

British Journal of Cancer (2016) 114, 1395–1404 | doi: 10.1038/bjc.2016.123

Keywords: MALAT1; alternatively spliced transcript; breast cancer; prognostic value; signalling pathways

Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer

Didier Meseure^{1,2}, Sophie Vacher¹, François Lallemand¹, Kinan Drak Alsibai², Rana Hatem¹, Walid Chemlali¹, Andre Nicolas², Leanne De Koning³, Eric Pasmant⁴, Celine Callens¹, Rosette Lidereau¹, Antonin Morillon⁵ and Ivan Bieche^{*,1,4}

¹Department of Genetics, Unit of Pharmacogenetics, Institut Curie, 26 rue d'Ulm, Paris Cedex F-75248, France; ²Department of Pathology, Platform of Investigative Pathology, Institut Curie, 26 rue d'Ulm, Paris Cedex F-75248, France; ³Department of Translational Research, Institut Curie, 26 rue d'Ulm, Paris Cedex F-75248, France; ⁴EA7331, Faculty of Pharmaceutical and Biological Sciences, Paris Descartes University, Sorbonne Paris Cité, Paris Cedex F-75006, France and ⁵CNRS UMR 3244, Institut Curie, 26 rue d'Ulm, Paris Cedex F-75248, France

Background: Epigenetic deregulation is considered as a new hallmark of cancer. The long non-coding RNA MALAT1 has been implicated in several cancers; however, its role in breast cancer is still little known.

Methods: We used RT–PCR, *in situ* hybridisation, and RPPA methods to quantify (i) the full-length (FL) and an alternatively spliced variant (Δ sv) of MALAT1, and (ii) a panel of transcripts and proteins involved in MALAT1 pathways, in a large series of breast tumours from patients with known clinical/pathological status and long-term outcome.

Results: MALAT1 was overexpressed in 14% (63/446) of the breast tumours. MALAT1-overexpressed tumour epithelial cells showed marked diffuse nuclear signals and numerous huge nuclear speckles. Screening of the dbEST database led to the identification of Δ sv-MALAT1, a major alternatively spliced MALAT1 transcript, with a very different expression pattern compared with FL-MALAT1. This alternative Δ sv-MALAT1 transcript was mainly underexpressed (18.8%) in our breast tumour series. Multivariate analysis showed that alternative Δ sv-MALAT1 transcript is an independent prognostic factor. Δ sv-MALAT1 expression was associated with alternative of the pre-mRNAs alternative splicing machinery, and of the Drosha-DGCR8 complex required for non-coding RNA biogenesis. Alternative Δ sv-MALAT1 transcript expression was associated to YAP protein status and with an activation of the PI3K-AKT pathway.

Conclusions: Our results reveal a complex expression pattern of various *MALAT1* transcript variants in breast tumours, and suggest that this pattern of expressions should be taken into account to evaluate *MALAT1* as predictive biomarker and therapeutic target.

Several studies have recently shown that expression of long noncoding RNAs (lncRNAs) are dysregulated in various cancers and that these lncRNAs have important roles in tumourigenesis and tumour progression (Spizzo *et al*, 2012). One example of such oncogenic lncRNA is *HOTAIR*, which is highly expressed in breast cancer and is a predictor for metastasis formation and associated with a poor prognosis (Gupta *et al*, 2010). Among these IncRNAs, *MALAT1* (metastasis-associated lung adenocarcinoma transcript 1), also referred as *NEAT2* (nuclear-enriched abundant transcript 2) was discovered 10 years ago by using a subtractive hybridisation approach. *MALAT1* was originally identified as a transcript showing significant expression in non-small cell lung tumours at high risk for metastasis (Ji *et al*, 2003). *MALAT1* gene has a length of 8708 bp (NR_002819.2) and is localised in

Received 20 November 2015; revised 16 February 2016; accepted 31 March 2016; published online 12 May 2016

© 2016 Cancer Research UK. All rights reserved 0007–0920/16

^{*}Correspondence: Dr I Bieche; E-mail: ivan.bieche@curie.fr

chromosome 11q13.1. Unlike most of lncRNAs, *MALAT1* is extremely abundant, ubiquitously expressed and highly conserved among mammals, with potentially major functional roles in mammalian cells. *MALAT1* is a nuclear-retained lncRNA, suggesting both structural and functional properties, for example, nuclear architecture and organisation, splicing, or gene-expression regulation (Gutschner *et al*, 2013a). *MALAT1* has been implicated in alternative splicing regulation, showing interactions with several splicing factors, such as SRSF1 (Tripathi *et al*, 2010). *MALAT1* has also been linked to transcriptional control of genes involved in cell cycle, cell motility and EMT (Gutschner *et al*, 2013a). *MALAT1* could act as a transcription activator by mediating assembly of Polycomb repressive complexes (Yang *et al*, 2011).

MALAT1 upregulation has been reported in several tumour types and is also a negative prognostic factor in lung, pancreas, colorectal and bladder cancers (Zhang et al, 2015). Molecular mechanisms involved in MALAT1 dysregulation are still unclear. Activation of MALAT1 by gene amplification seems unlikely because MALAT1 is located in a chromosomal region (11q13.1) not recurrently amplified in human cancers (Curtis et al, 2012). Mutations in the MALAT1 gene were recently discovery in human cancers (The Cancer Genome Atlas studies; Kandoth et al, 2013). MALAT1 seems the most frequently lncRNA mutated in human cancers. Rare cases of chromosomal translocations involving MALAT1 have also been reported in mesenchymal harmatomas and renal cell carcinomas (Davis et al, 2003; Mathews et al, 2013). MALAT1 epigenetic dysregulation mediated by CpG island methylation was not reported. A post-transcriptional MALAT1 regulation mechanism mediated by one microRNA (Hsa-miR-125b) has been only reported in bladder cancer (Han et al, 2013).

Few studies concerning *MALAT1* in breast cancer are available. Guffanti *et al* (2009) identified *MALAT1* as an abundantly expressed lncRNA in breast tumours. Rare mutations were recently described in luminal breast cancer (Ellis *et al*, 2012). Clinical prognostic value of *MALAT1* dysregulation in breast cancer is little known at this time (Xu *et al*, 2015).

To obtain further insight concerning involvement of *MALAT1* in molecular pathogenesis of breast cancer, we used quantitative real-time reverse-transcriptase–polymerase chain reaction (qRT–PCR) assay, to quantify the full-length (FL) and an alternatively spliced variant (Δ sv) of *MALAT1* mRNA expression in a series of 446 patients with unilateral invasive breast tumours and known long-term outcome. We sought links between *MALAT1* mRNA expression pattern and classical clinical and pathological parameters, including patient outcome. We also sought relationships between *MALAT1* and genes and proteins expression known to be involved in different steps of *MALAT1* pathway dysregulation observed in others types of human cancers.

MATERIALS AND METHODS

Patients and samples. Samples of 446 unilateral invasive primary breast tumours excised from women managed at Institut Curie–Hôpital René Huguenin (Saint-Cloud, France) from 1978 to 2008 have been analysed. All patients cared in our institution before 2007 were informed that their tumour samples might be used for scientific purposes and had the opportunity to decline. Since 2007, patients treated in our institution have given their approval by signed inform consent. This study was approved by the local ethics committee (Breast Group of René Huguenin Hospital). Samples were immediately stored in liquid nitrogen until RNA extraction. A tumour sample was considered suitable for our study if the proportion of tumour cells exceeded 70%.

All patients (mean age 61.8 years, range 31–91 years) met the following criteria: primary unilateral nonmetastatic breast carcinoma for which complete clinical, histological and biological data were available; no radiotherapy or chemotherapy before surgery; and full follow-up at Institut Curie–Hospital René Huguenin.

Treatment (information available for 438 patients) consisted of modified radical mastectomy in 278 cases (63.9%) and breast-conserving surgery plus locoregional radiotherapy in 160 cases (36.1%). The patients had a physical examination and routine chest radiotherapy every 3 months for 2 years, then annually. Mammograms were done annually. Adjuvant therapy was administered to 360 patients, consisting of chemotherapy alone in 87 cases, hormone therapy alone in 172 cases and both treatments in 101 cases. The histological type and the number of positive axillary nodes were established at the time of surgery. The malignancy of infiltrating carcinomas was scored according to Scarff Bloom Richardson's histoprognostic system.

Hormone receptor (HR; i.e., oestrogen receptor-alpha (ER α), progesterone receptor (PR) and human epidermal growth factor receptor 2 (ERBB2) statuses were determined at the protein level by using biochemical methods (dextran-coated charcoal method, enzyme immunoassay or immunohistochemistry) and confirmed by qRT–PCR assays (Bieche *et al*, 1999, 2001).

The population was divided into four groups according to HRs (ER α and PR) and ERBB2 status, as follows: two luminal subtypes (HR⁺/ERBB2⁺ (n=45)) and (HR⁺/ERBB2⁻ (n=195)); an ERBB2⁺ subtype (HR⁻/ERBB2⁺ (n=46)) and a triple-negative subtype (HR⁻/ERBB2⁻ (n=64)). Standard prognostic factors of this tumour set are presented in (Supplementary Table 1). During a median follow-up of 9.1 years (range 4.3 months to 33.2 years), 176 patients developed metastasis.

Ten specimens of adjacent normal breast tissue from breast cancer patients and normal breast tissue from women undergoing cosmetic breast surgery were used as sources of normal RNA.

RNA extraction. Total RNA was extracted from breast tissue samples by using acid–phenol guanidium. RNA quality was determined by electrophoresis through agarose gels, staining with ethidium bromide and visualisation of the 18S- and 28S-RNA bands under ultraviolet light.

qRT-PCR. Quantitative values were obtained from the cycle number (Ct value) at which the increase in the fluorescence signal associated with exponential growth of PCR products started to be detected by the laser detector of the ABI Prism 7900 sequence detection system (Perkin-Elmer Applied Biosystems, Foster City, CA, USA), using PE biosystems analysis software according to the manufacturer's manuals.

The precise amount of total RNA added to each reaction mix (based on optical density) and its quality (i.e., lack of extensive degradation) are both difficult to assess. Therefore, transcripts of the *TBP* gene (Genbank accession NM_003194) encoding the TATA box-binding protein (a component of the DNA-binding protein complex TFIID) were also quantified as an endogenous RNA control. Each sample was normalised on the basis of its *TBP* content. *TBP* was selected as an endogenous control due to the absence of known *TBP* retropseudogenes (retropseudogenes lead to co-amplification of contaminating genomic DNA and thus interfere with qRT-PCR, despite the use of primers in separate exons; Bieche *et al*, 1999).

Results, expressed as N-fold differences in target-gene expression relative to the *TBP* gene and termed 'N*target*', were determined as $Ntarget = 2^{\Delta Ctsample}$, where the ΔCt value of the sample was determined by subtracting the average Ct value of target gene from the average Ct value of *TBP* gene.

The target-gene values of the breast tumour samples were subsequently normalised such that the median of the target-gene values for the 10 normal breast tissues was 1.

The primers for TBP, MALAT1 and others target genes were chosen with the assistance of the Oligo 6.0 program (National

Biosciences, Plymouth, MN, USA; Supplementary Table 2). dbEST and nr databases were scanned to confirm the total gene specificity of the nucleotide sequences chosen for the primers and the absence of single-nucleotide polymorphisms. To avoid amplification of contaminating genomic DNA, one of the two primers was placed at the junction between two exons or on two different exons. Agarose gel electrophoresis was used to verify the specificity of PCR amplicons. The conditions of cDNA synthesis and PCR were as previously described (Bieche *et al*, 1999).

In situ hybridisation. We used Stellaris FISH Probes, Human MALAT1 with Quasar 570 Dye (Biosearch Technologies, Petaluma, CA, USA). First, paraffin-embedded tissue sliced at 4- $5 \,\mu m$ thickness were obtained from normal and tumour tissues by using a microtome (Thermo scientific Sandom HE 340 E, Walldorf, Germany). Formalin-fixed paraffin-embedded breast tissue sections were deparaffinized by using 100% xylene, 100% ethanol, 95% ethanol, 70% ethanol and RNase-free PBS. Then, slides were incubated for 20 min at 37 °C, and washed twice with PBS. We created a working probe solution at 125 nm (probe diluted in hybridisation buffer). We immersed tissue sections in a wash buffer for 2-5 min, while assembling the humidified chamber. Then, we dispensed $100 \,\mu l$ of working probe solution onto tissue sections, placed them in the humidified chamber, and covered them with parafilm. We incubated tissue sections in the dark at 37 $^{\circ}\mathrm{C}$ for at least 4 h. After decanting wash buffer, we added DAPI nuclear stain and immersed tissue sections in SSC. Finally, we added a small drop of antifade onto tissue sections and covered with a cover glass and proceeded to imaging.

RPPA. Samples were disrupted in Laemmli buffer (50 mM Tris pH = 6.8, 2% SDS, 5% glycerol, 2 mM DTT, 2.5 mM EDTA, 2.5 mM EGTA, 1 × HALT phosphatase inhibitor (Perbio, Villebonsur-Yvette, France; 78420), protease inhibitor cocktail complete MINI EDTA-free (Roche, Basel, Switzerland; 1836170, 1 tablet per 10 ml), 4 mM Na3VO4 and 20 mM NaF) qsp 5 ml H2O, using a Tissue Lyser (Qiagen, Venlo, Netherlands) and two 5 mm stainless beads per sample. Extracts were then boiled for 10 min at 100 °C, passed through a fine needle to reduce viscosity and centrifuged for 15 min at 13 000 r.p.m. The supernatant was collected and stored at - 80 °C. Protein concentration was determined (Pierce BCA reducing agent compatible kit, Pierce, Waltham, MA, USA; ref 23252). Samples were deposited onto nitrocellulose covered slides (Fast slides, Maine Manufacturing, Sanford, ME, USA) using a dedicated arrayer (2470 arrayer, Aushon Biosystems, Billerica, MA, USA). Five serial dilutions, ranging from 1000 to 62.5 μ g ml⁻¹, and two technical replicates per dilution were printed for each sample. Arrays were labelled with specific antibodies or without primary antibody (negative control), using an Autostainer Plus (Dako, Glostrup, Denmark). Briefly, slides were incubated with avidin, biotin and peroxides blocking reagents (Dako) before saturation with TBS containing 0.1% Tween-20 and 5% BSA (TBST-BSA). Slides were then probed overnight at 4 °C with primary antibodies diluted in TBST-BSA. After washes with TBST, arrays were probed with horseradish peroxidase-coupled secondary antibodies (Jackson ImmunoResearch Laboratories, New market, UK) diluted in TBST-BSA for 1 h at room temperature (RT). To amplify the signal, slides were incubated with Bio-Rad Amplification Reagent (Bio-Rad, Hercules, CA, USA) for 15 min at RT. The arrays were washed with TBST, probed with Alexa647-Streptavidin (Molecular Probes, Eugene, OR, USA) diluted in TBST-BSA for 1 h at RT and washed again in TBST. For staining of total protein, arrays were incubated 15 min in 7% acetic acid and 10% methanol, rinsed twice in water, incubated 10 min in Sypro Ruby (Invitrogen, Carlsbad, CA, USA) and rinsed again. The processed slides were dried by centrifugation and scanned using a GenePix 4000B microarray scanner (Molecular Devices, Sunnyvale, CA, USA). Spot intensity was determined with MicroVigene software (VigeneTech Inc.,

Carlisle, MA, USA). All primary antibodies used in RPPA have been previously tested by Western Blotting to assess their specificity for the protein of interest.

Raw data were normalised using Normacurve (Troncale *et al*, 2012), which normalises for fluorescent background per spot, a total protein stain and potential spatial bias on the slide. Next, each RPPA slide was median centred and scaled (divided by median absolute deviation). We then corrected for remaining sample loadings effects individually for each array by correcting the dependency of the data for individual arrays on the median value of each sample over all arrays using a linear regression.

Statistical analysis. The distributions of target mRNA levels were characterised by their median values and ranges. Relationships between mRNA levels of the different target genes, and between mRNA levels and clinical parameters, were identified using nonparametric tests, namely the χ^2 -test (relation between two qualitative parameters), the Mann–Whitney's *U*-test (relation between one qualitative parameter and one quantitative parameter) and the Spearman's rank correlation test (relation between two quantitative parameters). Differences were considered significant at confidence levels >95% (P<0.05).

To visualise the efficacy of a molecular marker (*MALAT1* level) to discriminate two populations (patients that developed/did not develop metastases) in the absence of an arbitrary cut-off value, data were summarised in an receiver operating characteristic curve (Hanley and McNeil, 1982). The AUC (area under curve) was calculated as a single measure for discriminate efficacy. Metastasis-free survival (MFS) was determined as the interval between initial diagnosis and detection of the first metastasis. Survival distributions were estimated by the Kaplan–Meier method, and the significance of differences between survival rates were ascertained with the log-rank test. The Cox-proportional hazards regression model was used to assess prognostic significance and the results are presented as hazard ratios and 95% confidence intervals.

RESULTS

MALAT1 expression in breast tumours and relationship with classical clinico-pathological parameters and patient outcome. In order to determine the prognostic significance of *MALAT1* expression pattern in human breast tumours, we analysed *MALAT1* mRNA levels in a large series of 446 primary breast tumours from patients with known clinical/pathological status and long-term outcome (Supplementary Table 1).

Among the 446 breast tumour RNA samples tested, 63 (14.1%) tumours showed *MALAT1* mRNA overexpression (N*MALAT1* from 3.02 to 13.4), and only 13 (2.9%) tumours showed *MALAT1* mRNA underexpression (N*MALAT1* from 0.15 to 0.32), as compared with normal breast tissues. We sought links between *MALAT1* mRNA level status and standard clinico-pathological and biological factors in breast cancer (Supplementary Table 3). Significant positive associations were observed between the tumour group showing *MALAT1* overexpression and ER α -positive (P = 0.000015), PR-positive (P = 0.00079) and molecular subtypes (P = 0.0000075). It is noteworthy that majority (9/13) of the *MALAT1* underexpressed tumours was of triple-negative (HR⁻/ ERBB2⁻) subtype.

We also examined *PIK3CA* mutation status, and expressions of *EGFR* and *MKI67* (which encodes the proliferation-related antigen Ki-67). None of these three markers showed significant link with *MALAT1* expression.

To further investigate whether *MALAT1* mRNA expression could be of prognostic relevance, the log-rank test was used to identify relations between MFS and *MALAT1* mRNA expression.

Results showed that MFS was not significantly influenced by MALAT1 overexpression status (P = 0.23; data not shown).

Results of *MALAT1* mRNA levels shown in Supplementary Table 3 were obtained by using a primer pair (U13/L13) that encompass region 4891–4975 of published *MALAT1* cDNA sequence (GenBank #NR_002819.2; Figure 1). Similar results (frequency of *MALAT1* overexpression links with classical clinicopathological parameters and patient outcome) were obtained with a second primer pair (U9/L9) localised in *MALAT1* gene at region 6565–6658 (Figure 1).

Relationship between *MALAT1* mRNA level and *HOTAIR* and *ANRIL* mRNA levels. We tested possible relation between *MALAT1* and *HOTAIR* and *ANRIL* (the two most documented lncRNAs that also interact with Polycomb repressive complexes) mRNA levels. We did not observe any association between *MALAT1* and these two Polycomb complexes associated lncRNAs (r = +0.069, P = 0.14 for HOTAIR; r = +0.014, P = 0.76 for ANRIL; Spearman's rank correlation test).

Localisation of *MALAT1* **transcript in epithelial tumour cells.** We detected specific *MALAT1* RNA in epithelial and stromal cells of all ten tumour samples studied by *in situ* hybridisation (ISH). *MALAT1* mRNA was found exclusively in the nucleus of both stromal and tumour epithelial cells. We detected strong specific *MALAT1* RNA level in epithelial cells of the five tumours, which overexpressed *MALAT1* mRNA (using qRT–PCR analysis) and low specific *MALAT1* RNA level in the five tumours which did not overexpress *MALAT1* mRNA. We thus obtained a perfect match between *MALAT1* mRNA expression by using qRT–PCR and ISH analysis. *MALAT1*-overexpressed tumour epithelial cells showed marked diffuse nuclear signals and numerous nuclear speckles of variable size and shape as compared with *MALAT1* normal-expressed tumour epithelial cells (Figure 2).

Identification of a major alternatively spliced *MALAT1* transcript in breast tumours, and relationships with classical clinicopathological parameters and patient outcome. Screening of the dbEST database with the *MALAT1* cDNA led to identification of two major groups of alternatively spliced *MALAT1* ESTs. The first major alternatively spliced *MALAT1* transcript (named $\Delta 1sv$ -*MALAT1*) had a 119-bp deletion (from 6446 to 6564, from the NR_002819.2 sequence), resulting from alternative splicing of *MALAT1* mRNA, whereas the second alternatively spliced *MALAT1* transcript (named $\Delta 2sv$ -*MALAT1*) had a 243-bp deletion (from 4633 to 4875, from the NR_002819.2 sequence). The deleted nucleotide sequences show consensus sequences of donor/acceptor splice sites.

To verify presence and quantify mRNA levels of these alternative splicing variants in our breast cancer series, we carried out non-quantitative (classical) RT–PCR using primer pairs with one of the two primers placed at the junction of the two spliced regions: U2/L2 for the 243-bp alternatively spliced *MALAT1* transcript ($\Delta 2sv$ -*MALAT1*) and U18/L18 for the 119-bp alternatively spliced *MALAT1* transcript ($\Delta 1sv$ -*MALAT1*; Figure 1). However, additional qualitative analyses using primer couples U1/L20 or U2/L18 (Figure 1 and Supplementary Figure 1) showed that these two splices were always associated together. This unique transcript, showing both 119-bp and 243-bp deletions, is named Δsv -*MALAT1* for the remaining part of the manuscript, and FL-*MALAT1* for the FL transcript.

All the 446 breast tumour RNA samples tested showed a marked presence of Δ sv-*MALAT1* transcript. We observed a highly positive correlation between Δ sv-MALAT1 and FL-MALAT1 expressions (Supplementary Figure 2A). The relative expression of Δ sv-MALAT1 and FL-MALAT1 for each individual sample listed as dot/box plots is indicated in Supplementary Figure 2B. As compared with normal breast tissues, 24 (5.4%) tumours showed Δ sv-MALAT1 mRNA overexpression (N Δ sv-MALAT1 from 3.16 to 8.4), and surprisingly 84 (18.8%) tumours showed Δ sv-MALAT1 mRNA underexpression (N Δ sv-MALAT1 from 0.05 to 0.32). Marked significant positive associations were observed between the tumour group showing Δ sv-MALAT1 underexpression and large macroscopic tumour size (P = 0.0023), ER α -negative (P = 0.000062), PR-negative (P = 0.0000051) and molecular subtypes (P = 0.00074; Table 1). We observed the same associations between Δ sv-MALAT1 mRNA levels and molecular subtypes in a series of 21 breast cell lines, including 4 non-cancerous cell lines, 8 triple-negative cell lines, 4 ERBB2 cell lines and 5 RE⁺ cell lines (Supplementary Table 4). In particular, we observed a marked Δ sv-MALAT1 underexpression in the triple-negative subtype. Δ sv-MALAT1 underexpression was also highly associated with MKI67 mRNA levels (P = 0.00033). MFS was significantly influenced by Δ sv-MALAT1 (overexpression vs normal expression vs underexpression) expression status (P = 0.0099; Figure 3A). AUC analyses was then performed to identify a putative cut-point to divide the cohort into two relevant Δ sv-MALAT1 expression subgroups. Results confirmed that MFS of patients with low Δ sv-*MALAT1*-expressing tumours (5-year RFS 70.3 ± 2.5%; 10-year RFS $58.5 \pm 2.8\%$; 15-year RFS $51.4 \pm 3.0\%$) was shorter than that of patients whose tumours highly expressed Δ sv-*MALAT1* (5-year RFS 85.9 ± 3.5%; 10-year RFS 82.3 ± 3.9%; 15-year RFS 76.0 \pm 5.1%; P = 0.000015; Figure 3B).

Results of Δ sv-*MALAT1* mRNA levels shown in Table 1 were obtained by using a primer pair (U18/L18) that encompasses the 119 bp deleted region. Similar results (frequency of Δ sv-*MALAT1* overexpression, links with classical clinico-pathological parameters and patient outcome) were obtained with a second primer

Figure 1. Location of primers used for MALAT1 mRNA expression analysis. Alternative splicing variants were amplified using primer pairs with one of the two primers placed at the junction of the two spliced regions: U2/L2 for the 243 bp alternatively spliced MALAT1 transcript ($\Delta 2sv-MALAT1$) and U18/L18 for the 119 bp alternatively spliced MALAT1 transcript ($\Delta 1sv-MALAT1$).

Normal expressed *MALAT1* mRNA breast carcinoma (N_{MALAT1} value = 1.1)

Overexpressed MALAT1 mRNA breast carcinoma $(N_{MALAT1}$ value = 10.4)

Figure 2. ISH of MALAT1 RNA in breast tumours. (A) Example of normal-expressed MALAT1 mRNA breast tumour (N_{MALAT1} value = 1.1, as determined by qRT-PCR analysis). Weak signals represented by small speckles (speckles in red, arrow) of equivalent size and shape, regularly distributed within nuclei of tumour cells (nuclei in blue) × 400. (B) Example of overexpressed MALAT1 mRNA breast tumour (N_{MALAT1} value = 10.4). Marked diffuse signals and numerous and frequently huge nuclear speckles (speckles in red, two arrows) of variable size and shape within nuclei of tumour cells (nuclei in blue) × 600.

pair (U2/L2) that encompass the 243 bp deleted region (Figure 1; Supplementary Table 5).

Finally, the prognostic significance of the five parameters identified in univariate analysis, including histopathological grade, lymph node status, macroscopic tumour size, PR status (Supplementary Table 1) and Δ sv-*MALAT1* expression status (Figure 3B) persisted (except for lymph node and PR status) in Cox multivariate regression analysis of MFS (Supplementary Table 6).

Relationship between Δ sv-MALAT1 mRNA levels and Hsa-miR-125b expression status. As Hsa-miR-125b suppresses bladder cancer development by downregulating MALAT1 (Han et al, 2013), we tested the possible negative correlation between Δ sv-MALAT1 and Hsa-miR-125b mRNA level in breast cancer. Hsa-miR-125b levels were analysed in 20 low- Δ sv-MALAT1expressing (median mRNA value: 0.36) and 20 high- Δ sv-MALAT1-expressing breast tumours (median mRNA value: 2.13). We found no link between Δ sv-MALAT1 and Hsa-miR-125b expression status: the median Hsa-miR-125b value was 0.13 in low- Δ sv-MALAT1-expressing breast tumours and 0.11 in high- Δ sv-MALAT1-expressing breast tumours. Similar results were obtained with 20 low-FL-MALAT1-expressing and 20 high-FL-MALAT1-expressing breast tumours.

Relationship between Δ sv-*MALAT1* mRNA levels and YAP protein level. As YAP protein regulates transcription of *MALAT1* gene in liver cancer (Wang *et al*, 2014), we tested the possible positive correlation between YAP protein and Δ sv-*MALAT1* mRNA levels in breast cancer. YAP protein levels were analysed by using RPPA assay in 143 samples from our series of 446 breast tumours. We found a significant positive link with Δ sv-*MALAT1* mRNA level (r = +0.303, P = 0.00032; Spearman's rank correlation test) but no link between YAP protein and FL-*MALAT1* mRNA levels of expression. As Δ sv-*MALAT1* low level is associated with a poor outcome and with low-YAP-protein level, we tested if YAP protein level could be also of prognostic relevance. We did not observe in our smaller series of 143 samples, any statistical correlation between low-YAP-protein expression and poor outcome.

Relationship between Δ sv-MALAT1 mRNA levels and a large panel of selected genes involving in various signalling pathways. To obtain further insight into MALAT1 dysregulated pathways in breast cancer, we evaluated by qRT-PCR mRNA expression of a large number of selected genes in 20 low- Δ sv-MALAT1-expressing and 20 high- Δ sv-MALAT1-expressing breast tumours. We assessed expression level of 48 genes involved in various cellular and molecular phenomena associated with carcinogenesis. These genes encode proteins involved in cell cycle control (n=7), cell migration (n=5), polycomb repressive complexes (PRC1) (n=3) and PRC2 (n=5), EMT (n=7), apoptosis (n=6) and DNA repair (Yang *et al*, 2011). We also focused on expression of well-known regulators (DGCR8; AGO2) and interactors (SRSF1, SRSF2, SRSF3, UHMK1) of MALAT1 (Gutschner *et al*, 2013a), as well as transcriptional dysregulated genes after MALAT1 depletion in A549 lung adenoma cell line (ROBO1, MCAM; Gutschner *et al*, 2013b) and HeLa cells (IFI44; Miyagawa *et al*, 2012).

Expression of 19 (39.5%) of these 48 genes was significantly positively associated with Δ sv-*MALAT1* expression (Table 2). Genes significantly associated to Δ sv-*MALAT1* were mainly involved in cell migration (*RHOB, PLAU/UPA* and *MMP14*), Polycomb repressive complex PRC2 (*EED, SUZ12, JARID2, TUG1*), apoptosis (*BIRC6*), DNA repair (*ATM, MSH2, XRCC1*) and regulators (*DGCR8*) and interactors (*SRSF1, SRSF3, UHMK1*) of *MALAT1*. Genes involved in cell cycle control and EMT, as well as putative *MALAT1*-inducible genes (identified by *MALAT1* depletion in cell lines) were not linked to the *MALAT1* in breast cancer.

Relationship between levels of Δ sv-*MALAT1* mRNA and RTK/ MAPK/PI3K proteins. As several studies recently suggested that *MALAT1* promotes proliferation and metastasis of various cancers by activating the RTK/MAPK/PI3K pathways (Wu *et al*, 2014; Dong *et al*, 2015; Xu *et al*, 2015), we tested possible correlation between Δ sv-*MALAT1* and various proteins involved in these signalling pathways.

Twenty-eight protein (non-phosporylated or/and phosphorylated) levels were analysed using RPPA assays in 143 samples from our series of 446 breast tumours. These selected proteins are involved in TKR (n=9), MAPK (n=4) and PI3K/AKT (n=15) pathways (Table 3). Low- Δ sv-*MALAT1* mRNA level were associated to high levels of 4 among the 15 proteins involved in the PI3K/AKT pathway (i.e., FOXO1, p70 S6 Kinase total protein and phosphorylated in Threonine 389, S6 ribosomal protein phosphorylated in Ser240/Ser244), but to none of the two others signalling pathways. Low-FL-*MALAT1* mRNA level was exclusively associated to high level of FOXO1 (Table 3).

Table 1. Relationship between ∆sv-MALAT1-spliced transcript levels and classical clinical biological parameters in a series of 446 breast cancer

	Number of patients (%)							
	Total population (%)	∆sv-MALAT1 underexpression	∆sv-MALAT1 normal expression	∆sv-MALAT1 overexpression	<i>P</i> -value ^a			
Total	446 (100.0)	84 (18.8)	338 (75.8)	24 (5.4)				
Age (years)								
≤50	94 (21.1)	25 (26.6)	67 (71.3)	2 (2.1)	0.038			
> 50	352 (78.9)	59 (16.8)	271 (77.0)	22 (6.3)				
SBR histological grade ^{b,c}								
1	57 (13.0)	4 (7.0)	49 (86.0)	4 (7.0)	0.043			
+	380 (87.0)	79 (20.8)	282 (74.2)	19 (5.0)				
Lymph node status ^d								
0	117 (26.3)	17 (14.5)	90 (76.9)	10 (8.5)	0.043			
1–3	231 (51.9)	39 (16.9)	182 (78.8)	10 (4.3)				
>3	97 (21.8)	27 (27.8)	66 (68.0)	4 (4.1)				
Macroscopic tumour	size ^e							
≤25 mm	218 (49.8)	28 (12.8)	174 (79.8)	16 (7.3)	0.0023			
>25 mm	220 (50.2)	55 (25.0)	157 (71.4)	8 (3.6)				
ERα status								
Negative	115 (25.8)	37 (32.2)	76 (66.1)	2 (1.7)	0.000062			
Positive	331 (74.2)	47 (14.2)	262 (79.2)	22 (6.6)				
PR status	-							
Negative	191 (42.8)	55 (28.8)	132 (69.1)	4 (2.1)	0.0000051			
Positive	255 (57.2)	29 (11.4)	206 (80.8)	20 (7.8)				
ERBB2 status								
Negative	353 (79.1)	60 (17.0)	273 (77.3)	20 (5.7)	0.15 (NS)			
Positive	93 (20.9)	24 (25.8)	65 (70.0)	4 (4.3)				
Molecular subtypes								
RH ⁻ ERBB2 ⁻	68 (15.2)	22 (32.4)	46 (67.6)	0 (0)	0.00074			
RH ⁻ ERBB2 ⁺	42 (9.4)	14 (33.3)	26 (61.9)	2 (4.8)				
$RH + ERBB2^{+}$	285 (63.9)	38 (13.3)	227 (79.6)	20 (7.0)				
KH + EKBBZ	51 (11.4)	10 (19.6)	39 (70.3)	2 (3.9)				
PIK3CA mutation status								
Wild type	299 (67.0)	69 (23.1)	215 (71.9)	15 (5.0)	0.0049			
Mutated	147 (33.0)	15 (10.2)	123 (83.7)	9 (6.1)				
MKI67 mRNA expres	sion							
Median	12.5 (0.80–117)	17.6 (0.86–117)	11.8 (0.80–94.5)	11.2 (0.93–47.1)	0.00033 ^f			
EGFR mRNA expression								
Median	0.22 (0.00–106)	0.13 (0.02–3.20)	0.23 (0.00–106)	0.20 (0.03–1.51)	0.019 ^f			

Abbreviations: $ER\alpha = oestrogen receptor-\alpha$; ERBB2 = human epidermal growth factor receptor 2; HR = hormone receptor; NS = not significant; PR = progesterone receptor. The bold values are statistically significant (*P*-value < 0.05).

^aχ²-test.

^bScarff Bloom Richardson classification.

^cInformation available for 437 patients.

^dInformation available for 445 patients.

^eInformation available for 438 patients.

f_{Kruskal–Wallis's H test.}

DISCUSSION

Recent studies have demonstrated the importance of non-proteincoding part of human genome in carcinogenesis. Among numerous kinds of non-protein-coding RNAs, lncRNAs have a key regulatory role in cancer biology. LncRNAs are dysregulated in different types of cancer and the expression levels of certain lncRNAs are associated with metastasis and prognosis of cancer. Overexpression of certain lncRNAs, behaving like oncogenes, can promote tumour growth and cancer cell invasion (Cheetham *et al*, 2013).

In this study, we focused on the lncRNA *MALAT1* that has been shown dysregulated in various cancer types (Zhang *et al*, 2015), but poorly studied in breast cancer. One study, using deep-sequencing technology, identified *MALAT1* as one of the highly expressed lncRNAs in breast tumours (Guffanti *et al*, 2009).

We tested 10 normal breast tissue RNAs and 446 unilateral invasive primary breast tumour RNAs, using qRT-PCR method. *MALAT1* mRNA was detected in all breast tumour samples and also in all normal breast tissues.

Overexpression of *MALAT1* mRNA was detected in 14% (63/446) of breast tumours, confirming the oncogenic role of *MALAT1*. Indeed, *MALAT1* is overexpressed in several cancer types, including lung, colon and hepatocarcinoma, and over-expression of *MALAT1* in various cell lines enhanced cell proliferation, whereas in nude mice, increased levels of *MALAT1* promoted tumour formation (Ji *et al*, 2003; Guo *et al*, 2010; Gupta *et al*, 2010; Gibb *et al*, 2011; Schmidt *et al*, 2011; Lai *et al*, 2012). Additional studies have also demonstrated that depletion of

Figure 3. MFS curves of patient groups according to Δ sv-MALAT1 mRNA expression level in the series of 446 breast tumours. (A) MFS curves of three patients groups with under, normal and overexpressed Δ sv-MALAT1 tumours, as compared with normal breast tissues. (B) MFS curves for patients with high- Δ sv-MALAT1-expressing and low-MALAT1-expressing tumours, using an optimal cut-off value.

MALAT1 impaired proliferative and invasive properties of cancer cells (Guo *et al*, 2010, Schmidt *et al*, 2011, Gutschner *et al*, 2013b).

By using ISH, we showed that *MALAT1* transcripts were predominantly localised in nuclear speckles. Nucleus of the *MALAT1*-overexpressed tumour epithelial cells showed marked diffuse nuclear signals and numerous huge nuclear speckles.

No significant links were observed between *MALAT1* mRNA overexpression and markers of aggressiveness, including histopathological grade, lymph node status and macroscopic tumour size, suggesting that overexpression of *MALAT1* does not have a major role in aggressiveness of breast carcinomas. Moreover, we observed a link between *MALAT1* mRNA overexpression and HR-positive tumours (a marker of good prognostic), suggesting that *MALAT1* could be an ER-induced gene in breast cancer. Finally, survival analysis did not reveal that patients with *MALAT1*-overexpressed tumour had shorter MFS.

Alternative mRNA splicing is a common mechanism for regulating gene expression in higher eukaryotes, and there are many examples of development-specific, tissue-specific and tumour-specific differences in splicing events. In the GENCODE v7 catalogue of human lncRNAs, >25% of lncRNA genes show evidence of alternative splicing with at least two different transcript isoforms per gene locus (Derrien *et al*, 2012). The vast majority of alternatively spliced lncRNA introns are flanked by canonical splice sites (GT/AG), with no differences in splicing signal compared with the protein-coding genes (Derrien *et al*, 2012). In the present study, by screening the dbEST database with the FL-MALAT1 cDNA (named FL-MALAT1), we identified a major alternatively spliced MALAT1 transcript (named Δ sv-MALAT1) with two concomitant deleted regions of 119 bp and 243 bp. As

expected, these alternatively spliced sequences showed consensus sequences of donor/acceptor splice sites. In our cohort, Asv-MALAT1 showed a very different expression pattern, as compared with FL-MALAT1. Indeed, Δ sv-MALAT1 expression varied widely in tumour tissues, being both underexpressed (18.8%) and overexpressed (5.4%). Surprisingly, a significant link was observed between Δ sv-MALAT1 underexpression and tumours with large macroscopic size, negative for HRs and expressing high MKI67 mRNA levels, suggesting that underexpression of Δ sv-MALAT1 has a role in aggressiveness of breast tumours. In this regard, in contrast to the FL-MALAT1 expression, survival analysis revealed that patients with low- Δ sv-MALAT1-expressed tumours had shorter MFS. Moreover, multivariate analysis showed that Δ sv-MALAT1 expression status was an independent prognostic marker for MFS. This alternatively spliced MALAT1 transcript isoform could act as decoys, sequestering biomolecules that fixed on the FL-MALAT1 transcript and thus dysregulating its function. Taken together, these results suggest that this alternatively spliced Δ sv-MALAT1 transcript isoform has a significant contribution to overall MALAT1 function and breast carcinogenesis.

Further studies are necessary to elucidate the genetic (or epigenetic) mechanisms responsible for the observed underexpression of Δ sv-*MALAT1*, in breast cancer. It is unlikely that gene amplification is one of the mechanisms for *MALAT1* overexpression because *MALAT1* is located in a chromosomal region (11q13.1) non-recurrently amplified in breast cancer (Curtis *et al*, 2012; Zack *et al*, 2013). Mutations in the *MALAT1* gene, recently discovered in human cancers, are rare in breast (1.1%) as compared with other cancer types such as bladder cancer (15.3%) (Kandoth *et al*, 2013). *MALAT1* epigenetic dysregulation mediated

Table 2. Relationship between Δ sv-MALAT1-mRNA and target-gene expression								
Genes	Normal breast tissues (n = 10)	Breast tumours with low level of Δ sv-MALAT1 (n = 20)	Breast tumours with high level of ∆sv-MALAT1 (n=20)	<i>P</i> -value ^a	ROC-AUC			
Cell cycle control (n	i = 7)							
MKI67 AURKA FOXM1 PCNA CCNE1 E2F1 AURKB	1.0 (0.00–4.74) ^b 1.0 (0.17–2.73) 1.0 (0.00–12.25) 1.0 (0.46–3.22) 1.0 (0.00–6.82) 1.0 (0.44–3.08) 1.0 (0.44–3.08)	12.11 (1.88–25.62) ^b 8.07 (2.79–27.11) 10.91 (2.87–30.02) 2.72 (0.65–8.31) 3.34 (0.90–26.50) 4.50 (1.00–8.60) 23 59 (2.90, 27.42)	13.01 (6.15–81.52) ^b 7.0 (4.28–123.17) 13.74 (4.1–101.38) 3.59 (0.45–6.88) 3.18 (1.14–52.07) 5.05 (1.76–51.10) 15.28 (6.77, 140.48)	0.42 (NS) 0.45 (NS) 0.40 (NS) 0.24 (NS) 0.76 (NS) 0.73 (NS) 0.75 (NS)	0.575 0.570 0.577 0.626 0.505 0.532 0.47			
	1.0 (0.00-10.88)	23.37 (2.70-37.43)	15.58 (0.77-100.46)	0.75 (143)	0.47			
Cell migration ($n = 5$		0.00 (0.10, 1.2()	1 1 2 /0 2 / / [2 2]	0.045	0.704			
RHOB PLAU MMP14 RHOA MMP13	1.0 (0.48–5.75) 1.0 (0.42–2.29) 1.0 (0.69–1.52) 1.0 (0.42–3.34) 1.0 (0.00–4.69)	0.88 (0.19–1.36) 1.76 (0.31–12.59) 1.31 (0.05–6.21) 1.36 (0.22–3.85) 45.38 (1.33–688.61)	1.13 (0.36–65.33) 2.86 (0.84–33.28) 2.52 (0.30–39.17) 1.59 (0.22–6.39) 38.70 (2.62–250.99)	0.015 0.017 0.0087 0.38 (NS) 0.83 (NS)	0.724 0.72 0.743 0.581 0.48			
Polycomb repressive	e complex 1 ($n = 3$)							
CBX7 CBX4 BMI1	1.0 (0.39–1.62) 1.0 (0.41–3.80) 1.0 (0.59–1.47)	0.36 (0.05–0.95) 1.46 (0.79–2.98) 1.42 (0.17–4.91)	0.43 (0.15–2.43) 1.55 (0.00–3.10) 1.98 (0.66–6.43)	0.045 0.91 (NS) 0.014	0.685 0.501 0.728			
Polycomb repressive	e complex 2 ($n = 5$)	4 40 (0 52 4 02)	4 (2 (2 0 0 0 0 0)	0.00004	0.700			
SU212 JARID2 EED TUG1 EZH2	1.0 (0.56–1.25) 1.0 (0.83–1.46) 1.0 (0.58–1.84) 1.0 (0.79–3.06) 1.0 (0.48–2.32)	1.19 (0.53–1.93) 1.19 (0.71–1.83) 1.02 (0.18–2.61) 0.73 (0.35–2.01) 4.58 (1.36–12.70)	1.63 (0.92–2.99) 1.89 (0.51–4.13) 1.36 (0.19–3.13) 1.16 (0.34–1.98) 5.99 (2.76–14.64)	0.00084 0.0015 0.0036 0.044 0.15 (NS)	0.793 0.794 0.769 0.686 0.632			
EMT (n = 7)								
CDH1 VIM ZEB2 ZEB1 SNAI2 TWIST1 SNAI1	1.0 (0.33–1.79) 1.0 (0.42–3.11) 1.0 (0.44–5.58) 1.0 (0.43–4.08) 1.0 (0.43–1.50) 1.0 (0.53–3.62) 1.0 (0.34–7.88)	0.91 (0.06-2.74) 0.22 (0.09-0.70) 0.30 (0.12-0.64) 0.31 (0.19-1.47) 0.23 (0.05-0.82) 0.30 (0.08-1.16) 0.83 (0.06-2.66)	1.28 (0.23–5.55) 0.31 (0.10–2.16) 0.32 (0.14–2.35) 0.44 (0.16–1.09) 0.24 (0.11–1.41) 0.32 (0.07–3.83) 0.89 (0.20–6.03)	0.051 (NS) 0.22 (NS) 0.60 (NS) 0.34 (NS) 0.52 (NS) 0.63 (NS) 0.80 (NS)	0.68 0.614 0.549 0.587 0.56 0.545 0.524			
Apoptosis ($n = 6$)								
BIRC6 BAX BIRC2 BIRC4 ^c BCL2L1 BCL2	1.0 (0.74–3.10) 1.0 (0.41–8.88) 1.0 (0.73–3.61) 0.0 (0.00–1.16) 1.0 (0.48–3.76) 1.0 (0.34–6.13)	0.85 (0.47–1.23) 1.38 (0.62–3.68) 0.62 (0.30–1.18) 1.09 (0.00–6.88) 1.19 (0.65–2.19) 0.85 (0.08–3.75)	1.13 (0.52–1.75) 1.88 (0.80–8.26) 0.82 (0.26–1.99) 2.16 (0.00–8.59) 1.47 (0.52–4.69) 0.78 (0.24–2.43)	0.00017 0.02 0.044 0.12 (NS) 0.22 (NS) 0.82 (NS)	0.841 0.715 0.686 0.645 0.612 0.521			
DNA repair ($n = 6$)		<u> </u>		L				
ATM MSH2 BRCA1 BRCA2 RAD51 XRCC1	1.0 (0.67–1.66) 1.0 (0.66–1.55) 1.0 (0.00–2.56) 1.0 (0.27–2.49) 1.0 (0.0–2.00) 1.0 (0.70–1.30)	0.60 (0.40–1.87) 0.98 (0.60–1.57) 2.23 (0.05–13.56) 3.12 (0.86–7.82) 7.55 (1.62–18.9) 0.78 (0.53–1.34)	1.36 (0.55–2.24) 1.40 (0.83–2.95) 3.33 (0.00–8.85) 3.87 (0.00–9.57) 5.29 (1.35–21.6) 1.41 (0.78–2.84)	0.00007 0.0003 0.11 (NS) 0.19 (NS) 0.37 (NS) 0.00001	0.868 0.834 0.649 0.631 0.417 0.908			
Regulators of MALA	AT1 (n=6)							
DGCR8 AGO2 SFR51 SFR53 SFR52 UHMK1	1.0 (0.70–2.59) 1.0 (0.57–4.50) 1.0 (0.66–4.32) 1.0 (0.65–3.93) 1.0 (0.60–2.76) 1.0 (0.59–5.09)	0.80 (0.40-1.71) 0.8 (0.36-2.64) 1.13 (0.87-1.68) 1.06 (0.69-1.87) 1.52 (0.88-2.24) 1.48 (0.93-2.74)	1.12 (0.80–5.05) 0.89 (0.33–5.87) 1.51(0.98–2.80) 1.30 (0.78–3.05) 1.89 (0.81–4.04) 2.04 (0.95–3.88)	0.000083 0.26 (NS) 0.00097 0.036 0.18 (NS) 0.0094	0.864 0.604 0.805 0.694 0.624 0.74			
MALAT1-inducible g	genes $(n = 3)$		0.52 (0.44, 4.22)	0.44 (510)	0.425			
ROBO1 MCAM IFI44	1.0 (0.54–1.54) 1.0 (0.57–33.8) 1.0 (0.34–9.38)	0.36 (0.13–4.14) 0.52 (0.22–0.81) 1.92 (0.06–29.23)	0.52 (0.14–1.33) 0.61 (0.22–10.9) 2.63 (0.11–30.15)	0.14 (NS) 0.21 (NS) 0.43 (NS)	0.635 0.616 0.572			

Abbreviations: AUC = area under the curve; NS = not significant; ROC = receiver operating curves. Values in bold correspond to significant P-values (P<0.05). ^aKruskal–Wallis H-test.

b Median (range) of gene mRNA levels ; the mRNA values of the samples were normalised such that the median of the 10 normal breast tissues mRNA values was 1.

^cThe mRNA values of the samples were normalised such that a Ct value of 35 was 1.

Table 3. Relationship between levels of \triangle sv-MALAT1 and FL-MALAT1 and a panel of RTK/MAPK/PI3K proteins in a panel of 143 breast tumours

	Δ sv-MALAT1		FL-MALAT1				
	r ^a	P-value ^a	r ^a	P-value ^a			
RTK proteins (n = 9)							
EGFR p.EGFR.Thr669 p.EGFR Tyr1173	0.068 0.008	NS NS NS	0.033 - 0.047 0.052	NS NS			
Her2/ErbB2 Her3/ErbB3	0.091 - 0.128	NS NS	- 0.032 0.000	NS NS			
p.Her3/Erbb3.Tyr1289 p.Her4.Tyr1162 Mot	- 0.060 0.108	NS NS NS	- 0.020 0.018	NS NS			
p.Met.Tyr1234.1235	- 0.023	NS	- 0.027	NS			
MAPK pathway proteins $(n = 4)$							
MEK1/2 p.MEK1/2.Ser217/221 p44.42.MAPK p.p44.42.MAPK.Thr202.Tyr204	- 0.029 0.113 0.116 0.127	NS NS NS NS	- 0.073 - 0.047 0.150 0.030	NS NS NS NS			
PI3K/AKT pathway proteins (n = 15)							
PTEN p.PTEN.Ser380.Thr382.383 INPP4b Akt1 p.Akt1.Ser473 Akt2 mTor p.mTor.Ser2448 FOXO1 TSC2 p70.S6.Kinase p.p70.S6.Kinase.Thr389 S6.Ribosomal.protein p.S6.Ribosomal.protein. Ser235.236 p.S6.Ribosomal.protein. Ser240.244	0.101 - 0.018 0.001 0.030 0.119 - 0.102 - 0.155 - 0.077 - 0.194 - 0.075 - 0.194 - 0.075 - 0.225 - 0.034 - 0.095 - 0.201	NS NS NS NS NS NS 0.0210 NS 0.0400 0.0070 NS NS 0.0160	0.050 - 0.026 0.042 - 0.017 - 0.032 0.028 - 0.066 0.008 - 0.196 0.003 0.099 0.073 0.075 0.006 - 0.024	NS NS NS NS NS NS NS NS NS NS NS			
Abbreviations: Akt = protein kinase B, also known as Akt; EGFR = epidermal growth factor receptor; MAPK = mitogen-activated protein kinase; mTor = mechanistic target of rapamycin; NS = not significant; PI3K = phosphoinositide 3-kinase; PTEN = phosphatase and tensin							

homologue. ^aSpearman's rank correlation test

by CpG island methylation is not reported till date. In the present study, post-transcriptional regulation of *MALAT1* by Hsa-miR-125b as described in bladder cancer (Han *et al*, 2013) was not observed in our breast tumour series. Conversely, our data suggested a transcriptional regulation of the Δ sv-*MALAT1* (but not of the FL-*MALAT1*) by the transcriptional co-activator YAP, as described in liver cancer (Wang *et al*, 2014). Further studies are necessary, using functional assays, to confirm this association. In the downstream *MALAT1* pathway, our results suggested that Δ sv-*MALAT1* (but not FL-*MALAT1*) could activate the PI3K/AKT pathway, in partial agreement with previous data (Wu *et al*, 2014; Dong *et al*, 2015; Xu *et al*, 2015).

We also assessed the expression levels of gene panel putatively involved in various cellular and molecular phenomena associated with carcinogenesis via dysregulation of Δ sv-*MALAT1*. These genes encode proteins involved in cell cycle control, cell migration, polycomb repressive complexes (PRC1 and 2), EMT, apoptosis and DNA repair, as well as regulators and interactors of Δ sv-*MALAT1*, or known *MALAT1*-induced genes (Miyagawa *et al*, 2012; Gutschner *et al*, 2013b). We identified a strong positive link between Δ sv-*MALAT1* overexpression and DGCR8 expression, suggesting that Drosha-DGCR8 complex (Microprocessor) controlled the abundance of Δ sv-*MALAT1* in breast cancer as in HEK 293T cells (Macias *et al*, 2012). No such link was observed with Ago2, a second putative major regulator of *MALAT1* (Weinmann et al, 2009). We observed a positive link between Δ sv-MALAT1 overexpression and several interactors of MALAT1, in particular SFRS1 and SFRS3, confirming the involvement of MALAT1 in the regulation of alternative splicing of pre-mRNA in nuclear speckle domains (Tripathi et al, 2010). We also identified a link between Δ sv-MALAT1 overexpression and several genes involved in DNA repair (ATM, MSH2, XRCC1). Only one study has recently suggested that MALAT1 depletion could dysregulate ATM-CHK2 pathway in oesophageal squamous cell carcinoma (Hu et al, 2015). More interesting, we observed a link between $\Delta sv-MALAT1$ expression and the major members (except EZH2) of Polycomb repressive complex PRC2, including SUZ12, EED and JARID2, but no (or little) link with the members of the Polycomb repressive complex PRC1 (i.e., CBX4, CBX7 and BMI1), as well as the genes regulated by this complex: PCNA and CCNE1 (Yang et al, 2011). In this regard, Yang et al (2011) showed a major role for MALAT1 in the relocation of transcription units by the PRC2 complex in the three-dimensional space of the nucleus, to coordinate the gene-expression programs.

In conclusion, this study suggests that the lncRNA *MALAT1* (as the well-known lncRNA *HOTAIR*) is involved in breast cancer. These data revealed a complex expression pattern of various *MALAT1* transcript variants, and suggest that this pattern of expression should be taken into account when evaluating antitumoural drugs designed to target this lncRNA. Further studies are also necessary to elucidate roles of these different *MALAT1* transcript variants in breast tumourigenesis and their genetic (or epigenetic) dysregulation molecular mechanisms in this cancer.

ACKNOWLEDGEMENTS

We thank the staff of Institut Curie–Hospital René Huguenin for their assistance in specimen collection and patient care. We thank Aurélie Barbet, Floriane Bard and Caroline Lecerf for performing RPPA experiments. The RPPA platform is supported by Cancéropôle Ile-de-France. This work was supported by the Comité départemental des Hauts-de-Seine de la Ligue Nationale Contre le Cancer, the Association pour la recherche en cancérologie de Saint-Cloud (ARCS), and by Grant INCa-DGOS-4654.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

- Bieche I, Onody P, Laurendeau I, Olivi M, Vidaud D, Lidereau R, Vidaud M (1999) Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. *Clin Chem* 45: 1148–1156.
- Bieche I, Parfait B, Laurendeau I, Girault I, Vidaud M, Lidereau R (2001) Quantification of estrogen receptor alpha and beta expression in sporadic breast cancer. Oncogene 20: 8109–8115.
- Cheetham SW, Gruhl F, Mattick JS, Dinger ME (2013) Long noncoding RNAs and the genetics of cancer. *Br J Cancer* **108**: 2419–2425.
- Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S. METABRIC GroupLangerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Børresen-Dale AL, Brenton JD, Tavaré S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature* **486**: 346–352.
- Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA, Motyckova G, Valencia P, Perez-Atayde AR, Argani P, Ladanyi M, Fletcher JA, Fisher DE (2003) Cloning of an Alpha-TFEB fusion in renal tumors harboring the

t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA 100: 6051-6056.

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22: 1775-1789.

Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X (2015) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol 36: 1477-1486.

Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, Ng S, Lin L, Crowder R, Snider J, Ballman K, Weber J, Chen K, Koboldt DC, Kandoth C, Schierding WS, McMichael JF, Miller CA, Lu C, Harris CC, McLellan MD, Wendl MC, DeSchryver K, Allred DC, Esserman L, Unzeitig G, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Leitch M, Hunt K, Olson J, Tao Y, Maher CA, Fulton LL, Fulton RS, Harrison M, Oberkfell B, Du F, Demeter R, Vickery TL, Elhammali A, Piwnica-Worms H, McDonald S, Watson M, Dooling DJ, Ota D, Chang LW, Bose R, Ley TJ, Piwnica-Worms D, Stuart JM, Wilson RK, Mardis ER (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486: 353-360.

Gibb EA, Vucic EA, Enfield KS, Stewart GL, Lonergan KM, Kennett JY, Becker-Santos DD, MacAulay CE, Lam S, Brown CJ, Lam WL (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6: e25915.

Guffanti A, Iacono M, Pelucchi P, Kim N, Soldà G, Croft LJ, Taft RJ, Rizzi E, Askarian-Amiri M, Bonnal RJ, Callari M, Mignone F, Pesole G, Bertalot G, Bernardi LR, Albertini A, Lee C, Mattick JS, Zucchi I, De Bellis G (2009) A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics 10: 163.

Guo F, Li Y, Liu Y, Wang J, Li Y, Li G (2010) Inhibition of metastasisassociated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin 42: 224-229.

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464: 1071-1076.

Gutschner T, Hämmerle M, Diederichs S (2013a) MALAT1-a paradigm for long noncoding RNA function in cancer. J Mol Med 91: 791-801.

Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, Zörnig M, MacLeod AR, Spector DL, Diederichs S (2013b) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73: 1180-1189.

Han Y, Liu Y, Zhang H, Wang T, Diao R, Jiang Z, Gui Y, Cai Z (2013) HsamiR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett 587: 3875-3882.

Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29-36.

Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y, Yang K (2015) Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 34: 7-18.

Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Müller-Tidow C (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22: 8031-8041.

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MD, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L (2013) Mutational landscape and significance across 12 major cancer types. Nature 502: 333-339.

Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, Wu LM, Chen LM, Zheng SS (2012) Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 29: 1810-1816.

Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres JF (2012) DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol 19: 760-766.

Mathews J, Duncavage EJ, Pfeifer JD (2013) Characterization of translocations in mesenchymalhamartoma and undifferentiated embryonal sarcoma of the liver. Exp Mol Pathol 95: 319-324.

Miyagawa R, Tano K, Mizuno R, Nakamura Y, Ijiri K, Rakwal R, Shibato J, Masuo Y, Mayeda A, Hirose T, Akimitsu N (2012) Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA 18: 738-751.

Schmidt LH, Spieker T, Koschmieder S, Schäffers S, Humberg J, Jungen D, Bulk E, Hascher A, Wittmer D, Marra A, Hillejan L, Wiebe K, Berdel WE, Wiewrodt R, Muller-Tidow C (2011) The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol 6: 1984-1992.

Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31: 4577-4587.

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39: 925-938.

Troncale S, Barbet A, Coulibaly L, Henry E, He B, Barillot E, Dubois T, Hupé P, de Koning L (2012) NormaCurve: a SuperCurve-based method that simultaneously quantifies and normalizes reverse phase protein array data. PLoS One 7: e38686.

Wang J, Wang H, Zhang Y, Zhen N, Zhang L, Qiao Y, Weng W, Liu X, Ma L, Xiao W, Yu W, Chu Q, Pan Q, Sun F (2014) Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Cell Signal 26: 1048-1059.

Weinmann L, Höck J, Ivacevic T, Ohrt T, Mütze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G (2009) Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136: 496-507.

Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, Weng H, Shu YJ, Liu TY, Jiang L, Cao Y, Bao RF, Mu JS, Tan ZJ, Tao F, Liu YB (2014) MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther 15: 806-814.

Xu S, Sui S, Zhang J, Bai N, Shi Q, Zhang G, Gao S, You Z, Zhan C, Liu F, Pang D (2015) Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int J Clin Exp Pathol 8: 4881-4891.

Yang L, Lin C, LiuW, Zhang J, Ohgi KA, Grinstein JD, Dorrestein PC, Rosenfeld MG (2011) ncRNA- and Pc2 methylationdependent gene relocation between nuclear structures mediates gene activation programs. Cell 147: 773-78838.

Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet **45**: 1134–1140.

Zhang J, Zhang B, Wang T, Wang H (2015) LncRNA MALAT1 overexpression is an unfavorable prognostic factor in human cancer: evidence from a meta-analysis. Int J Clin Exp Med 8: 5499-5505.

(†) (cc) BY

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)