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ABSTRACT

Cross-talk between competitive endogenous RNAs
(ceRNAs) through shared miRNAs represents a novel
layer of gene regulation that plays important roles in
the physiology and development of cancers. How-
ever, a global view of their system-level properties
across various types of cancers is still unknown.
Here, we constructed the mRNA related ceRNA–
ceRNA interaction landscape across 20 cancer types
by systematically analyzing molecular profiles of
5203 tumors and miRNA regulations. Our study high-
lights the conserved features shared by pan-cancer
and higher similarity within similar origin cell type.
Moreover, a core ceRNA network was identified.
Function analysis identified a common theme of
cancer hallmarks, however they exhibit phenotype-
specific connectivity patterns. Besides, we found a
marked rewiring in the ceRNA program between var-
ious cancers, and further revealed conserved and
rewired network ceRNA hubs in each cancer, which
were tensely competitive interactions to constitute
conserved and cancer-specific modules. By provid-
ing mechanistic linkage between known cancer miR-
NAs, their mediated ceRNA–ceRNA interactions, and
the associations with known cancer hallmarks, the
inferred cancer ceRNA–ceRNA interaction landscape
will serve as a powerful public resource for further bi-
ological discoveries of tumorigenesis.

INTRODUCTION

MicroRNAs (miRNA) are an abundant class of small, non-
coding RNAs (∼22 nt long), which negatively regulate gene
expression at the level of messenger RNAs (mRNAs) stabil-
ity and translation inhibition (1). Dysregulation of miRNA

activity has been shown to play an important role in tu-
mor initiation and progression (2–4). In addition to the
conventional miRNA/mRNA function, recent studies have
shown that the interaction of the miRNA seed region with
mRNA is not unidirectional, but that the pool of mRNAs
can crosstalk through their ability to compete for miRNA
binding (5,6). These competitive endogenous RNAs (ceR-
NAs) act as molecular sponges for a miRNA through their
miRNA binding sites (also referred to as miRNA response
elements, MRE), thereby de-repressing all target genes of
the respective miRNA. Yet few such modulators of miRNA
activity have been characterized and both the extent and rel-
evance of their role in cancers are poorly understood.

More recently, comprehensive multidimensional molec-
ular profiles of large tumor populations generated by
research consortia such as The Cancer Genome Atlas
(TCGA) have enabled integrated analysis of molecular al-
terations associated with individual human cancer types
(7,8). And some ceRNAs were revealed in multiple types
of cancer (9,10). PTEN is a critical tumor suppressor
gene which is frequently altered in multiple human can-
cers. Three recent studies have identified and successfully
validated protein-coding transcripts as PTEN ceRNAs in
prostate cancer (10), glioblastoma (11) and melanoma (9).
In addition, examples are already emerging of non-coding
RNAs as competitive platforms for miRNAs, such as
lincRNA-p21(12), lincMD1(13) and linc-RoR (14). When
the analysis was significantly extended beyond the binary
ceRNA associations described in these studies, the identi-
fied ceRNA interactions were found to be important part of
the miRNA-mediated interactions. However, these studies
demonstrated that previously uncharacterized transcripts
could be functionalized, partly through the identification of
their ceRNA interactors, and presented a framework for the
prediction and validation of ceRNA interactions. Sumazin
et al. investigated the ability of coding genes to act as ceR-
NAs in human glioblastoma and identified a broad net-
work of sponge interactions as mediators of crosstalk be-
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tween different regulatory pathways (11). In addition, Paci
et al. had performed a computational analysis and identi-
fied a sponge interaction network between long non-coding
RNAs and mRNAs in human breast cancer (15). An in-
creasing number of researchers have attempted to identify
the ceRNA interactions in specific cancer. However, pre-
vious studies had focused on the properties of individual
ceRNA interactions in a specific cancer, but had lacked a
global view of their system-level properties across cancers.
Moreover, individual miRNA can target hundreds or thou-
sands of mRNAs on the basis of sequence complementarity,
only a substantial fraction of these predicted interactions
may depend on cell type and context (16,17). This suggests
that the ceRNA interactions may be cancer-specific, system-
atic studies that evaluate ceRNA cross-talks across multiple
cancer types are needed to explore.

With the discovery of ceRNAs, many of genes with
known ceRNA interactors identified so far have been im-
plicated in human disease. For example, PTEN is a potent
tumor suppressor gene that is frequently disrupted in multi-
ple cancers and governs multiple cellular processes, includ-
ing survival, proliferation and energy metabolism (18). In
addition, HULC is the most upregulated gene in hepatic
celluler cancer (HCC) and has been shown to regulate sev-
eral genes involved in liver cancer (19). linc-MD1 expression
in primary muscle cells has been shown to result in partial
mitigation of the correct timing of the differentiation pro-
gram (13). These suggest that ceRNA crosstalk is not only
of fundamental importance in physiological conditions, but
is also crucially relevant in various cancers. However, can-
cer encompasses more than 100 related diseases (20), mak-
ing it crucial to understand the commonalities and differ-
ences of ceRNA interactions among various types and sub-
types (21). TCGA was founded to address these needs, and
its large datasets are providing unprecedented opportunities
for us to systematically analyze the ceRNA networks across
cancers.

Here, we performed a systematic analysis of 5203 tu-
mors from 20 cancer types to investigate the mRNA-related
ceRNA cross-talks (Supplementary Figure S1). Besides the
conserved topological features across cancers, our study
highlights a marked rewiring in the ceRNA program be-
tween various types of cancers. By applying functional en-
richment we have identified specific ceRNAs associated
with hallmarks of cancers. Through in-depth analyses of
the structure of the pan-cancer ceRNA networks, we iden-
tified the conserved and differential hubs, which further
constituted the conserved ceRNA modules and cancer-
specific ceRNA modules. These analyses and validations
demonstrate how the cancer-associated ceRNA regulatory
network can be used to accelerate discovery of ceRNA-
based biomarkers and potentially therapeutics. To extend
the impact and usage of mRNA related ceRNA–ceRNA
landscape across cancers, Pan-ceRNADB (http://www.bio-
bigdata.com/pan-cernadb/ or http://www.bio-bigdata.net/
pan-cernadb/), a convenient and available resource is fur-
ther constructed for biomedical scientists. Systematic con-
struction and analysis of mRNA-related ceRNA regulatory
network across multiple cancers, can help to elucidate the
commonalities and differences in mechanisms of cancers.

MATERIALS AND METHODS

Genome-wide protein-coding gene expression profiles across
cancers

All protein-coding gene expression datasets were obtained
from the TCGA. In total, 20 types of cancers were ana-
lyzed in the current study (Supplementary Table S1). Nor-
malized TCGA level 3 Agilent microarray mRNA expres-
sion profiles were used for glioblastoma multiforme (GBM)
and ovarian serous cystadenocarcinoma (OV) . Genes with
missing values in >30% samples were removed and then we
imputed the other missing values by the k-nearest neighbor
method. For the remaining cancer types, mapped and gene-
level summarized (RPKM) RNA-seq datasets were used
(22). To filter genes not expressed across most samples in
RNA-seq datasets, we removed genes with RPKM expres-
sion values of 0 in all of the samples. To allow log transfor-
mation, gene RPKM expression values of 0 were set to 0.05
in the given samples. The microarray and RNA-seq mRNA
expression values were log2 transformed for all subsequent
analysis.

Ago CLIP-supported miRNA–target interactions

Recently, several studies have reported that the use of cross-
linking and Argonaute (Ago) immunoprecipitation coupled
with high-throughput sequencing (CLIP-Seq) could iden-
tify endogenous genome-wide interaction maps for miR-
NAs (23,24). In this study, the AGO-CLIP altas were gener-
ated by compiling available AGO-CLIP data from starBase
V2.0(25), and compared with coding sequence (CDS) and
5′ UTR regions, 3′ UTR regions are overlap with more
CLIP-Seq peak clusters (Supplementary Table S2). To in-
vestigate human miRNA–target regulatory relationships,
miRNA target sites are predicted by five prediction pro-
grams and directly downloaded from their corresponding
websites, including TargetScan (26), miRanda (27), Pictar
(28), PITA (29) and RNA22(30). Especially, the RNA22 al-
gorithm also predicted the target sites in CDS and 5′ UTR.
Then, all CLIP-Seq peak clusters were intersected with
these predicted miRNA target sites. In total, we character-
ized ∼420 000 interactions between 386 conserved miRNAs
and 13 802 protein-coding genes. Most of these miRNA in-
teractions are located at the 3′ UTR regions, and about 8.5
and 3.35% interactions were in the CDS and 5′ UTR re-
gions, respectively.

Genes associated with cancer hallmarks

A list of Gene Ontology (GO) terms that were related to the
hallmarks of cancer were obtained from a previous study
(31). The genes annotated to these hallmark-associated GO
terms were obtained from MsigDB V4.0, which is a col-
lection of annotated gene sets for use with GSEA software
(32).

Collection of cancer-associated miRNAs

Several database systems have proposed to provide a com-
prehensive resource of miRNA dysregulation in various hu-
man diseases. We collected the cancer-associated miRNAs
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from six databases, including HMDD (33), miR2Disease
(34), miREnvironment (35), OncomiRDB (36), PhenomiR
2.0(37) and SM2miR (38). And all these cancer-related
miRNAs were manually corresponded to each cancer.

Construction of the ceRNA networks in individual cancer
type

Having got the Ago CLIP-supported miRNA–mRNA reg-
ulatory data, we mainly followed two principles listed be-
low to identify ceRNA pairs in each cancer. A central tenet
of our hypothesis is that trans-regulatory ceRNA crosstalk
increased with the high miRNA regulatory similarity be-
tween mRNAs and their strong co-expression in specific
cancer (Supplementary Figure S1). Firstly, a hypergeomet-
ric test is used to compute the significance of shared miR-
NAs for each possible gene pairs (detailed description can
be found in Supplementary Method). Moreover, the num-
ber of shared miRNAs is required to at least three. All P-
values were subject to false discovery rate (FDR) correction
and mRNA pairs with FDR < 0.01 were considered as can-
didate ceRNA interaction pairs.

Depending on the total number of functional miR-
binding sites that they share with a target, ceRNA modu-
lators can decrease the number of free miR molecules avail-
able to repress other target genes. This indicated that the ex-
pression of ceRNA pairs was positively correlated with each
other. To identify the active ceRNA pairs in a specific can-
cer, we computed the Pearson correlation coefficient (R) of
each candidate ceRNA pairs identified above. All the can-
didate ceRNA pairs with R > 0 and P-adjusted < 0.05 were
identified as ceRNA–ceRNA interactions.

After assembling all identified ceRNA pairs, we gener-
ated the mRNA-related ceRNA network for each cancer
type. A node represents a mRNA, and two nodes are con-
nected if they are co-regulated by miRNAs and positively
co-expressed in this cancer.

Topological measurements of the ceRNA networks

For each ceRNA in a network, degree is defined as the num-
ber of edges incident to it. On the one hand, it is reported
that the hub genes with higher degrees in biological net-
works are more likely to be essential. On the other hand,
experimental studies have demonstrated that nearly 10% of
the nodes in a network are essential. Thus in this work, we
selected the top 10% of genes with the highest degrees in the
ceRNA network as the hub genes. In addition, we also ana-
lyzed the results using another two commonly used thresh-
olds (15 and 20%).

To systematical analysis of the hub across cancers, we
split the hubs into three groups: (i) cancer-specific hubs, that
is the ceRNAs were only hubs in only one cancer ceRNA
network; (ii) differential hubs, the ceRNAs that are hubs
in more than one ceRNA network but their neighborhoods
change between different cancer networks; and (iii) com-
mon ceRNA hubs, these ceRNAs are hubs in more than one
cancer and their interacting ceRNAs are similar in differ-
ent cancers. To define the first category, ceRNAs that were
ranked in top 10% in at least one network, but were not
ranked in top 10% in any other cancers were selected. To

identify the other two types of hubs, we calculated the simi-
larity of their interacting ceRNAs between pairs of ceRNA
networks. For each pair of ceRNA networks, we calculated
the Simpson index. If the Simpson index of a ceRNA is
higher than 0.8 in at least one pair of ceRNA networks,
the hub ceRNA was grouped into the common hubs. Oth-
erwise, we added the ceRNA to the secondary category.

Construction of hallmark associated ceRNA networks in each
cancer

The hallmark-associated ceRNA networks were con-
structed by mapping the hallmark genes to the ceRNA net-
work and then the edges linked by two hallmark genes were
extracted. Then we test whether the number of edges is sta-
tistically significant larger than the random cases. Instead of
the real ceRNA networks, 1000 random degree-conserved
networks were chosen as control, and the number of edges
comprised by hallmark genes in each random network was
counted. The P-value is the fraction of the number of edges,
which is larger than that in the real one.

Network visualization and comparison analysis

The ceRNA networks were visualized by Network Work-
bench (39) and Cytoscape 3.0.2(40) and topology analysis
was performed by the package of ‘igraph’ in R language.
To estimate the similarity of two cancer ceRNA networks,
we calculated the number of edges that are present in both
networks (common ceRNA interactions) and Simpson in-
dex was used. In addition, a hypergeometric test was used
to test that if two ceRNA networks significantly shared the
common ceRNA interactions.

Identification of ceRNA network modules

First, we used the clique percolation clustering method to
identify ceRNA modules in each cancer, which are defined
as cliques. Cliques are all of complete subgraphs that are
not parts of larger complete subgraphs. This procedure is
performed using CFinder (41), which is a fast program for
locating and visualizing overlapping.

To identify the conserved ceRNA modules across can-
cers, the hallmark associated ceRNA networks in each can-
cer were merged. And then we obtained the hallmark as-
sociated subnetwork of the common hubs. And then the
cliques were identified from the subnetwork. The conserved
ceRNA modules were defined as the community with genes
from 10 to 50. Similarly, the cancer specific ceRNA modules
were identified from the cancer specific hub subnetworks.

RESULTS

The miR program-mediated mRNA-related ceRNA–ceRNA
regulatory landscape in pan-cancer

To evaluate both the range and potential tumorigenic role of
this class of miR-mediated interactions, we explored a two-
stage analysis method and constructed the ceRNA–ceRNA
regulatory landscape across diverse types of cancers. In the
first step, we identified nearly 7328 genes participating in
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521 621 pairwise miR program-mediated RNA–RNA in-
teractions at a FDR < 0.01. These candidate ceRNA pairs
were regulated by at least three common miRNAs. We then
constructed cancer-specific ceRNA interactomes by filter-
ing the global ceRNA interactome according to specific
cancer expressomes. As a result, cancer-specific ceRNA in-
teractome covered more than half of the candidate ceRNA
interactome, implicated with 11.9–84.9% genes and 0.27–
22.3% of the candidate ceRNA interactions (Supplemen-
tary Figures S2 and S3). Moreover, to provide a conve-
nient and available resource about mRNA related ceRNA–
ceRNA landscape across cancers for biomedical scien-
tists, Pan-ceRNADB, a free and web-accessible database,
is further constructed (http://www.bio-bigdata.com/pan-
cernadb/ or http://www.bio-bigdata.net/pan-cernadb/).

Together, all these ceRNA–ceRNA interactions consti-
tute a large and previously uncharacterized ceRNA net-
works across diverse types of cancers. We modeled the net-
work graphically, with genes represented as nodes and their
miRNA-mediated interactions as undirected edges. In this
work, we mainly constructed the ceRNA networks of mul-
tiple cancers by using the dataset of TCGA. In order to
test the robust of the ceRNA networks in a specific can-
cer, we also analyzed multiple independent datasets ob-
tained from Gene Expression Omnibus. As a result, these
ceRNA interactions show high co-expression in dependent
datasets (Supplementary Figure S4). Thus, a conclusion can
be drawn that the ceRNA interactions are stable across
the ceRNA networks constructed using different datasets.
Moreover, benchmark analyses have indicated that such a
two-step approach is valuable to identify the association of
competition among mRNAs (Supplementary Text S1). All
these results validate the stability of the ceRNA networks
across cancers and prove those can be used to understand
the biological mechanism of cancers.

Common features of ceRNA interactomes

Analysis of the topological features of the ceRNA networks
across cancers, some common topological features of the
ceRNA network were revealed (Figure 1A). Firstly, the ex-
amination of the degree distribution of these ceRNA net-
works reveals a power law distribution, showing that the
ceRNA network is scale free, similar as most types of bi-
ological networks. In each cancer ceRNA network, most
genes had few interacting partners, while a small subset of
genes, denoted hubs, had many interacting partners each
(Figure 1B and Supplementary Figure S5). We also found
that the overall regulatory effect on a node depends on
many variables, including the number of ceRNA neighbors
and the number of miRNAs they share with its neighbors.
In general, nodes in larger highly connected graphs will have
more neighbors and will thus be more strongly regulated by
other ceRNAs. Analysis of the ceRNA networks show that
highly connected ceRNAs are more co-expressed with their
neighbors than others (Figure 1C and Supplementary Fig-
ure S6). In additon, co-expression of ceRNAs in the net-
work increases with the number of common miRNAs (Fig-
ure 1D and Supplementary Figure S7). Next, we analyzed
the modular structure of the ceRNA networks. Here, we de-
fined a ceRNA module as a clique that is a maximal com-

plete subgraph. All modules in the ceRNA networks are
identified using CFinder (41). Figure 1E and Supplemen-
tary Figure S8 show the number of modules correspond-
ing to each k-value, and the cumulative fraction of ceRNAs
contained in modules. With an increase in the value of k,
there is a sharp decrease in the number of modules. In total,
about 30–75% ceRNAs are involved in at least one module.
We interpreted this feature as a consequence that ceRNAs
implement specific regulations as small clusters rather than
as individual or big modules.

The expression levels of miRNAs had shown to be crit-
ical for cross-regulation of ceRNAs in theoretical model
(42), we further explore the role of miRNA concentra-
tions on ceRNA cross-regulation across each cancer. Dicer
and Drosha are two central regulators of miRNA mat-
uration, we divided the cancer samples based on the
Dicer and Drosha expression. As a result, ceRNA pairs
were strongly co-expressed in Dicer/Drosha-low expressed
groups (Supplementary Figures S9 and 10). Specifically,
the co-expression were more obvious in Dicer and Drosha
low expressed groups (Figure 1F and Supplementary Fig-
ure S11). We presumed that if miRNA molecules are more
abundant, cross-regulation is unlikely to occur as most
genes are fully repressed by the abundant miRNAs. This
may be an important supporting evidence that the major-
ity of the co-expressed genes in the network are ceRNA
pairs. Another common feature of the cancer ceRNA inter-
actomes was that ceRNA interactions participate in distal
regulation between genes within and across chromosomes.
Moreover, analysis of the pathway genes in KEGG shows
that these ceRNA interactions mediate crosstalk between
numerous pathways.

Network level analysis highlights a core ceRNA networks
across cancers

Although the pan-cancer ceRNA networks share several
common features, viewing the ceRNA network across can-
cers, our study highlights a marked rewiring in the ceRNA
program between different cancers, documented by its
‘on/off’ switch from cancer to cancer and vice-versa. We
found that ∼34.56% ceRNA regulations were occurred only
in one cancer (Figure 2A) and only 3.78% ceRNA–ceRNA
interactions were conserved in more than 10 cancers. The
low conservation of ceRNA regulations may be explained in
part by the cancer-specific expression of genes. Within any
particular tissue or cell, only a subset of genes is expressed
active (43) and thus only a subset of ceRNA interactions
can work.

Although most of the ceRNA regulations were cancer-
specific, the cancers with similar tissue-of-origin share com-
mon ceRNAs (Figure 2B). Based on the Simpson index,
we found that each cancer network varies in similarity to
other cancer networks and reveal both known and new
relationships among these cancers. Importantly, the ade-
nocarcinomas, such as kidney renal clear cell carcinoma
(KIRC), breast invasive carcinoma (BRCA), prostate ade-
nocarcinoma (PRAD) and lung adenocarcinoma (LUAD),
show greater similarities with each other than other can-
cers (Figure 2B). For instance, as expected, LUAD and lung
squamous cell carcinoma (LUSC) are two types of lung
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Figure 1. The global topological features of ceRNA–ceRNA interaction networks. (A) A global view of the topological features for 20 cancers. The first
column represents the goodness of fit of degree distribution. And the second and the third columns represent the correlation coefficient. The fourth indicates
the proportion of ceRNAs in cliques. The fifth column is the −log10(p) of ranksum test. The numbers were colored based on the adjacent color map. The
details of these results for UCEC are shown in (B–F). (B) The distribution of the degree of ceRNAs. (C) ceRNAs with high degree are strongly coexpressed.
(D) The correlation between expression of genes and the total expression of their ceRNAs is plotted as a function of the number of its ceRNA regulators. (E)
Number of cliques at different k-values and cumulative ratios of ceRNAs in cliques with k-values are not bigger than k. The left y-axis represents number
of cliques under different k-values, corresponding to the triangle line. The right y-axis represents cumulative ratios of ceRNAs in cliques, corresponding to
the dot line. (F) The ceRNA–ceRNA interactions were likely to co-express in Dicer and Drosha low expressed groups.

cancers, we found that the similarity of their ceRNA net-
works were higher than those with other cancers. Approx-
imately 66.4% ceRNA interactions in LUSC also worked
in LUAD, which was significantly higher than expected (P
< 1.0E-32). Another example is the colon cancer (COAD)
and rectal cancer (READ). The 98.1% ceRNA interactions
in the READ were shared in COAD, which was signifi-
cantly higher than expected (sim = 0.981, P < 1.0E-32).
To assess whether there is a common core of ceRNA reg-
ulatory interactions to maintain the architecture of ceRNA
networks across cancers, we focused on the ceRNA inter-
actions occurred in more than 90% cancers. This analy-
sis revealed that most of the conserved ceRNA regulations
formed a large connected component (Figure 2C). These
findings indicate that the conserved ‘neuronal’ ceRNA net-
work may maintain the ceRNA network architecture across
cancers. Testing for KEGG pathway enrichments we found
that these ceRNAs were highly enriched for basic cellular
processes common to mutiple type of cancers (Figure 2D),
such as cytokine–cytokine receptor interaction, cell cycle
and mitogen-activated protein kinase (MAPK) signaling
pathway. These observations suggest that the represented
cancers might have a common feature of aberrant immune
system function and cell cycle.

Differential network analysis reveals conserved and rewired
network hubs in each cancer type

Differential gene expression profiling studies have led to the
identification of several cancer associated genes. However,
evidences have shown that the oncogenic alterations in cod-
ing regions can modify the gene functions without affect-
ing their own expression profiles (44). Next, we attempted
at providing insights into how to identify cancer-related
genes via the ceRNA network topological features. Com-
paring the degree distribution across cancers, we found that
these most of the ceRNA networks were characterized by
nodes with highly variable degrees, from genes with a few
connections to ‘hubs’ with hundreds of links (Figure 3A).
For example, the ceRNA network of GBM presents an in-
creased connectivity with respect to the brain lower grade
glioma (LGG). A Kolmogorov–Smirnov test showed that
the GBM network was characterized by a gene degree which
is stochastically increased with respect to the LGG net-
work (P < 7.98E-7). The significant changes of ceRNA net-
work connectivity in different stages of cancer indicate that
ceRNAs with strongly altered connections can have a role
in cancer biology and motivate us on a connectivity-based
scoring measure for the identification of putative cancer as-
sociated genes.

Since hub nodes have been found to play important roles
in many networks, we identified hub ceRNAs in each net-
work. Generally, these ceRNA hubs retained their high de-
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Figure 2. The network level comparision of ceRNA–ceRNA interaction networks across cancers. (A) The pie chart shows the proportion of ceRNA
interactions presented in different number of cancers. The majority of the ceRNA interactions are cancer specific. (B) The simpson index matrix shows the
similarity between each pair of ceRNA–ceRNA networks. Some pairs of cancers with same origin were specifically shown. (C) The core neuron ceRNA–
ceRNA network that presented in more than 18 cancers. (D) The KEGG pathways enriched by the genes in the core ceRNA network.

gree across other cancers (Figure 3B and Supplementary
Figures S12 and 13). To systematically assess the extent to
which these hub ceRNAs were shared among the different
cancer-specific ceRNA networks, differential network anal-
ysis was performed and these hubs were grouped into three
categories (see ‘Materials and Methods’ section): common
hubs, differential hubs and cancer-specific hubs. As a result,
we identified 769 common hubs across these cancers which
constituted the largest proportion of the hub ceRNAs. In
addition, ∼35 common hubs were included in Cancer Gene
Cencus database, including EZH2, CASP8 and EP300 (Fig-
ure 3C). For instance, the ceRNA EZH2 was in the top 10%
of hubs in nine ceRNA networks. We found that 15 inter-
acting partners of EZH2 are represented in more than five
ceRNA networks (Figure 3D). These results indicated that
these ceRNAs might influence the cancerous state in dif-
ferent cancers through the same mechanisms. Functional
enrichment analysis of these ceRNAs indicated that EZH2
may regulate cell cycle in cancers. In addition, there are 360
differential hubs, 11 of which were also known cancer genes
(Figure 3C). To examine whether these differential ceRNA
hubs were targeting different cancer signaling pathways in
each cancer type, we associated each ceRNA hubs with a
cancer signaling pathway by using the enrichment analy-
sis. One interesting example was BCL6, which was in the
top 10% of hubs in the GBM and head and neck squa-
mous cell carcinoma (HNSC) networks (Figure 3E). Func-

tional enrichment of the ceRNA partners of BCL6 in GBM,
we identified the most significant pathway is ‘axon guid-
ance’ (P-adjusted = 0.012). However, the partners of BCL6
in HNSC network was found to be mostly associated with
‘cell cycle’ (P-adjusted = 0.018). Overall, these results sug-
gest that the ceRNAs may selectively regulate differential
pathways in any specific cancer. Finally, 223 ceRNAs were
identified as hubs exclusively in the ceRNA network of a
specific cancer (Figure 3C). Several of these cancer-specific
ceRNA hubs have specific roles in the type of cancer that
they were uniquely identified with. For instance, the blad-
der urothelial carcinoma (BLCA) specific hub-HMGA2,
has been demonstrated to be upregulated in bladder can-
cer at both the transcriptional and translational levels com-
pared with normal bladder tissue, and HMGA2 protein is
a potential prognostic marker for predicting tumor recur-
rence and progression (45). In addition, the LUSC-specific
hub ceRNA-CREBBP had been found frequently mutated
in LUSC (46). Overall, these results suggest that several of
the cancer-specific ceRNA hubs have known roles in the rel-
evant cancer type, while some ceRNA hubs are also associ-
ated with multiple disease states. A more detailed study of
these ceRNAs coupled with further functional validation
studies can reveal previously uncharacterized pathways for
these cancer types.
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Figure 3. The conserved and rewired network hubs in each cancer type. (A) Cumulative distribution functions of the ceRNA degree in each cancer. (B) The
number of hubs distribute in 1–20 cancers in which the hubs can occur. (C) The conserved and rewired network hubs. Shown are the simpson indexes of
different types of hubs from the ceRNA networks. Columns of each heatmap correspond to one of the cancers, and the rows represent a cancer associated
hub. The ith row and jth column show the average similarity of the ceRNA partners across all other cancer networks. The upper color map corresponds to
the hubs being present in the top 10% of an inferred network. The bottom color map is for hubs that are not in the top 10%. (D) An example of common
hub EZH2. ceRNAs ocurred in different numbers of cancers were grouped by circle. (E) An example of differential hub BCL6.

miRNA-mediated ceRNA regulations control broad cancer-
related hallmarks

Although the biology of cancer is extremely complex, the
complexity of cancer can be reduced and represented by a
few cancer hallmarks that enable tumor growth and metas-
tasis dissemination (47). These hallmarks provide a frame-
work for understanding the remarkable diversity of can-
cers. Next, we focused on the ceRNA regulations in the
context of cancer hallmarks. According to one of the re-
cent studies, there are 2954 genes related to cancer hall-
marks. Firstly, analysis of the miRNA regulation of these
hallmark genes shows that hallmark genes were regulated
by more miRNAs than other genes (Supplementary Fig-

ure S14, P = 1.48E-31), suggesting that hallmark genes are
more likely to be precise expressed and under the strictly
regulatory control of miRNAs and ceRNAs. Functional
enrichment analysis reveals that the cancer-related ceRNA
networks enriched at least one hallmark of cancers. About
20% hallmark genes were involved in ceRNA regulations,
which was significantly larger than randomly chosen genes
(Figure 4A, right panel, P < 1.0E-3). On the other hand, the
ceRNA networks cover most genes of the hallmark-related
functions (range from 18.75 to 80%, Figure 4A, top panel).
Another interesting observation is that all the 20 ceRNA
networks are enriched in the function of ‘regulation of cell
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Figure 4. The ceRNA networks control broad cancer associated hallmarks. (A) The summary bubble-bar plot show the functional enrichment results
of the ceRNA networks across the cancers. The top bars show the percentage of ceRNAs annotated in each term. And the bars on the right show the
percentage of ceRNAs annotated in the cancer hallmarks. The bubble size indicates the number of genes in each term, and different color corresponds to
different FDRs. The darker of the color, the smaller of the FDR. (B and C) The normalized degree of ceRNAs annotated in the two hallmarks. (D and E)
Relationships between ceRNA layers and frequency of ceRNAs implicated in two hallmarks identified in each layer. Increasing layer numbers correspond
to regions of increasing densities in the network. The layers of each network were normalized to [0–1] and the frequencies were summarized in each interval.

proliferation’, highlighting its roles in the development of
pan-cancers.

An overall view of the functional profiles of ceRNA net-
works can also reveal some cancer-specific functions. For
example, compared to LGG, we found that the ceRNAs
in GBM were enriched in the process of ‘cellular response
to hypoxia’. In addition, most of the adenocarcinoma (in-

cluding LUAD, PRAD and BRCA) were also enriched in
this process (Figure 4A), suggesting the tumor hypoxia is
might be a classical feature of these cancers. As a tumor
grows, it rapidly outgrows its blood supply, leaving portions
of the tumor with regions where the oxygen concentration
is significantly lower than in healthy tissues. In order to sup-
port continuous growth and proliferation in challenging hy-
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poxic environments, cancer cells may active these ceRNA
interactions for responsing to hypoxia. Next, we examined
whether the genes enriched in the same hallmarks exhibit
different connectivity patterns. The connections number of
each ceRNA (node degree) was scaled to a value between
0 and 1 by dividing each node degree by the largest degree
in a ceRNA network. We found that the ceRNAs enriched
in the same hallmarks show varied degree across cancers
(Figure 4B and C). In addition, by peeling each ceRNA
network, we found that the ceRNAs with similar functions
localized in different layers of the networks. For instance,
ceRNAs associated with ‘insensitivity to antigrowth signals’
were with higher degree in the BRCA ceRNA network and
OV (Figure 4B). However, these ceRNAs were localized to
the more dense layers in BRCA (Figure 4D). These results
suggest that ‘insensitivity to antigrowth signals’ associated
ceRNAs play key roles in the development of BRCA. An-
other instance is the ‘Genome Instability and Mutation’ as-
sociated ceRNAs, that were with higher degree in COAD
than those of READ. These ceRNAs were also more likely
to localize in the more dense layers of the COAD ceRNA
networks (Figure 4E). This structural property of hallmark
genes in the context of pan-cancer ceRNA networks may be
used to identify additional genes involved in specific cancer
based on their phenotype-specific connectivity patterns.

Investigating the pan-cancer ceRNA networks reveals several
conserved and cancer-specific ceRNA modules

We then mapped all hallmark genes to nodes in the ceRNA
networks across cancers, and then extracted the connected
components as hallmark ceRNA networks (HCNs, Supple-
mentary Dataset S1). As shown in Supplementary Figure
S15, except LIHC, other HCNs are much denser than ex-
pected by chance (1000 random degree-conserved ceRNA
networks are chosen as control). These results demonstrate
that cancer hallmark genes tend to be connected in the
ceRNA networks. Next, we were interested in identifying
the conserved and specific ceRNA modules. Modules in
the ceRNA networks represent groups of functionally re-
lated genes dedicated to specific biological processes. In-
vestigating the pan-cancer ceRNA networks reveals several
conserved and cancer-specific modules of particular inter-
est (see ‘Materials and Methods’ section). In total, 20 con-
served ceRNA modules were identified (Supplementary Ta-
ble S3). Functional analysis of these conserved modules re-
vealed that the majority of these ceRNAs were involved in
multiple cancer associated hallmarks. For instance, a con-
served hub module consisted of 86 pairs of ceRNA interac-
tions among 14 ceRNAs (Figure 5A). Among these ceR-
NAs, some have been demonstrated to play key roles in
multiple cancers, such as HIF1A, MAPK6 and RASA1.
Hypoxia-inducible factors (HIF) play pivotal roles in the
regulation of cellular utilization of oxygen and are essen-
tial transcriptional regulators of angiogenesis in solid tu-
mor (48). Previous studies have demonstrated that MAPK
signaling facilitates HIF activation through p300/CBP (49).
Here, we observed that 14 miRNAs mediated the regulation
between HIF1A and MAPK6 in 10 cancers. Several miR-
NAs had been demonstrated to be dysregulated in many
cancers, including miR-107, miR-17 and let-7 family. These

results suggest another miRNA mediated pathways to ac-
tivate the HIF signaling in cancers. Another example is
the conserved module consisted 45 interactions among 10
ceRNAs (Figure 5B), including the cancer-associated genes,
ITGA2, PCDHAC1 and SOS1. The ceRNA ITGA2 en-
codes the alpha subunit of a transmembrane receptor for
collagens and related proteins. And PCDHAC1 is a member
of the protocadherin alpha gene cluster. It had been demon-
strated that integrin- and cadherin-mediated signals in co-
operation then oppose each other to lead the keratinocyte
into cell-cycle exit, growth arrest and onset of terminal dif-
ferentiation (50). In our current study, we observed that
ITGA2 and PCDHAC1 were co-regulated by two miRNAs,
miR-17–5p and miR-20a-5p. The current knowledge sum-
marized herein highlights the critical regulation the integrin
and cadherin network in cooperation with miRNAs.

Besides the conserved ceRNA modules in multiple can-
cers, we should not overlook the importance of cancer-
specific ceRNA modules. In total, we identified 35 cancer
specific ceRNA modules (Supplementary Table S4). A se-
ries of experimental studies corroborate the role of PRLR
in cancer biology (51). High level of PRLR expression
has demonstrated to be an independent negative prognos-
tic factor for overall survival in patients with HNSC. The
PRLR mainly activated Stats and promoted the growth
of human cancer cells by regulation Bcl-XL (52). In ad-
dition to this classical PRLR-dependent signal transduc-
tion pathway, here we found that PRLR may alter the ac-
tivity of EGR3 through miRNA regulations (such as let-
7a-5p), which is an immediate-early growth response gene
which is induced by mitogenic stimulation (Figure 5C). An-
other example is the GBM specific ceRNA module, includ-
ing the gene DPYSL5, which is also known as CRMP5(53).
CRMP5 has been shown to highly express in the develop-
ing brain and in adult brain neurogenesis areas. The expres-
sion of CRMP5 in GBM activities Notch signaling pathway
to promote proliferation and poor survival. However, the
underlying mechanisms are still unknown. We found that
CRMP5 can regulate the transmembrane Notch ligand-
DLL4(54) through competing for the miRNA-miR-155–
5p (Figure 5D). miR-155 has been demonstrated to play
crucial roles in GBM. All these observations suggest that
targeting CRMP5–DLL4 interaction mediated by miRNAs
may be a promising strategy for future glioblastoma treat-
ment.

A cancer hallmark network framework for understanding the
ceRNA regulations

miRNAs are a class of small RNAs functioning as neg-
ative regulators of gene expression at post-transcriptional
level. And the dysregulation of miRNAs has been demon-
strated to play critical roles in cancer through regulating the
genes inappropriately. In addition, recent and our current
studies have suggested that miRNAs could act as a regula-
tory language and mediated the RNA–RNA interactions.
Here, we proposed a hierarchical model to systematically
understand the miRNA–ceRNA networks in human can-
cers (Figure 5E). Evidences have demonstrated that can-
cers develop from the accumulation of mutations and epige-
netic changes (55), such as changes in DNA copy number,
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Figure 5. The conserved and specific ceRNA modules across the cancers. (A and B) Two conserved ceRNA modules across multiple cancers. The number
in the matrix indicates the number of cancers the ceRNA interaction occurred. (C and D) Two examples of cancer-specific ceRNA modules. The cancer-
associated miRNAs were also shown in the modules. (E) Summary of the hierarchical model to systematically understand the miRNA–ceRNA networks
in human cancers. This model uses the module in (A) as an example. The model is laid out hierarchically with (from the top down) cancers, miRNAs,
ceRNA modules, annotated GO biological process terms for the ceRNAs and finally the GO terms associated with hallmarks of cancers.
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translocation as well as gene fusions. As a result, all of such
events may induce altered expression of mRNAs. Changes
of the genes impact the MREs and further alter the capac-
ity of a proper mRNA to attach or titrate miRNAs. Con-
sequently, the ceRNA network or modules are perturbed,
inducing the cancer associated hallmark dysregulation. All
these processes may contribute to the development and pro-
gression of cancers. Given the complex nature of biologi-
cal systems, these regulatory systems often need to function
in a coordinated fashion in order to produce appropriate
physiological responses to both internal and external stim-
uli. Therefore, exploring the interaction and crosstalk be-
tween the regulatory systems is important for understand-
ing the function of both cells and more complex systems.
Taken together, the identification of the ceRNA networks
herein expands the theory of dynamic and complexity of the
miRNA-gene regulatory network and provides more chal-
lenge for development of miRNA-based cancer therapy.

DISCUSSION

In this study, we performed a systematic analysis of
the mRNA-related ceRNA–ceRNA interaction landscape
across 20 major types of cancer. Importantly, the global
topological features of these cancer ceRNA networks are
conserved. For example, the degree distributions of all
mRNA-related ceRNA networks follow a power-law dis-
tribution. Comparison of the ceRNA networks across can-
cers, we showed that only a small proportion of the ceRNA
interactions are conserved. The mRNA-related ceRNA in-
teractions varied greatly from one cancer type to another.
In addition, our study revealed that the cancers with sim-
ilar tissue of origin show higher network similarity. Fur-
thermore, the analysis of the ceRNA networks across tu-
mor types revealed a core subnetworks, including genes in-
volved in cell cycle. And our analysis also provides a hub-
based view to elucidate the common and specific ceRNA
modules across cancers. Hubs are topologically centered in
the ceRNA network, having maximal informational links
with other ceRNAs. Despite the majority of the hub ceR-
NAs share the common interacting partners, we found that
some hubs rewired the partners in differential cancers (such
as, BCL6). One possible explanation for this finding is that
the hubs active different pathways in distinct cancers by se-
lectively regulating these ceRNAs. Finally, conserved and
specific ceRNA modules were analyzed, motivating us to
propose a hierarchical model to systematically understand
the miRNA–ceRNA networks in human cancers.

MiRNAs have been shown to regulate PTEN and thus
contribute to cell transformation mediated by aberrant ac-
tivation of the PI3K/AKT pathway (9). Much attention of
recent studies is paid to the ceRNAs of PTEN, and some
studies have identified and verified several of these ceRNAs.
We also investigated the PTEN associated ceRNA subnet-
works across cancers. A ceRNA sub-network of PTEN was
constructed across 20 types of cancer and 285 interactions
were included, including GBM. Recently, Sumazin et al.
have validated a substantial set of miR-mediated PTEN
modulators in multiple cell lines (11), which were signifi-
cantly overlapped with our PTEN ceRNA subnetwork (P =
4.56E-27) and some of the known ceRNAs were included,

such as CNOT6L, CCDC6, ZEB2, KLF6 and LRCH1
(Supplementary Table S5). siRNA silencing of these miR-
mediated PTEN regulators had been shown to be sufficient
to downregulate PTEN in a 3′ UTR-dependent manner and
to increase tumor cell growth rates. Moreover, we found that
∼31.93% ceRNAs of PTEN were supported by other litera-
tures or computational methods (Supplementary Table S5).
In addition, many other novel RNAs were unveiled to mod-
ulate the PTEN RNA levels, supplementing the ceRNA
networks of PTEN across cancers. Next, we compared the
expression patterns and function correlations between the
novel ceRNAs and those known ones. As a result, we ob-
served that these novel ceRNAs showed similar expression
patterns with PTEN as the known ones (Supplementary
Figure S16). They also showed significantly higher function
similarity with the known ceRNAs (Supplementary Figure
S17, P < 0.001). When we explored whether these ceRNAs
can be regulated by PTEN, we observed that that the expres-
sion of 67.02% ceRNAs were upregulated and 42.1% of the
ceRNAs were upregulated above 1.5-fold change in PTEN
overexpressed U87 cell line (Supplementary Figure S18).
The proportion is slightly higher than that of the known
ceRNAs of PTEN. Because the known ceRNAs of PTEN
are incomplete and mainly focus on GBM, these novel ceR-
NAs provided here could provide more ceRNA candidate
for PTEN across cancers. These results indicate the complex
regulatory mechanism of PTEN tumor suppressor gene. To-
tally, the recently identified PTEN-centered ceRNA net-
works contribute to increase even further the relevance of
PTEN in human cancer, and bring a deeper understanding
of the molecular alterations that are at the basis of human
cancer.

In the past several years, significant efforts have
been made in determining biologically relevant miRNA–
target interactions using high-throughput experimental ap-
proaches. The use of CLIP-Seq could identify endogenous
genome-wide interaction maps for animal miRNAs. On
the other hand, miRNA target identification is challeng-
ing owing to the imperfect nature of base pairing between
an miRNA and its target, and the rules of targeting are
not completely understood. Currently, several miRNA–
target prediction algorithms, including TargetScan, mi-
Randa, RNA22 and PITA, have been used to identify
miRNA regulations. Moreover, the CLIP-Seq atlas allowed
us to integrate experimentally defined miRNA–mRNA in-
teraction with prediction programs to create more accu-
rate prediction of miRNA regulations and also reduce the
size of the search space for miRNA target sites (6,56,57).
It is complementary between sequencing method and in sil-
ico prediction strategies. We observed that the combination
of the computational approach with the experimental ap-
proach refined the computational predictions by more than
30-fold, similar as the result of previous study (56). There-
fore, further development and optimization of these predic-
tion algorithms based on CLIP-seq data will improve sub-
sequent predictions of ceRNA interactions, and harnessing
these experimental techniques will provide further insight
into ceRNA regulation beyond that which is possible with
in silico target predictions. In addition, although this analy-
sis is mainly limited to the 3′ UTRs of protein-coding tran-
scripts, we believed that it is still useful for the identification
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and analysis of putative ceRNA crosstalk across different
cancers. As the understanding of miRNA regulatory mech-
anism widens, it can be expected that the identification of
miRNA interactions as well as the ceRNA interactions will
become progressively more accurate.

In our current study, the ceRNA–ceRNA interactions
were identified in each cancer by considering the similar-
ity of miRNA regulation and expression in specific cancer.
The co-expression of mRNAs may reflect a variety of sce-
narios. For example, the genes may co-localize within the
genome or may be co-regulated by the same transcription
factors. To exclude these scenarios, we calculated the pro-
porion of co-localized and co-regulated mRNA pairs (de-
tails in Supplementary Methods). As a result, there are only
0.13–19.59% pairs of ceRNAs were co-localization or co-
regulated by TFs across 20 types of cancer (Supplemen-
tary Table S6). Analyzing the ceRNA networks after filter-
ing those co-localized or co-regulated pairs, we obtained
the similar topological and functional landscapes of ceR-
NAs networks across human cancers (Supplementary Text
S2). These results provide further evidences that the expres-
sion correlations in the ceRNA networks were mainly medi-
ated by miRNAs. On the other hand, with the increasement
of miRNA expression, DNA methylation and DNA copy
number available for the same tumors, integration of these
information may provide further evidence that the two cor-
related genes are competitively binding the same miRNAs.
The multivariate linear model could measure the expression
association between a miRNA and a mRNA, that also fac-
tors in variation (noise) in mRNA expression induced by
changes in DNA copy number and promoter methylation
at the mRNA gene locus. Motivated by the recent stud-
ies (58,59), the association of miRNA and mRNA were
obtained in 10 types of cancers and an miRNA–mRNA
pair was considered as associated if the FDR is under 0.05
(Supplementary Text S3). And then integrated with the
CLIP-seq supported target sites in the text, we obtained the
cancer specific miRNA–mRNA regulations. First, we ex-
plored whether the integration can improve the prediction
accuracy of miRNA–mRNA interaction in our study. Us-
ing the experimentally validated miRNA–targets obtained
from TarBase (60), miRTarBase (61) and miRecords (62),
we found that integration of miRNA expression datasets
can refine miRNA interaction in specific conditions by cal-
culating two indexs, accuracy and F-score (Supplementary
Figure S19). These results suggest that integration of the
miRNA expression information can refine the miRNA-
regulations in specific cancer. Next, we performed the same
procedure and reconstructed the ceRNA–ceRNA networks
in each cancer. To explore whether the ceRNA–ceRNA net-
work is indeed mediated by miRNAs, for each ceRNA in-
teraction we computed the difference between the Pear-
son and partial correlation coefficients and defined it sen-
sitivity correlation (details in Supplementary Methods).
About 77.78–100% of the ceRNA pairs were with signif-
icantly higher sensitivity correlation than random condi-
tions (FDR < 0.05). Moreover, we re-introduced PTEN in
U87 glioma cell line and observed that the expression of
∼67.56% ceRNAs were upregulated and 37.84% of the ceR-
NAs were upregulated with above 1.5-fold change (Supple-
mentary Figure S18). Furthermore, we observed that more

than 24.32 and 43.24% of the ceRNAs with downregu-
lated expression in another two public PTEN knockdown
experimental datasets (GSE68869 and GSE54269). These
results provide further evidences that majority of the co-
expressed genes in the networks are ceRNA pairs. Analyz-
ing the ceRNA networks, we obtained the similar topolog-
ical and functional landscapes of ceRNAs networks across
human cancers (Supplementary Text S3). The ceRNA net-
works also show scale-free and modular structures and the
ceRNA pairs were strongly co-expressed in Dicer/Drosha-
low expressed groups. In addition, we found that in the
Dicer/Drosha-low expressed groups, the overall expression
levels of miRNA are indeed lower (Supplementary Figure
S20). These results further evidence that the structures of
the ceRNA networks and most of the results obtained in our
study are robust. Considering the potential need of biomed-
ical scientists, we constructed Pan-ceRNADB to store these
two types of ceRNA–ceRNA interactions identified in our
study: the level 1 datasets store the ceRNA–ceRNA interac-
tions without integration of the miRNA expression, DNA
methylation and DNA copy number; the level 2 datasets
store the intergrated results.

In summary, we presented the ceRNA–ceRNA interac-
tion landscape across human major cancers and showed the
importance at various aspects. A bird’s eye view of the func-
tional ceRNA networks of large sample sets encompass-
ing multiple tumor lineages may help to suggest potential
unexpected targets that are applicable to cancer subsets or
across cancers. Our study opens new avenues for leveraging
publicly available genomic data to study the functions and
mechanisms of ceRNAs across human cancers.
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