
© 2021 Journal of Pathology Informatics | Published by Wolters Kluwer - Medknow 1

Abstract

Research Article

IntroductIon

The field of pathology is becoming increasingly computerized. 
Starting in the late 1990s, the first digital slide scanners became 
commercially available, which led to increased opportunities for 
slide sharing and teaching and ultimately fueled the evolution of 
software with the ability to perform complex analyses such as 
digital image analysis of immunohistochemistry (IHC)‑stained 
slides.[1,2]

There are many digital image analyzers (DIAs) with unique 
functionality currently on the market. Some examples of 
open‑source programs include Image J, Fiji, Icy, CellProfiler, 
and QuPath. QuPath is an open‑source software for whole 
slide image analysis that, unlike most other DIAs, has been 
designed to easily handle large two‑dimensional images up 

to 40 gigabytes (GB) in size.[3] It is a multithreaded DIA 
that has numerous annotation tools and can be customized 
to perform more complex tasks. It is notable for its 
user‑friendly design and is modifiable so that it may become 
compatible with other DIAs, addressing the common 
problem of limited cross‑platform interoperability. QuPath 
has been applied in over 624 publications since it was first 
released in 2016[3] including applications in the identification 
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of various biomarkers in colon adenocarcinoma, renal 
tissue, uveal melanoma, breast cancer, non‑small cell 
lung cancer, ovarian carcinoma, and neural tissue.[4‑11] 
However, there are currently limited reports of its use in 
placental tissue,[12‑14] with those reports largely consisting 
of analyses of inflammatory cell populations with minimal 
descriptions of analyses of placental and vascular tissue.[15‑17] 
G‑protein coupled receptor 18 (GPR18) is the receptor 
for Resolvin D2, a pro‑resolving lipid mediator recently 
identified as providing a protective benefit to placental 
cells against inflammatory processes.[18] Previous studies 
of this receptor have shown its consistent membranous and 
cytoplasmic expression in vascular smooth muscle (VSM) 
and extravillous trophoblast (EVT) cells in placental tissue, 
leading to its selection for this analysis.

Herein, we report the methodology and findings from our 
study, where we compare QuPath and traditional visual 
analysis ability to score GPR18 staining in VSM and EVT in 
placental tissue.

Methods

Development of the study
This study received Institutional Review Board approval from 
the University of Nebraska Medical Center. Cross‑sections 
were collected from 20 full‑term third‑trimester placentas 
from unremarkable pregnancies, fixed in 10% formalin, and 
then embedded in paraffin. Traditional glass slides were 
prepared by obtaining 4 m thick tissue sections. Once the glass 
slides were prepared, IHC staining for GPR18 (polyclonal; 
Thermo Fischer Scientific; 1:75 dilution) was performed using 
standard autostaining protocols on a Ventana Discovery Ultra 
autostainer.

The IHC‑stained glass slides were then digitized at a single 
focal plane level with ×40 magnification, and the resulting 
image was stored in bif format using a VENTANA iScan 
HT scanner. The digital images were stored in two separate 
encrypted and password‑protected external hard drives, A 
and B. The set of images in hard drive A was used to analyze 
VSM cells and the set of images in hard drive B was used to 
analyze EVT cells.

To analyze vascular smooth muscle
Tissue slides with at least ten blood vessels were selected to 
further quantify the percentage (0%–100%) and intensity (low 
vs. medium vs. high) of GPR18 immunoreactivity, resulting 
in ten digital images for the analyses.

To analyze extravillous trophoblast cells
Tissue slides with at least 100 cells were selected to further 
quantify the percentage (0%–100%) and intensity (low vs. 
medium vs. high) of GPR18 immunoreactivity, resulting in 
ten digital images for the analyses.

VSM and EVT were annotated (digitally marked) in ten digital 
images using VENTANA Image Viewer software (version 3.1.3; 

Roche, Indianapolis, IN, USA), a web‑based application by 
BioImagene.

Data collection
Four participants (two pathologists and two pathology 
residents) each performed visual analysis of all twenty digital 
images (VSM and EVT) and four participants (one pathologist, 
one cytotechnologist, one pediatrics resident, and one medical 
student) each performed QuPath analysis of all twenty digital 
images (VSM and EVT).

Manual scoring method
• The study participants were given a brief training 

session on how to access the digital images saved on the 
encrypted external hard drive and how to use the Image 
Viewer software to screen the digital images

• The participants were asked to visually interpret 
the preannotated digital images and provide their 
interpretations for the percentage (0%–100%) and 
intensity (low, 1+; medium, 2+; and high, 3+) of the IHC 
staining for each image

• All participants independently interpreted the digital 
images using their personal workstations and computer 
monitors.

QuPath scoring method
• The participants downloaded QuPath version 0.1.2 with 

the minimum RAM requirement of 8 GB onto their 
personal computers. As per system requirements, the 
computers used were either 64‑bit processors or OSx10.7.4 
or above with at least 500 megabytes (MB) of hard disk 
space

• The participants were then given a flow chart and an 
in‑person tutorial regarding the analysis of the digital 
images using QuPath software

• The digital image files were downloaded into the QuPath 
software

• The image type of brightfield (H‑DAB) was selected 
with ×40 magnification and 0.25 mm pixels. For IHC 
analysis, the image type was changed from H and E to 
DAB to reflect the chromogen used for immunostaining. 
In addition, the higher magnification was chosen because 
it provided higher pixelation and more detail

• Using the preannotated digital images from the hard drive 
as references, the polygon tool was used to select the 
region of interest for analysis. The EVT and VSM stained 
with GPR18 were annotated and analyzed separately

• Before running the analyses, optimal stain separation in 
brightfield images was obtained by first estimating the 
stain vectors. This method was performed by choosing the 
“estimate stain vectors” command under the “analyze” 
menu in the QuPath software

• The analyses were performed using cell analysis and 
positive cell detection with the setup parameters that 
are shown in Table 1. The single threshold option was 
inactivated because this was a multiple intensity analysis. 
The cutoff thresholds for 1+, 2+, and 3 + were determined 
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before the analysis by one pathologist using QuPath heat 
maps. “Cell: DAB OD mean” was used for the analysis as 
both membranous and cytoplasmic staining of a selective 
antibody was being performed. To analyze cytoplasmic 
staining alone, an option would be to use “Cytoplasm: 
DAB OD mean”

• The “measurement map” tool, as shown in Figure 1, was 
utilized to visualize stain intensity across the annotations 
and was used to adjust the GPR18 intensity threshold 
parameters. This option, accessed under the “measure” 
menu, provides a color‑coded representation where each 
cell’s color reflects the intensity of DAB staining within 
that cell. Any cutoff thresholds were checked visually

• After clicking “run,” the software performed the digital 
analysis, and the results and histograms were reviewed 
under annotation measurements. Figure 2 shows 
representative images of analyses, showing the use of the 
polygon tool and the final analysis with a histogram and 
cells sorted by intensity.

Statistical analysis
Assessment of agreement between visual and QuPath data 
by type of image (VSM or EVT) and staining category (low, 
medium, or high) was performed using a Bland–Altman (BA) 
comparison and visualized with BA plots. For each slide 
for VSM and EVT, at each level (low, medium, and high), 
the average intensity given by the four participants using 
the visual method, and the average intensity from the four 
participants using the QuPath method was determined. These 
average intensities are visualized on the BA plot, with each 
plot consisting of 10 points representing the 10 slides that 
were evaluated. Included on each plot is the y‑axis line, which 
represents the mean of differences and the limits of agreement 

lines: mean +2 standard deviations (SDs) and mean −2 SDs. 
Mean differences and SDs between image analysis methods 
were used as descriptive statistics. In addition, data were 
converted into H‑scores. The average H‑Score of the four 
participants using the visual method was determined for each 
of the ten digital images. Similarly, the average H‑Score of the 
four participants using the QuPath method was determined. 
Spearman correlations and scatterplots were used to evaluate 
the correlation between the 10 average H‑scores (i.e., mean of 
four participants for each digital image) and the visual method 
with the 10 average H‑scores from the QuPath method for EVT 
and VSM. All analyses were done using SAS 9.4.

results

As seen in Figure 3, for VSM, the average of the differences and 
SD between the two image analysis methods for low, medium, 
and high intensity were 11.23 (20.70), −13.79 (11.00), and 
2.57 (14.45), respectively. For low intensity, this suggests that 
on average estimates of visual intensity for visual were 11.23% 
higher than that for QuPath, while for the medium category, the 
average visual intensity was 13.79% lower than QuPath, and for 
high visual average intensity was 14.45% higher than QuPath. 
Average values of percent intensity for each slide, by intensity 
category, are visualized as dots on BA plots. For VSM, all points 
lie within two SDs of the mean, suggesting that the two methods 
are comparable for VSM at low, medium, and high intensities.

As seen in Figure 4, for EVT, the average of the differences 
and SD between the two image analysis methods for low, 
medium, and high intensity was 3.08 (28.85), 4.86 (28.83), 
and −8.31 (16.54), respectively. For low intensity, this 
suggests that on average estimates of intensity for visual were 
3.08% higher than that for QuPath, while for medium visual 
average intensity was 4.86% higher than QuPath, and for 
high visual average intensity was 8.31% lower than QuPath. 
Average values of percent intensity for each slide, by intensity 
category, are visualized as dots on BA plots. For EVT at high 
staining intensity, all data points were within 2 SDs of the 
mean, suggesting that for EVT at high staining intensity, the 
two methods are comparable. For EVT at low and medium 

Table 1: Positive cell detection parameters
Setup 
parameters

Detection image
Requested pixel

Optical density sum 
(0.2 µm)

Nucleus 
parameters

Background radius
Median filter radius
Sigma

Minimum area
Maximum area

8 µm
1.5 µm

3.5 µm (VSM)
3.0 µm (EVT)

10 µM2

400 µM2

Intensity 
parameters

Threshold
Max background intensity
Split by shape
Exclude DAB (membrane staining)

0.05
2

Yes
No

Cell 
parameters

Cell expansion
Include cell nucleus

5 µm
Yes

General 
parameters

Smooth boundaries
Make measurements

Yes
Yes

Intensity 
threshold 
parameters

Score compartments
Threshold 1+
Threshold 2+
Threshold 3+
Single threshold

Cell: DAB OD mean
0.05
0.1
0.2
No

VSM: Vascular smooth muscle, EVT: Extravillous trophoblast

Figure 1: QuPath measurement map tool. (a) QuPath measurement map 
tool being used to adjust staining threshold parameters. (b) Representative 
images show how QuPath’s measurement map tool was used to visualize 
individual cell staining intensities for the indicated placental tissues

ba
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staining intensity, each has one data point that lies outside of 
two SDs of the mean, suggesting that the two methods are not 
comparable for EVT at this staining intensity. For the EVT 
low category, one data point was outside of 2 SDs. For this 
data point, pathologists estimated that 90%–100% of this slide 
stained low intensity, while QuPath estimated that 14%–40% 
of the cells were in the low‑intensity staining category. 
Similarly, for the EVT medium category, one data point is 
outside of 2 SDs. Visual methods estimated 0%–10% of cells 
stained in the medium category, while QuPath estimated that 
50%–71% of cells stained in the medium category. Of interest 
is the fact that these values were both taken from the same 
slide image: EVT Slide #10. Upon review, EVT Slide #10 was 
noted to contain a significant folding artifact.

Figure 5 displays a scatterplot comparing the two methods 
by H‑score for VSM. There was no statistically significant 
correlation between H‑scores for the visual and QuPath 
methods for VSM (r = −0.33, P = 0.35). There was a 
statistically significant correlation between H‑scores for the 
visual and QuPath methods for EVT (r = 0.88, P = 0.0009) as 
shown in Figure 6. This discrepancy between results by BA 
analysis and Spearman correlation can be explained by the fact 
that the data were analyzed by intensity levels in the former 
and H‑scores in the latter.

dIscussIon

While the reference standard for the determination of 
IHC staining continues to be visual scoring by trained 

Figure 3: Bland–Altman plots for vascular smooth muscle. Comparison of average of the difference and mean difference of staining intensity percentage 
between visual scoring and QuPath for vascular smooth muscle low, medium, and high staining categories. Comparison of scoring methods between 
low, medium, and high‑intensity staining produced average differences and standard deviations of 1.23 (20.70), −13.79 (11.00), and 2.57 (14.45), 
respectively. All data points were within 2 standard deviations (95% confidence interval) of the mean

Figure 2:  QuPath analysis polygon tool. (a) Left: QuPath annotation toolbox with polygon tool selected. Right: Representative images show how 
QuPath’s polygon tool was used to select either vascular smooth muscle or extravillous trophoblast as the region of interest for analysis. (b) Left: 
A histogram indicates the staining intensities for all cells within annotated areas for one specimen. Right: Representative images show cell staining 
intensity for the indicated G-protein coupled receptor 18 stained placental tissues. Cell staining intensity is represented as follows: negative (blue), 
low (yellow), medium (orange), and high (red)

b

a
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pathologists,[19‑21] DIAs offer many benefits over traditional 
scoring. Two common systems of visual scoring include H 
scoring and the Allred score.[21] With both of these methods, 
tissues are assigned a percent score for categories of staining 
intensity such as none, low, medium, and high. This creates 
ordinal (semiquantitative) data. DIAs allow for the creation 
of quantitative instead of ordinal data, producing rigorous 
results with more precise, linear correlations to biological and 
clinical outcomes.[4,22‑24] Another limitation of visual scoring 
is that the data produced are affected by human sources of 
both cognitive and visual bias.[19] Visual traps, or optical 
illusions, cause the perception of an image to differ from its 
reality with examples including the illusion of size, lateral 
inhibition, and individual variability in the perception of color 

gradients. Cognitive traps are biases in thought patterns and 
can include confirmation bias, avoidance of extreme ranges, 
and number preference, all of which can affect IHC scoring. 
The use of DIAs provides objective analyses that can increase 
reproducibility and accuracy of scoring by reducing sources 
of human errors. In addition, the use of a pathologist to score 
slides may increase the cost, as well as the time of analysis, as 
there are free open‑source DIAs available that can analyze large 
sets of data faster than can be performed manually.[5,21,24] The 
time of analysis is also improved by the fact that individuals 
without an extensive pathology background can perform 
QuPath analysis. Pathologists and researchers can use this 
DIA methodology without image analysis and programming 
expertise. This technique can be incorporated into research with 
different human tissues or animal models, allowing for a more 
rapid return of results. In addition, DIAs can be standardized, 
enabling pathologists and researchers to work together in 
clinical and translational research.

Our study analyzed placental tissue, a vastly underutilized 
resource. Research of this organ has the potential to 
provide insight into the pathophysiology of placental 
dysfunction, allowing for the early diagnosis and prevention 
of placenta‑mediated pregnancy complications. Our research 
and analysis of GPR18 expression in human placental tissue 
will help uncover the role of pro‑resolving lipid mediators 
against inflammation and vascular injury in pregnancy and 
perinatal disease.

The goal of the current study was to compare traditional visual 
scoring with that of the open‑source digital image analysis 
program QuPath in placental tissue. The discrepancy between 
the results seen by Spearman correlation and the BA plot can 
be explained by the fact that the former utilized H‑scores 
while the latter analyzed by intensity staining categories. The 
H‑score is heavily influenced by the predominant staining 
intensity. Analysis by intensity staining category allows for 
a more detailed analysis of the accuracy of QuPath grading. 

Figure 4: Bland–Altman plots for extravillous trophoblast. Comparison of average of the difference and mean difference of staining intensity percentage 
between visual scoring and QuPath for extravillous trophoblast low, medium, and high staining categories. Comparison of scoring methods between 
low, medium, and high‑intensity staining produced average differences and standard deviations of 3.08 (28.85), 4.86 (28.83), and −8.31 (16.54), 
respectively. All data points for high intensity were within 2 standard deviations (95% confidence interval) of the mean, while low and medium categories 
each had one data point outside of 2 standard deviations
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Scatterplot comparison of H-scores for QuPath
and Visual Analysis of VSM

Figure 5: Scatterplot comparison of H-scores for QuPath and visual 
analysis of vascular smooth muscle. The average H-score for each 
image by method is shown in this scatterplot. Spearman correlation was 
performed and revealed no statistically significant correlation between 
the H-score for the visual method and the H-score for the QuPath 
method (r = −0.33, P = 0.35)
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A BA analysis was selected to demonstrate comparability 
between the two methods. The BA plots allow for the 
visualization of systematic differences between the methods 
and possible outliers in the image analysis. For VSM and the 
EVT high‑intensity staining category, the two methods were 
comparable by BA analysis.

Furthermore, while visual analyses were performed by 
trained and in‑training pathologists, the QuPath analyses 
were performed by individuals with a range of different levels 
of expertise, showing overall data congruity and supporting 
QuPath as a user‑friendly DIA capable of great accuracy.

For the EVT low and medium categories, each had a data 
point that existed outside of 2 SDs. These differences can 
likely be explained by the folding artifacts present in EVT 
Slide #10. While a pathologist would account for folding 
artifacts in their visual scoring, analysis of the same slide by a 
DIA results in oversegmentation, where cells are erroneously 
subdivided, resulting in a greater number of calculated cells 
than would otherwise have been expected. Segmentation is 
a common problem among DIAs with sensitivity, specificity, 
contour accuracy, and segmentation accuracy needing to be 
balanced.[25] Another possible explanation for these differences 
could be that QuPath picked up on “subvisual” differences 
within the slide that were not visible to the naked eye, a 
characteristic that has been ascribed to DIAs before.[26,27] While 
the minimum specifications for this version of QuPath were 
used, a more efficient and uniform performance could have 
been achieved by meeting the recommended specifications 
including using 16GB of RAM, a discrete graphics card, 
solid‑state hard disk, multicore processor, and 1GB or greater 
of hard disk space per slide.[28] Since personal computers 
were used for these analyses, the type of processor, graphics 

abilities, and hard disk space varied. Finally, this study did 
have the limitation of a small sample size. Additional studies 
are needed with data collected from more participants to 
further evaluate the reproducibility of the results and to 
increase the power of this study.

conclusIons

As shown in this study, QuPath’s ease of access, user‑friendly 
design, and accuracy demonstrates the potential for this 
software in future research and clinical applications.

Financial support and sponsorship
This study was financially supported by the University of 
Nebraska Collaborative Initiativative Grant.

Conflicts of interest
There are no conflicts of interest.

references
1. Pantanowitz L, Sharma A, Carter AB, Kurc T, Sussman A, Saltz J. 

Twenty years of digital pathology: An overview of the road travelled, 
what is on the horizon, and the emergence of vendor‑neutral archives. 
J Pathol Inform 2018;9:40.

2. Bacus JV, Bacus JW. Method and Apparatus for Acquiring and 
Reconstructuring Magnified Specimen Images from a Computer‑
Controlled Microscope. Bacus Laboratories Inc. US Patent 6226392B1 
filed 1998 Mar 02, and granted 2007 Aug 22.

3. GitHub. Citing QuPath. QuPath Website. Available from: https://
github.com/qupath/qupath/wiki/Citing‑QuPath. [Last accessed on 
2021 May 21; Last updated on 2021 May 18].

4. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, 
Dunne PD, et al. QuPath: Open source software for digital pathology 
image analysis. Sci Rep 2017;7:16878.

5. Stålhammar G, See TR, Phillips S, Seregard S, Grossniklaus HE. 
Digital image analysis of BAP‑1 accurately predicts uveal melanoma 
metastasis. Transl Vis Sci Technol 2019;8:11.

6. Ribeiro GP, Endringer DC, De Andrade TU, Lenz D. Comparison 
between two programs for image analysis, machine learning and 
subsequent classification. Tissue Cell 2019;58:12‑6.

7. Humphries MP, Hynes S, Bingham V, Cougot D, James J, Patel‑Socha F, 
et al. Automated tumour recognition and digital pathology scoring 
unravels new role for PD‑L1 in predicting good outcome in ER‑/
HER2+breast cancer. J Oncol 2018;2018:2937012.

8. Ledys F, Klopfenstein Q, Truntzer C, Arnould L, Vincent J, Bengrine L, 
et al. RAS status and neoadjuvant chemotherapy impact CD8+ cells 
and tumor HLA class I expression in liver metastatic colorectal cancer. 
J Immunother Cancer 2018;6:123.

9. Haragan A, Field JK, Davies MP, Escriu C, Gruver A, Gosney JR. 
Heterogeneity of PD‑L1 expression in non‑small cell lung cancer: 
Implications for specimen sampling in predicting treatment response. 
Lung Cancer 2019;134:79‑84.

10. Hollis RL, Carmichael J, Meynert AM, Churchman M, Hallas‑Potts A, 
Rye T, et al. Clinical and molecular characterization of ovarian 
carcinoma displaying isolated lymph node relapse. Am J Obstet Gynecol 
2019;221:245.e1‑ 245.e15.

11. Morriss NJ, Conley GM, Ospina SM, Meehan Iii WP, Qiu J, 
Mannix R. Automated quantification of immunohistochemical staining 
of large animal brain tissue using qupath software. Neuroscience 
2020;429:235‑44.

12. Cizkova K, Foltynkova T, Gachechiladze M, Tauber Z. Comparative 
analysis of immunohistochemical staining intensity determined by 
light microscopy, imagej and qupath in placental hofbauer cells. Acta 
Histochem Cytochem 2021;54:21‑9.

13. Bezemer RE, Schoots MH, Timmer A, Scherjon SA, Erwich JJ, 
van Goor H, et al. Altered levels of decidual immune cell subsets in fetal 

80 100 120 140 160 180 200 220 240 260 280
QuPath H-Score

80

100

120

140

160

180

200

220

240

260

280

Vi
su

al
 H

-S
co

re
Scatterplot comparison of H-scores for QuPath

and Visual Analysis of EVT

Figure 6: Scatterplot comparison of H-scores for QuPath and visual 
analysis of extravillous trophoblast. The average H-score for each 
image by method is shown in this scatterplot. Spearman correlation was 
performed and revealed a statistically significant correlation between 
the H-score for the visual method and the H-score for the QuPath 
method (r = 0.88, P = 0.0009)



J Pathol Inform 2021, 1:40 http://www.jpathinformatics.org/content/12/1/40

Journal of Pathology Informatics 7

growth restriction, stillbirth, and placental pathology. Front Immunol 
2020;11:1898.

14. Kerby A, Shingleton D, Batra G, Sharps MC, Baker BC, Heazell AE. 
Placental morphology and cellular characteristics in stillbirths in 
women with diabetes and unexplained stillbirths. Arch Pathol Lab Med 
2021;145:82‑9.

15. Kretschmer T, Turnwald EM, Janoschek R, Zentis P, Bae‑Gartz I, 
Beers T, et al. Maternal high fat diet‑induced obesity affects 
trophoblast differentiation and placental function in mice†. Biol Reprod 
2020;103:1260‑74.

16. Shawer H, Aiyelaagbe E, Clowes C, Lean SC, Lu Y, Kadler KE, et al. 
A missense mutation of ErbB2 produces a novel mouse model of 
stillbirth associated with a cardiac abnormality but lacking abnormalities 
of placental structure. PLoS One 2020;15:e0233007.

17. Tsunoda Y, Kudo M, Wada R, Ishino K, Kure S, Sakatani T, et al. 
Expression level of long noncoding RNA H19 of normotensive 
placentas in late pregnancy relates to the fetal growth restriction. 
J Obstet Gynaecol Res 2020;46:1025‑34.

18. Ulu A, Sahoo PK, Yuil‑Valdes AG, Mukherjee M, Van Ormer M, 
Muthuraj PG, et al. Omega‑3 fatty acid‑derived resolvin D2 regulated 
human placental vascular smooth muscle extravillous trophoblast 
activities. Int J Mol Sci 2019;20:4402.

19. Aeffner F, Wilson K, Martin NT, Black JC, Hendriks CLL, Bolon B, 
et al. The gold standard paradox in digital image analysis: Manual 
versus automated scoring as ground truth. Arch Pathol Lab Med 
2017;141:1267‑75.

20. Daunoravicius D, Besusparis J, Zurauskas E, Laurinaviciene A, 
Bironaite D, Pankuweit S, et al. Quantification of myocardial 

fibrosis by digital image analysis and interactive stereology. 
Diagn Pathol 2014;9:114.

21. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: An open 
source plugin for the quantitative evaluation and automated scoring 
of immunohistochemistry images of human tissue samples. PLoS One 
2014;9:e96801.

22. Taylor CR, Levenson RM. Quantification of 
immunohistochemistry – Issues concerning methods, utility and 
semiquantitative assessment II. Histopathology 2006;49:411‑24.

23. Bankhead P, Fernández JA, McArt DG, Boyle DP, Li G, Loughrey MB, 
et al. Integrated tumor identification and automated scoring minimizes 
pathologist involvement and provides new insights to key biomarkers in 
breast cancer. Lab Invest 2018;98:15‑26.

24. Meyerholz DK, Beck AP. Principles and approaches for reproducible 
scoring of tissue stains in research. Lab Invest 2018;98:844‑55.

25. Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, 
Hartman DJ, et al. Introduction to digital image analysis in whole‑slide 
imaging: A white paper from the digital pathology association. J Pathol 
Inform 2019;10:9.

26. Wang X, Wang D, Yao Z, Xin B, Wang B, Lan C, et al. Machine learning 
models for multiparametric glioma grading with quantitative result 
interpretations. Front Neurosci 2018;12:1046.

27. Carleton NM, Lee G, Madabhushi A, Veltri RW. Advances in the 
computational and molecular understanding of the prostate cancer cell 
nucleus. J Cell Biochem 2018;119:7127‑42.

28. GitHub. System Requirements. QuPath Website. Avaialble from: https://
github.com/qupath/qupath/wiki/System‑requirements. [Last accessed 
on 2020 Dec 21; Last updated on 2016 Oct 04].


