. Thus, as reported for A. marginale, the
failure to establish a strong memory T cell response
may contribute to bacterial persistence [90]. Further stu-
dies are underway to identify variable antigenic families,
as well as the possible mechanisms of immune evasion
by M. haemofelis infection in cats.
In summary, the pathogenicity of M. haemofelis

appears to be closely linked to intrinsic metabolic or
catabolic pathway functions and to its dynamic outer
surface. Virulence attributes of this bacterium allow it
to evade the immune system of the host, adhere to the
red blood cells and rapidly multiply, disseminate and
persist if the host survives acute infection. It is possible
that establishment of chronic infection facilitates trans-
mission of the bacteria. The data generated in this
study should be of great value for future experiments
aimed at understanding the mechanisms this organism
employs in colonization of red blood cells, develop-
ment of disease and persistent infection. Further, it
will provide new insights into the regulation of viru-
lence factors and provide clues needed to formulate
media to support the in vitro cultivation of M.
haemofelis.

GenBank accession number
The sequence was submitted to the GenBank database
under the accession number CP002808.

Additional material

Additional file 1: Figure S1: Optical map of M. haemofelis strain
Ohio2 cleaved with NcoI (OpGen, Madison, WI, USA). The outermost
color circle is the consensus map and is built from the underlying maps
represented as arcs. Congruent restriction fragments shown in the
consensus map are denoted by a common color; the color-ordering
scheme is random to provide contrast.

Additional file 2: Figure S2: Validation of the M. haemofelis strain
Ohio2 sequence assembly by optical map comparison. Vertical lines
represent the restriction site. Regions with similarities are illustrated in
blue, regions with differences are illustrated in white.

Additional file 3: Figure S3: Comparative analysis of the whole
genomes of M. haemofelis strains Ohio2 and Langford 1 by in silico
restriction maps. Vertical lines represent the restriction sites. Regions
with similarities are illustrated in blue, regions with differences are
illustrated in white. (a) Restricted with NcoI (6 cutter), and (b) Restricted
with EcoRI (4 cutter).

Additional file 4: Table S1: Protein coding sequences of M.
haemofelis strain Ohio2 which are currently assigned to TIGR
microbial role categories, and sorted by role category. This list was
generated using the Manatee annotation tool, Institute for Genome
Sciences, School of Medicine, University of Maryland.

Additional file 5: Table S2: Comparison of the coding sequences of
M. haemofelis strains Ohio2 and Langford 1 genomes. BLASTp was
used for protein comparisons, when no match was found, BLASTn was
also use to avoid misinterpretation of annotation differences. NA = not
annotated or annotated differently; X = CDSs not found in the genome;
* Pseudogenes. Gray lines represent the regions with differences
correspondent to Figure S3 (b).
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Additional file 6: Table S3: Comparison of the non-coding
sequences of M. haemofelis strains Ohio2 and Langford 1 genomes.
*Annotated differently in the M. haemofelis strain Langford 1 genome.

Additional file 7: Figure S4: Predicted metabolic pathways of M.
haemofelis strain Ohio2. Gray boxes represent substrates or products.
Gray ellipses are metabolites predicted to be imported from the
extracellular environment. White boxes represent enzymes with orthologs
in the genome of M. haemofelis. Dashed white boxes represent enzymes
with no orthologs in the genome of M. haemofelis. (a) Glycolysis, (b)
Nicotinate/Nicotinamide metabolism, (c) Purine metabolism, (d)
Pyrimidine metabolism, (e) Lipid metabolism. Pathway predictions were
based on KEGG pathway database [35] and the study performed by Yus
et al. [36].

Additional file 8: Table S4: Tandem repeats in M. haemofelis strain
Ohio2 genome. This list was generated using the Tandem Repeats
Finder Program.

Additional file 9: Table S5: List of GenBank accession numbers of
CDSs of M. haemofelis strain Ohio2 genome distributed in paralog
families. This list was generated using the BLASTclust software.
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