
Article
PyBioNetFit and the Biological Property
Specification Language
Eshan D. Mitra,

Ryan Suderman,

Joshua Colvin, ...,

Herbert M. Sauro,

Richard G. Posner,

William S.

Hlavacek

wish@lanl.gov

HIGHLIGHTS
PyBioNetFit is a software

tool for parameterizing

systems biology models

PyBioNetFit has support

for uncertainty

quantification, model

checking, and design

BPSL enables formulation

of qualitative system

properties to use in fitting

Example problems are

demonstrated on single

workstations and on

computer clusters

Mitra et al., iScience 19, 1012–
1036
September 27, 2019 ª 2019
The Author(s).

https://doi.org/10.1016/

j.isci.2019.08.045

mailto:wish@lanl.gov
https://doi.org/10.1016/j.isci.2019.08.045
https://doi.org/10.1016/j.isci.2019.08.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.08.045&domain=pdf

Article
PyBioNetFit and the Biological Property
Specification Language
Eshan D. Mitra,1 Ryan Suderman,1,4 Joshua Colvin,2 Alexander Ionkov,1,5 Andrew Hu,3 Herbert M. Sauro,3

Richard G. Posner,2 and William S. Hlavacek1,6,*
1Theoretical Biology and
Biophysics Group,
Theoretical Division, Los
Alamos National Laboratory,
Los Alamos, NM, USA

2Department of Biological
Sciences, Northern Arizona
University, Flagstaff, AZ, USA

3Department of
Bioengineering, University of
Washington, Seattle, WA,
USA

4Present address:
Immunetrics, Pittsburgh, PA,
USA

5Present address: University
of Wisconsin–Madison,
Madison, WI, USA

6Lead Contact

*Correspondence:
wish@lanl.gov

https://doi.org/10.1016/j.isci.
2019.08.045
SUMMARY

In systems biologymodeling, important steps includemodel parameterization, uncertainty quantifica-

tion, and evaluation of agreement with experimental observations. To help modelers perform these

steps, we developed the software PyBioNetFit, which in addition supports checking models against

known system properties and solving design problems. PyBioNetFit introduces Biological Property

Specification Language (BPSL) for the formal declaration of systemproperties. BPSL allows qualitative

data to be used alone or in combination with quantitative data. PyBioNetFit performs parameteriza-

tion with parallelized metaheuristic optimization algorithms that work directly with existing model

definition standards: BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML).

We demonstrate PyBioNetFit’s capabilities by solving various example problems, including the chal-

lenging problem of parameterizing a 153-parameter model of cell cycle control in yeast based on both

quantitative and qualitative data. We demonstrate the model checking and design applications of

PyBioNetFit and BPSL by analyzing a model of targeted drug interventions in autophagy signaling.

INTRODUCTION

An important step in the development of a mathematical model for a biological system is using experi-

mental data to identify model parameters. In a conventional approach, the experimental data of most

utility are quantitative time courses and/or dose-response curves. Parameters are adjusted to minimize

the difference between the model outputs and the experimental data (as measured, for example, by a

residual sum-of-squares function).

In some cases, there are straightforward solutions for parameter identification. For example, software tools

such as Data2Dynamics (Raue et al., 2015) and COPASI (Hoops et al., 2006) implement practical parame-

terization methods for biological applications. These programs can, for example, use gradient-based

optimization to solve the benchmark problems of Raue et al. (2013) and Hass et al. (2019). These problems

feature ODE models, which typically consist of tens of equations. One contains 500 equations. As powerful

and practical as Data2Dynamics and COPASI are, not all biological models fall into a category that can be

solved with these tools. When current software tools are inadequate, modelers must resort to either prob-

lem-specific code or manual adjustment of parameters. Both these approaches are tedious from the

perspective of the modeler and also present challenges for reproducibility of the modeling work (Medley

et al., 2016; Waltemath andWolkenhauer, 2016). Therefore, there is strong motivation to expand the scope

of problems that can be solved using general-purpose software compatible with standardmodel definition

formats.

We developed the software PyBioNetFit to solve three major classes of parameterization problems for

which current software solutions are limited. (1) Problems with larger than usual numbers of ODEs. The

size of an ODE-fitting problem depends primarily on two considerations: the number of differential equa-

tions and the number of free parameters. Parameterization cost typically has a dependence on both these

quantities, but the relative importance depends on the method used for parameterization. Large problem

size in terms of equation count often arises when using rule-based modeling. Rule-based modeling is the

preferred approach for processes in which a combinatorial explosion in the number of possible chemical

species makes it challenging to enumerate every possible chemical reaction (Chylek et al., 2013; Faeder

et al., 2005). In a rule-based model, a concise set of rules can be expanded to generate a much larger sys-

tem of ODEs (hundreds to thousands of equations from amodel with tens of rules). Although the number of

equations grows large, the number of parameters remains proportional to the number of rules, which is

typically much smaller than the number of rule-implied reactions. In this way, rule-derived ODE models
1012 iScience 19, 1012–1036, September 27, 2019 ª 2019 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:wish@lanl.gov
https://doi.org/10.1016/j.isci.2019.08.045
https://doi.org/10.1016/j.isci.2019.08.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.08.045&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

differ from manually formulated ODE models, which typically have a parameter count proportional to the

number of reactions. For ODE systems at the scale typically found in rule-based modeling, gradient-based

methods using finite differences or forward sensitivity analysis are computationally expensive. Adjoint

sensitivity analysis enables more scalable gradient computation (Cao et al., 2002), but current software is

limited in the supported workflows. (2) Problems featuring models that are simulated stochastically. This

class of problems includes rule-based models in which the implied ODE system is so large that it cannot

be derived from rules or numerically integrated efficiently (Sneddon et al., 2011; Suderman et al., 2019).

In such cases, the objective function is not differentiable, so standard gradient-based methods cannot

be used. (3) Problems including unconventional experimental data, in particular non-numerical qualitative

data. Such datasets are often collected by experimentalists and have the potential to informmodel param-

eterization (Mitra et al., 2018), but currently are rarely used in practice. Notable exceptions are works of

Tyson and coworkers (Chen et al., 2000, 2004; Csikász-Nagy et al., 2006; Kraikivski et al., 2015; Oguz

et al., 2013) and Pargett and coworkers (Pargett and Umulis, 2013; Pargett et al., 2014).

We address problems (1) and (2) by using parallelized metaheuristic optimization algorithms in place of

gradient-based algorithms. Metaheuristics are a well-established class of optimization algorithms that

do not rely on gradient information. If gradient information is available, metaheuristics can benefit by work-

ing in combination with gradient-based methods (Villaverde et al., 2019), as in memetic algorithms (Neri

et al., 2012). Metaheuristics carry no guarantee for convergence to a global optimum but are found to

be effective in many use cases (Gandomi et al., 2013). Examples of metaheuristics include differential

evolution (Storn and Price, 1997), particle swarm optimization (Eberhart and Kennedy, 1995), and scatter

search (Glover et al., 2000). Such algorithms often include some type of iterative randomized selection

of candidate parameter sets, followed by evaluation of the selected parameter sets, which is used to direct

the selection of parameters in future iterations to more favorable regions of parameter space. Many mod-

ern descriptions of metaheuristics allow for parallelized evaluation of parameter sets (Moraes et al., 2015;

Penas et al., 2015, 2017), which is valuable when each model simulation is computationally expensive.

Although these algorithms are well-established, software designed for biological applications is limited.

COPASI (Hoops et al., 2006) and Data2Dynamics (Raue et al., 2015) both include metaheuristic algorithms,

but these algorithms are not parallelized, which limits their performance with computationally intensive

models. The software BioNetFit (Thomas et al., 2016) (called BioNetFit 1 in this report to distinguish it

from the newly developed software) was an early effort to use a parallelized evolutionary algorithm to

parameterize rule-based biological models. However, the BioNetFit 1 algorithm is inefficient in many

cases, and in general, optimization algorithm performance is problem dependent, and so a toolbox of

methods is needed to enable a wide range of problems to be solved efficiently. PyBioNetFit was inspired

by BioNetFit 1 but is an entirely new code base that includes multiple, robust metaheuristic algorithms.

We address Problem 3 by following the approach of Mitra et al. (2018) for parameterizing models using

both qualitative and quantitative data. In this approach, properties of interest are represented as one or

more inequality constraints on the outputs of a model, enforced during some portion of a simulation. In

some cases, a single qualitative observation, such as the viability of a particular mutant, implies several sys-

tem properties (inequalities). For example, in a model of the yeast cell cycle (Laomettachit et al., 2016), if a

yeast strain is viable, three variables representing bud formation, origin activation, and spindle assembly

must each exceed a specified threshold. After defining inequalities, we cast each inequality as a static pen-

alty function (Smith and Coit, 1997), added to the objective function to be minimized. The result is a scalar-

valued objective function with contributions from both qualitative and quantitative data; this function is

minimized during fitting. This approach is fairly straightforward, and it has been demonstrated to be effec-

tive for parameterization of biological models using qualitative data (Mitra et al., 2018). An important

feature (in contrast to other constrained optimization methods) is allowance for the possibility that some

of the inequality constraints may not be satisfied (because they arise from uncertain experimental data).

To extend this approach for use in general-purpose software, we require a language to express arbitrary

system properties of interest. In systems biology, there is no established means for formalizing system

properties, although attempts have been made to do so with temporal logic (Clarke et al., 2008; David

et al., 2012; Heath et al., 2008; Kwiatkowska et al., 2008), sometimes as part of model parameterization (Hus-

sain et al., 2015; Khalid and Jha, 2018; Liu and Faeder, 2016). There is a lack of software tools tailored for

biological modeling that support property specification languages—most studies that incorporate tempo-

ral logic do so with problem-specific code. In addition, there are few demonstrations of how the formalism
iScience 19, 1012–1036, September 27, 2019 1013

of temporal logic, originally developed for computer science applications (Clarke et al., 1986), can be

applied to describe biologically interesting properties such as case-control comparisons. To address these

deficiencies, we developed the Biological Property Specification Language (BPSL) as part of PyBioNetFit.

BPSL is a domain-specific language for declaration of biological system properties and allows such prop-

erties to be used as part of parameterization.

To complement its parameterization features, PyBioNetFit includes methods for uncertainty quantification

of parameter estimates. Bayesian uncertainty quantification can be performed using Markov chain Monte

Carlo (MCMC) with the Metropolis-Hastings (MH) algorithm (reviewed by Chib and Greenberg, 1995) or

parallel tempering (reviewed by Earl and Deem, 2005). These methods start with an assumed prior prob-

ability distribution for each parameter, and a likelihood function, and aim to sample the multidimensional

posterior probability distribution of the parameters given the data. Simulations can be performed using

sampled parameter sets to quantify the uncertainty of model predictions. PyBioNetFit also supports boot-

strapping, which performs uncertainty quantification by resampling data (Efron and Tibshirani, 1993; Press

et al., 2007).

Although PyBioNetFit and BPSL were designed primarily for model parameterization, BPSL also enables

formalized approaches to model checking, somewhat as in computer science (Clarke et al., 1999), and

design, somewhat as in optimal control. For our application, we define model checking as performing veri-

fication of whether a model reproduces a set of specified properties. Applications of formal model check-

ing to biological processes have been considered in earlier work, including for stochastic models (Clarke

et al., 2008; Heath et al., 2008; Kwiatkowska et al., 2008). Much more often, model checking in biology is

done informally as part of building amodel. However, as models becomemore detailed, with an increasing

number of known properties, a more formal and systematic system of model checking is useful: it can help

in communicating what knowledge went into building the model and for comparing the predictions of

different models. Design represents a related application, analogous to the classical use of constrained

optimization techniques. In a design problem in PyBioNetFit, we seek an intervention (a perturbation of

a parameterized model) that brings about a desired set of BPSL-defined system behaviors, for example,

choosing drug doses to up- or down-regulate the activity of a target pathway.

All the above-mentioned features of PyBioNetFit are designed to be used in conjunction with existing

model definition standards, avoiding the need for problem-specific code. PyBioNetFit natively supports

models defined in BioNetGen Language (BNGL) (Faeder et al., 2009), a language for rule-based models,

and core SBML (Hucka et al., 2003), a language for more conventional models. For BNGL models,

PyBioNetFit supports the simulators available in BioNetGen (Harris et al., 2016; Faeder et al., 2009; Blinov

et al., 2004; Sneddon et al., 2011). For SBMLmodels, PyBioNetFit uses the simulator libRoadRunner (Somo-

gyi et al., 2015). PyBioNetFit has a modular design that makes it possible to add support for additional

model standards and simulators in the future. Currently, other model standards are indirectly supported

by converting to BNGL or SBML. For example, rule-based models defined in the Kappa language (Danos

and Laneve, 2004; Sorokina et al., 2013) can be converted to BNGL using the software tool TRuML (Suder-

man and Hlavacek, 2017).

To demonstrate the capabilities of PyBioNetFit, we solved a series of example optimization problems. We

solved a total of 31 problems, 25 of which featured published, biologically relevant models (Blinov et al.,

2006; Boehm et al., 2014; Brännmark et al., 2010; Chylek et al., 2014; Dunster et al., 2014; Erickson et al.,

2019; Faeder et al., 2003; Fey et al., 2015; Harmon et al., 2017; Hlavacek et al., 2018; Kocieniewski

et al., 2012; Kozer et al., 2013; Kühn and Hillmann, 2016; Lee et al., 2003; Mitra et al., 2018; Monine

et al., 2010; Mukhopadhyay et al., 2013; Oguz et al., 2013; Romano et al., 2014; Shirin et al., 2019; Suder-

man and Deeds, 2013; Webb et al., 2011; Zheng et al., 2012). With four of these problems, we performed

extensive benchmarking using different algorithms and different levels of parallelization. Not surprisingly,

we find that the optimal algorithm depends on the fitting problem, which demonstrates the value of

having a toolbox of several algorithms available. We then focus on a particularly challenging example

problem: parameterizing the model of Tyson and co-workers for cell cycle control in yeast (Chen et al.,

2000, 2004; Csikász-Nagy et al., 2006; Kraikivski et al., 2015; Oguz et al., 2013). This model was originally

parameterized by hand-tuning (Chen et al., 2000, 2004) and later by automated optimization with prob-

lem-specific code (Mitra et al., 2018; Oguz et al., 2013). Here we consider our most recent description of

the problem (Mitra et al., 2018), which has a 153-dimensional parameter space. We define the problem
1014 iScience 19, 1012–1036, September 27, 2019

using BPSL and solve it using the general-purpose functionality of PyBioNetFit. Thus we demonstrate that

PyBioNetFit can solve this general class of problem, that of using both qualitative and quantitative data to

parameterize a biological model.

Finally, we considered a model describing drug intervention in autophagy signaling (Shirin et al., 2019) to

demonstrate the capabilities of PyBioNetFit and BPSL beyondmodel parameterization.We show that BPSL

can be used to define a set of system properties, which can then be used in model checking. We also

demonstrate how BPSL can be used to configure a design problem, finding a combination of drug doses

to achieve a desired level of autophagy regulation.
RESULTS

Workflow Enabled by PyBioNetFit

The steps involved in using PyBioNetFit are illustrated in Figure 1. PyBioNetFit is configured with a set of

plain-text input files (Figure 1A). The input files must have particular filename extensions: .conf, .bngl, .xml,

.exp, and .prop. We will refer to these as CONF files, BNGL files, etc. The files may be prepared in any

standard text editor.

Figure 2 shows an example set of PyBioNetFit input files for a simple problem. The problem is to param-

eterize a model for the chemical kinetics of three reactions (Figure 2A) using synthetic quantitative and

qualitative data (Figure 2B).

A model file (Figure 2C; filename extension .xml for SBML models or .bngl for BNGL models) defines the

model to be fit. In the case of BNGL models, the model file also defines simulation protocols. BNGL allows

for sophisticated simulation protocols such as equilibration to a basal steady state. For SBMLmodels, simu-

lation protocols must be defined in the CONF file (see below). BNGL files may be prepared with a standard

text editor, or with the text editor available within RuleBender (Xu et al., 2011), an integrated development

environment for BioNetGen. SBML files are not human readable and should be prepared using SBML-

compatible software such as COPASI (Hoops et al., 2006) or Tellurium (Medley et al., 2018; Choi et al.,

2018). Model files must conform to certain conventions for compatibility with PyBioNetFit. For BNGL files,

each free parameter to be fit must be assigned a name ending in __FREE (Figure 2C lines 3–5) and each

model output to be compared with measurements must be introduced as a BNGL observable or function.

For SBML files, each free parameter must be an SBML parameter or the initial concentration of a species,

and each model output to be compared with measurements must be an SBML species concentration or

population. In addition, each simulation commandmust have an associated string identifier, called a suffix.

If the simulation is defined in a BNGL file, the suffix is specified using the suffix argument of the simulate

or param_scan action. If the simulation is defined in the CONF file (see description of the CONF file

below), the suffix is specified as part of the time_course or parameter_scan declaration. The suffix

must match the name of the corresponding experimental data file (e.g., ‘‘d1’’ in Figure 2). In the simplest

case, a fitting job has onemodel file. However, PyBioNetFit supports jobs with multiple model files, such as,

the problem considered in the section Application: Fitting a Model of Yeast Cell Cycle Control Using Both

Qualitative andQuantitative Data. This feature is useful when two or more models have parameters in com-

mon, such as two models that represent the same process in wild-type and mutant cells.

Experimental measurements are supplied in EXP (Figure 2D) and PROP (Figure 2E) files. EXP files contain

tabular quantitative data, such as time courses or dose-response curves. These files are specified in a

space-delimited format in which the first column corresponds to the independent variable and other col-

umns correspond to dependent variables (the same format as is used in GDAT files output by BioNetGen).

PROP files contain statements written using BPSL, which is described in the next section. PROP files are

used for qualitative data.

A configuration file, or CONF file (Figure 2F), provides the settings for running a fitting job. These settings

include which model and data files to use (line 3), which parameters will be free to vary in fitting (lines

15–17), which fitting algorithm to use (line 9), which objective function to use (line 10), and settings specific

to the selected fitting algorithm (lines 11–12), such as the mutation rate in the case of differential evolution.

Additional configuration keys are available to define simulation protocols (time courses or parameter

scans), and to declare free parameters that vary in logarithmic rather than linear space. A complete listing

of the available configuration keys is provided in the PyBioNetFit user manual (Mitra and Suderman, 2019).
iScience 19, 1012–1036, September 27, 2019 1015

Figure 1. Inputs, Outputs, and Operations of PyBioNetFit

(A) PyBioNetFit input files are a set of plain-text files: a CONF file specifying program settings, one or more model files in

BNGL and/or SBML format, and one or more data files containing experimental data. EXP files contain quantitative data,

and PROP files contain qualitative data. Examples of these files are shown in Figure 2.

(B) When running PyBioNetFit, the user-selected optimization algorithm generates candidate parameter sets, which are

passed to the appropriate simulator (for SBML models, libRoadRunner; for BNGL models, the simulator selected in the

BNGL file). PyBioNetFit calculates the value of a user-selected objective function from the simulation results obtained for

each trial parameter set, which is then used to inform future iterations of the algorithm. Each simulation and objective

function evaluation is started as a separate worker process, which is run on a separate core of a multicore workstation or

cluster if available.

(C) PyBioNetFit output files include a text file reporting the best-fit parameter values, model files with the best-fit

parameter settings, and output files resulting from simulating the models using the best-fit parameter values.
After generating all the required files, a user can run PyBioNetFit from the command line, as described

in the user manual (Mitra and Suderman, 2019). Figure 1B illustrates the internal operations of PyBioNetFit.

PyBioNetFit iteratively passes proposed parameter sets to the appropriate simulator, reads the simulation

results, and calculates the value of the user-selected objective function. The objective function values are

fed back into the optimization algorithm and affect which parameter sets are proposed in future iterations.

Upon termination of the algorithm, PyBioNetFit outputs the best-fit parameter values, new model files that

include those parameter settings, and (optionally) simulation results generated from those model files

(Figure 1C).
1016 iScience 19, 1012–1036, September 27, 2019

Figure 2. A Fitting Problem Configured to Run in PyBioNetFit

(A–C) (A) Reaction scheme of the model to be parameterized. The model is a coupled system of ODEs for the mass-action

kinetics of the reactions shown here. The problem is to estimate values for the rate constants k1, k2, and k3. (B) Time

courses of concentrations of species B and C. Black broken curves give the ground truth. For fitting, two quantitative data

points (black points) and four qualitative data points (colored circles) are available. The qualitative data indicate whether

the concentration of species B or C is larger at a particular time. A plus sign indicates B > C and a minus sign indicates

B <C. Colored curves show the quality of fit after running PyBioNetFit on the input files listed in (C–F). (C) Implementation

in BNGL of a model for the reaction scheme in (A). Note that the parameters to be tuned by PyBioNetFit are named with

the suffix __FREE (lines 3–5). The parameter Ainit, which is to be held fixed, is not named with __FREE (line 6).

(D) EXP file containing the quantitative data points shown in (B). The keyword nan is used to indicate missing data.

(E) PROP file encoding the qualitative data points shown in (B).

(F) CONF file used to configure PyBioNetFit. As described in the main text, the CONF file specifies the paths to the other

files, the algorithm to be used, and the free parameters to be adjusted. The files pictured here are available in Data S1

(Problem 5).
Property Specification with BPSL

To allow fitting to qualitative data, we implemented the approach described by Mitra et al. (2018) in

PyBioNetFit. For this feature, we developed BPSL, a novel property specification language. BPSL is

designed for writing system properties of cellular regulatory networks. In BPSL, system properties are

expressed as inequalities involving the dependent variables of an experiment or model. We refer to

such dependent variables in this section as simply ‘‘variables.’’ Typically, BPSL statements are written for

the purpose of parameterizing a particular model, in which case the names of the variables should match

the names of outputs of that model, similar to column headings of an EXP file. However, we note that like

EXP files, BPSL statements primarily encode (experimental) data, and the same data could be considered in

conjunction with any model for the system of interest (possibly only after changing the variable names to

match the output names of the new model). Variables in BPSL are flexible: in addition to what is supported

in EXP files—quantities corresponding to BNGL or SBML model outputs—it is possible to compare vari-

ables/readouts between different models/systems. One application of this feature would be case-control

comparisons, such as comparing a mutant to wild-type.
iScience 19, 1012–1036, September 27, 2019 1017

Keyword Meaning

always At all times

once At one or more time points

athconditioni At the first time point where hconditioni is true

between hcondition1i, hcondition2i Over the range of time points starting with the first point where

hcondition1i is true and ending with the first subsequent time

point where hcondition2i is true

Table 1. Keywords Used to Define Enforcement Conditions in BPSL

Definitions assume that the independent variable is time, but any arbitrary independent variable may be considered, as when

considering a steady-state dose-response curve instead of a time course.
Each inequality declared in BPSL is enforced at a particular value or range of values of the independent

experimental variable (e.g., time). For example, an inequality might be enforced at one specific time, or

at all times in a time course. As described below, BPSL syntax provides a means to define inequalities,

where they are enforced, and how much they contribute to the objective function during optimization.

A BPSL statement consists of three parts: an inequality, followed by an enforcement condition, followed by

a weight. The inequality establishes a relationship (<, >,%, orR) between a variable and a constant or be-

tween two variables. The enforcement condition specifies where in a time course or dose-response curve

the constraint is in effect. Enforcement conditions are defined using the keywords always, once, at, and

between, as summarized in Table 1. The weight (declared with the weight keyword) specifies the static

penalty coefficient to be used during optimization when the inequality is not satisfied. Specifically, if the

constraint g(ŷ)<0 is not satisfied for the model outputs ŷ, the objective function adds a penalty equal to

C,g(ŷ) where C is the weight of the constraint. Note that, in this formulation, the penalty decreases as

we move closer to satisfying the constraint. This feature of the objective function serves to guide an opti-

mization algorithm toward constraint satisfaction.

We illustrate the use of BPSL with the following examples, assuming time course outputs X(t) and Y(t). The

BPSL statement

X > 5 always weight 2

defines a constraint requiring X(t) to be greater than 5 at all times. If the constraint is violated, a penalty of

2,(5�min(X(t))) is added to the objective function. The BPSL statement

X < 1 between time = 8, Y = 5 weight 3

defines a constraint requiring X(t) to be less than 1 over a specified time range. The start point of this time

range is specified directly: time = 8. The endpoint is specified indirectly based on the value of Y(t); it is the

first time point after t = 8 where Y(t) = 5. More precisely, to avoid numerical error, PyBioNetFit checks when

Y(t) crosses 5, i.e., finds, after t= 8, the first two consecutive output times t1 and t2 such that Y(t1)<5% Y(t2) or

Y(t1)>5R Y(t2) and sets t2 as the endpoint. If the constraint is violated at any point in the above time range,

the penalty is 3,(max(X(t))�1), where max(X(t)) is evaluated over the time range.

Metaheuristic Fitting Algorithms

PyBioNetFit features four recommended parallelizedmetaheuristic fitting algorithms, which we will refer to

as differential evolution (DE), asynchronous differential evolution (aDE), particle swarm optimization (PSO),

and scatter search (SS). The details of each algorithm’s implementation and configuration options are

provided in the PyBioNetFit user manual (Mitra and Suderman, 2019). Note that aDE and PSO are imple-

mented as asynchronous algorithms, which address load-balancing issues by submitting a new simulation

job whenever one is completed. Such an implementation prevents CPU cores from remaining idle, but re-

quires new trial parameter sets to be proposed with limited new information. In contrast, our synchronous

DE and SS algorithms require all simulations performed within an iteration to complete before moving on

to the next iteration.
1018 iScience 19, 1012–1036, September 27, 2019

Key Model component(s) Data Sim. Pars. Rxns. Eqs. Pts. Sims. Algs.

1 Histones E RR 46 60 30 48 1 D,A,P,S

2 EGFR, Grb2, Sos S B-ode 37 3,749 356 40 1 D,A,P,S

3 IgE receptor S B-ssa 20 58,276 3,744 66 3 D,A,P,S

4 EGFR E B-nf 9 – – 24 12 D,A,P,S

5 Simple reactions S B-ode 3 3 3 6* 1 D,A,P,S

6 Degranulation E B-ode 16 86 23 6 11 D,A,S

7 Egg-shaped curve S B-ode 10 1 2 362 1 D,A,P,S

8 Yeast cell cycle regulators E RR 153 39 26 2352* 122 S

9 mTORC, ULK1, AMPK D RR 6 5 5 2* 1 S

10 EGFR E B-ode 9 11,918 923 24 6 D,A,P,S

11 Trivalent ligand E B-nf 3 – – 12 36 D,A,P,S

12 TCR E B-nf 34 – – 68 1 D,A,P,S

13 Ligand/receptor S B-ode 6 54 15 26 1 D,A,P,S

14 Ligand/receptor S B-nf 6 – – 26 2 D,A,P,S

15 IGF1R E B-ode 7 96 27 38 38 D,A,P,S

16 Raf, MST, ERK S RR 63 31 21 60 1 D,A,P,S

17 EGFR, Grb2, Sos S B-ssa 37 3,749 356 40 3 D,A

18 MAPK S B-ode 13 487 85 28 7 D,A,P,S

19 Raf inhibitor S B-ode 2 12 6 28* 13 D,A,P,S

20 Raf inhibitor S B-ode 4 12 6 28* 13 D,A,P,S

21 Immune cells E RR 7 10 7 21 1 D,A,P,S

22 STAT E RR 6 9 8 48 1 D,A,S

23 Insulin receptor E RR 22 11 9 43 9 D,S

24 Jnk E B-ode 12 330 66 59 22 D,A,P,S

25 Cells expressing Fas or FasL S RR 11 17 7 64 16 D,A,P,S

26 TCR E B-nf 10 – – 9 450 P,S

27 Wnt, Axin, APC S RR 25 17 15 68 1 D,A,P

28 MAPK E B-nf 25 – – 96 2 A

Table 2. Summary of the 31 Example Problems Provided in Data S1

(Continued on next page)
To demonstrate the breadth of problems that can be solved using PyBioNetFit, we ran these algorithms on

a total of 31 example problems, listed in Table 2. The problems are described in the following references: 1,

Hass et al. (2019); Zheng et al. (2012); 2, Blinov et al. (2006); Gupta andMendes (2018); 3, Faeder et al. (2003);

Sneddon et al. (2011); Gupta and Mendes (2018); 4, Kozer et al. (2013); Thomas et al. (2016); 5, none; 6, Har-

mon et al. (2017); 7, Hlavacek et al. (2018); 8, Laomettachit (2011); Oguz et al. (2013); Mitra et al. (2018); 9,

Shirin et al. (2019); 10, Kozer et al. (2013); Thomas et al. (2016); 11, Monine et al. (2010); Posner et al. (2007);

Thomas et al. (2016); 12, Chylek et al. (2014); Thomas et al. (2016); 13, Thomas et al. (2016); 14, Thomas et al.

(2016); 15, Erickson et al. (2019); Kiselyov et al. (2009); 16, Romano et al. (2014); 17, Blinov et al. (2006); Gupta

and Mendes (2018); 18, Kocieniewski et al. (2012); 19, Mitra et al. (2018); 20, Mitra et al. (2018); 21, Dunster

et al. (2014); Xue and Del Bigio (2000); 22, Boehm et al. (2014); Hass et al. (2019); 23, Brännmark et al. (2010);
iScience 19, 1012–1036, September 27, 2019 1019

Key Model component(s) Data Sim. Pars. Rxns. Eqs. Pts. Sims. Algs.

29 Schwefel function S RR 2 0 1 1 1 D,P,S

30 Job market S B-nf 6 – – 330 3 D,A,P,S

31 Elephant-shaped curve S B-ode 82 1 2 930 1 D,A,P,S

Table 2. Continued

Table columns are summarized as follows. ‘‘Key model component(s)’’ lists some components of the model (but is not

intended as a complete description of the model). ‘‘Data’’ gives the type of data used in fitting: E, experimental; S,

synthetic; D, specification of desired system properties for a design problem. ‘‘Sim.’’ gives the simulator used: RR,

libRoadRunner, B-ode, BioNetGen ODE; B-ssa, BioNetGen SSA; B-nf, NFsim. Note that models using libRoadRunner are

implemented in SBML and models using the other three simulators are implemented in BNGL. ‘‘Pars.’’ gives the number

of free parameters. ‘‘Rxns.’’ gives the number of chemical reactions in the model. ‘‘Eqs.’’ gives the number of differential

equations in the model. Reaction and equation counts are not given for models simulated with NFsim because the simulation

is run without enumerating all reactions and equations. ‘‘Pts.’’ gives the number of data points. When indicated (*), this total

includes qualitative data points (i.e., inequality constraints). ‘‘Sims.’’ gives the number of individual time course simulations

required for one evaluation of the objective function. ‘‘Algs.’’ lists the algorithms used to solve the problem: D, DE; A,

aDE; P, PSO; S, SS.
Hass et al. (2019); 24, Fey et al. (2015); 25, Webb et al. (2011); 26, Mukhopadhyay et al. (2013); Manz et al.

(2011); 27, Lee et al. (2003); 28, Suderman and Deeds (2013); Yi et al. (2003); Yu et al. (2008); Leeuw et al.

(1998); 29, none; 30, Kühn and Hillmann (2016); 31, Hlavacek et al. (2018). See also Table S1. Input files,

descriptions, and results for each of these problems are provided in Data S1, a ZIP archive containing 31

numbered folders, one for each example problem. We will refer to the problems by these numbers. For

example, we will refer to the folder associated with Problem 1 in Table 2 as Data S1 (Problem 1). In

some cases, we fit models to published experimental data. In other cases where no appropriate experi-

mental dataset was available, we generated synthetic data by simulating the model with an assumed

ground truth parameter set. The synthetic data included noise; depending on the problem, this was added

as Gaussian white noise, uniformly distributed noise, or noise inherent to performance of a single stochastic

simulation. In total, the example problems included 19 rule-based models defined in BNGL, nine of which

were fit to experimental data; ninemanually formulatedODEmodels defined in SBML, 6 of which were fit to

experimental data; and 3 problems using closed-form functions. All the problems could be solved with an

acceptable fit (defined as reaching a target objective function value, which is specified in Data S1 for each

individual problem) with at least one of the available algorithms using the default algorithmic parameters.

Most could be solved with all four algorithms tested, albeit with different efficiencies. We do not perform a

comprehensive analysis of every model (which would entail varying algorithmic parameters, performing

additional replicates of fitting, etc.), but with the fitting runs we performed, we illustrate that PyBioNetFit

can be used to analyze a variety of SBML- and BNGL-formatted models.

To demonstrate additional specific features of PyBioNetFit, which were not feasible or applicable to run on

all example problems, we selected specific problems from Table 2 to use for illustration, as indicated in Ta-

ble 3. We will describe results for these illustrative problems in the sections that follow.

To evaluate which algorithms are most effective in typical use cases, we performed timed benchmarking.

We used the default algorithmic parameters for each algorithm. Because of the stochastic nature of the

algorithms, many replicates of the same fitting job were necessary to make conclusions about the typical

run time of each algorithm. As benchmark problems, we chose Problems 1–4 in Table 2, which have fitting

run times on the order of hours. Such problems are not trivial, but it is still feasible to run many fitting rep-

licates on a cluster.

To examine the full scope of PyBioNetFit functionality, our selected benchmarks include one problem

using each of the four key simulators supported in PyBioNetFit, which we refer to as libRoadRunner,

BioNetGen ODE, BioNetGen SSA, and NFsim. These simulators are described briefly as follows. (1)

libRoadRunner is an SBML simulator. By default, libRoadRunner interfaces with CVODE (Hindmarsh

et al., 2005) to perform numerical integration. (2) BioNetGen ODE refers to the numerical integration capa-

bility of BioNetGen, accessed with the action simulate(method=>"ode"). Like libRoadRunner, this

functionality interfaces with CVODE (Hindmarsh et al., 2005). (3) BioNetGen SSA refers to an efficient
1020 iScience 19, 1012–1036, September 27, 2019

Problem Feature

1–4 Timed benchmarking of performance

5 Demonstration of configuration

6 Bayesian uncertainty quantification

7 Bootstrapping

8 Real-world problem using qualitative data

9 Model checking and design

Table 3. Example Problems Selected for Demonstrations of Additional Features of PyBioNetFit, Presented

Throughout the Results Section
variation of Gillespie’s stochastic simulation algorithm (Gillespie, 2006) implemented in BioNetGen, ac-

cessed with the action simulate(method=>"ssa"). (4) NFsim refers to the component of BioNetGen

accessed with the action simulate(method=>"nf") that performs agent-based stochastic simulations

without generation of a reaction network (Sneddon et al., 2011). For the stochastic simulators BioNetGen

SSA and NFsim, PyBioNetFit performs smoothing by averaging a user-specified number of replicate runs

before comparing the results to experimental data.

For each of the benchmark problems, we chose a target objective function value (described for each prob-

lem in Data S1) and measured the run times required for each algorithm to reach the target value. We eval-

uated the run times of the four algorithms and also measured how the run times scaled with an increasing

number of available cores on a cluster. As described in Transparent Methods, we adjusted the population

size of each algorithm based on the core count, such that each iteration used all available cores. The result-

ing distributions of run times are shown in Figure 3. We found that in most cases, the algorithms show good

capacity for taking advantage of parallelization, in that the median run time decreases as the number of

available cores increases. The best algorithm varies by problem, and also varies by the number of cores

available. Notably, with a large number of available cores (288), PSO (an asynchronous algorithm) is

most effective for the benchmarks using stochastic simulators (BioNetGen SSA and NFsim) (Figures 3C

and 3D). According to the Mann-Whitney U statistical test, for Problem 3, PSO is faster than aDE with

p = 3.3 3 10�5 and faster than SS with p = 7.7 3 10�3. For Problem 4, PSO is faster than SS with p =

1.4 3 10�4. However, PSO is outperformed by aDE and SS for the other benchmarks (Figures 3A and

3B). For Problems 1 and 2, DE and aDE encountered convergence failures with small core counts because

the corresponding population sizes were too small to effectively explore the parameter space.

Variability in algorithm performance is expected when considering a broad range of problems. In the end,

the best algorithm and level of parallelization are problem specific, and must be selected through trial and

error. PyBioNetFit helps users in this regard by providing robust implementations of several algorithms,

allowing for easy testing of different approaches.

Two additional metaheuristic algorithms are implemented in PyBioNetFit but not rigorously benchmarked:

simulated annealing (SA) and the parallelized island-based differential evolution (iDE) algorithm of Penas

et al. (2015). These algorithms were challenging to include in benchmarking because of the need to tune

problem-specific parameters (temperature and step size in the case of SA and trade-offs between island

size and number of islands versus the number of available cores in the case of iDE). Still, we include the

implementations in PyBioNetFit with the hope that users will find them useful for specific problems.
Local Optimization

PyBioNetFit includes a parallelized implementation (Lee and Wiswall, 2007) of the simplex algorithm

(Nelder and Mead, 1965), a gradient-free local search algorithm. The simplex algorithm may be used on

its own or to refine the best fit obtained from any of the other algorithms. For rugged parameter land-

scapes, which we expect to be common for problems considered in PyBioNetFit, a gradient-free local

search algorithm is unlikely to find the global minimum on its own. Therefore, our recommended use of

the simplex algorithm is for refinement of an existing best fit.
iScience 19, 1012–1036, September 27, 2019 1021

Figure 3. Results from Timed Benchmarking of PyBioNetFit

(A–D) Run times required to reach a target objective value are shown for our four selected benchmark problems (Table 2,

Problems 1–4), for the DE, aDE, PSO, and SS algorithms implemented in PyBioNetFit. Box plots indicate the distribution

of 20 replicates in (A–C) and 12 replicates in (D). Gray points represent results from individual replicates. Replicates that

ran for the maximum wall time (3 h in A, 6 h in B–D) without reaching the target value are plotted in the ‘‘Wall’’ band. When

calculating percentiles for box plots, ‘‘Wall’’ replicates were taken to be larger than any successful replicate. ‘‘CF’’

(convergence failure) gives the number of replicates, out of 20 total, that failed because the population converged to a

single point that was worse than the target value. Box plot statistics do not include convergence failures. Box plots are not

shown for settings in which more than half the replicates were convergence failures. Each pair of whiskers indicates the

minimum and maximum. Each box indicates the quartiles. Each horizontal line indicates the median.
Comparison to a Gradient-Based Optimization Method

Although we did not rigorously benchmark PyBioNetFit against other parameterization tools, we tested the

gradient-based method of Data2Dynamics (Raue et al., 2015) on Problems 1 and 2 (Table 2) to obtain a
1022 iScience 19, 1012–1036, September 27, 2019

rough view of how the performance of this tool compares to that of PyBioNetFit. Results are provided in

Data S1 (Problems 1 and 2) and considered further in Discussion. We note that the results are provided

only with the intention of concretely demonstrating discussion points.
Uncertainty Quantification

For Bayesian uncertainty quantification, PyBioNetFit offers two MCMC methods: the conventional MH al-

gorithm and parallel tempering (PT). Thesemethods are used by setting fit_type = mh or fit_type = pt in

the CONF file, similar to how de is selected in Figure 2F, line 9. To validate the accuracy of PyBioNetFit, we

used MH and PT with the model of mast cell signaling described by Harmon et al. (2017) (Table 2, Prob-

lem 6). Harmon et al. (2017) observed differences in mast cell degranulation as a function of the time delay

between two pulses of antigen stimulation of IgE receptor activity. Themodel describes the activities of Syk

and Ship1 during this two-stage stimulation protocol. The original study included Bayesian uncertainty

quantification of model parameters and predictions using problem-specific code that implemented MH.

We ran MH and PT in PyBioNetFit using input files provided in Data S1 (Problem 6). We found that both

PyBioNetFit algorithms achieved good agreement with the published results for parameter uncertainty

(Figures 4A–4F) and prediction uncertainty (Figures 4G–4L). For this problem, the MH and PT algorithms

converged to the correct distribution at roughly the same rate. Convergence was checked by dividing

the samples into two independent sets (sampled by different Markov chains) and confirming by inspection

that the two sets of samples had similar distributions.

Note that to calculate the posterior probability distribution, the objective function is assumed to corre-

spond to a negative log likelihood. This assumption is valid for the chi-square objective function, which

was used in this example. Bayesian MCMC algorithms will not produce statistically meaningful results if

used with PyBioNetFit’s other available objective functions or when penalty terms arising from qualitative

data are added to the objective function.

When using Bayesian MCMCmethods, it is important to choose algorithmic parameters such that the pos-

terior distribution is sampled accurately. In particular, some number of unsampled ‘‘burn-in’’ iterations

should be used to allow the Markov chains to reach a starting point in a region of high probability density.

In addition, an adequately large number of iterations must be sampled for the Markov chains to fully

explore the posterior distribution. The Gelman-Rubin statistic (Gelman and Rubin, 1992) is a popular quan-

titative test for convergence of sampling. Exploring the target distribution may be especially challenging

when the distribution is multimodal, and it is a rare event for a Markov chain to move between modes. In

these situations, PT is expected to outperform MH by providing a faster means of escape.

Run times of Bayesian MCMC algorithms are expected to be dominated by the run times of the large num-

ber of simulations required to adequately sample probability distributions. We therefore do not expect a

noticeable difference in performance between different implementations of the same MCMC algorithm

run with the same settings, aside from differences in simulator efficiency. PyBioNetFit is a convenient

tool for running MCMC because it supports both BNGL and SBML models without the need for custom

code. In addition, MCMC in PyBioNetFit takes advantage of parallelization. In MH, individual Markov

chains are not parallelizable, but PyBioNetFit can run multiple independent Markov chains in parallel

and pool the results to create a larger sample of a probability distribution. In PT, the algorithm requires

the simultaneous propagation of several Markov chains, and these chains are run in parallel. Efficiency

of MH and PT is known to decline for high-dimensional parameter spaces. Problem 7 has a 16-dimensional

parameter space, which is the largest for which we have used these methods.

MH and PT are widely used algorithms, but they are not suitable for every problem. More sophisticated

MCMC algorithms described elsewhere include (among many others) Hamiltonian Monte Carlo (Betan-

court, 2017), a gradient-based method implemented in other tools such as the statistical software package

Stan (Carpenter et al., 2017), and the differential evolution Markov Chain family of algorithms (ter Braak and

Vrugt, 2008). These more advanced algorithms are not included in the initial PyBioNetFit release, but the

extensibility of PyBioNetFit (described in the Section Continued Development of PyBioNetFit) may allow

them to be added in future development.

PyBioNetFit offers bootstrapping (Efron and Tibshirani, 1993; Press et al., 2007) as another uncertainty

quantification method. Bootstrapping relies on the assumption that the experimental data points are
iScience 19, 1012–1036, September 27, 2019 1023

Figure 4. Bayesian Uncertainty Quantification in PyBioNetFit

(A–L) Results from PyBioNetFit’s MH (B, E, H, and K) and PT (C, F, I, and L) algorithms are compared with the problem-

specific code of Harmon et al. (2017) (A, D, G, and J). The data plotted in (A, D, G, and J) originally appeared in Harmon

et al. (2017). (A–F) Marginal posterior probability distributions for selected parameters of the model of Harmon et al.

(2017). Two examples of the 16 model parameters are shown. (G–L) Prediction uncertainty quantification for time courses

of activated Ship1, one of the model outputs. Two antigen stimulation protocols are shown: one in (G–I) and the other in

(J–L). Black bars above graphs indicate times whenmultivalent antigen was present. Solid curves indicate themedian, and

shaded areas indicate the 68% credible interval.
drawn from some (unknown) probability distribution and that drawing a sample from the data available is a

good approximation of drawing a sample from the distribution.

Results of bootstrapping are typically reported as a ‘‘confidence interval’’ for the value of each parameter.

Three important caveats must be kept in mind when interpreting this confidence interval. First, the interval

refers specifically to the location of the best-fit parameter set. For this reason, bootstrapped intervals tend

to be narrower than those obtained from a likelihood-based Bayesian approach (Fröhlich et al., 2014). In

addition, if a parameter is unidentifiable, bootstrapping can yield a misleadingly narrow interval. Second,

a bootstrapped confidence interval includes both uncertainty arising from experimental data and uncer-

tainty introduced by imperfect performance of the fitting algorithm used (unless the algorithm has perfect

performance with respect to finding the global minimum). Thus, when we obtain a ‘‘90% confidence inter-

val’’ from bootstrapping, it means that if the experiment was repeated, and the fitting was repeated using
1024 iScience 19, 1012–1036, September 27, 2019

the new data, then the best-fit parameter is expected to fall within the interval with 90% confidence. Third,

bootstrapping relies on the assumption that a resampled dataset is a good approximation of repeating an

experiment. This assumption may not be valid when the size of the original experimental dataset is small.

Interested readers can find further discussion of the advantages and limitations of bootstrapping in

Chernick and LaBudde (2011).

To illustrate how bootstrapping can be used to measure uncertainty arising from different fitting algo-

rithms, we consider a fitting problem consisting of an egg-shaped curve (Table 2, Problem 7), originally pre-

sented by Hlavacek et al. (2018). This toy problem is simple enough for PyBioNetFit’s SS algorithm to find

the global minimum, but the BioNetFit 1 algorithm is less effective. We performed bootstrapping on this

problemwith PyBioNetFit and found that the best fit for each parameter was identified to precision of order

10�4 with 90% confidence (Data S1, Problem 7). This high level of precision is unsurprising, given that the

input data consist of densely sampled points on the target curve with minimal noise. In contrast, 90% con-

fidence intervals reported using BioNetFit 1 span large ranges, of order 1 in some cases (Hlavacek et al.,

2018). We conclude that the uncertainty reported with BioNetFit 1 arises mainly from limitations of the

fitting algorithm, rather than from limitations in the amount or quality of data for fitting. Again, results

from bootstrapping would be independent of the optimizer if the optimizer is always able to find a unique

global minimum, but this is not a realistic expectation for many problems.

In summary, the uncertainty quantification methods in PyBioNetFit provide different and complementary

functionalities. The Bayesian MH and PT algorithms estimate a multidimensional probability distribution

showing the most probable parameter values (treated as random variables) based on the data. Different

Bayesian algorithms with the same input data are expected to produce the same results, as long as

algorithmic settings allow for sufficient sampling of the posterior probability distribution. Bootstrapping

evaluates the uncertainty given a fitting algorithm in combination with a particular dataset. The resulting

bootstrap confidence interval represents the confidence in the best-fit parameter values if both the exper-

iment and the fitting were to be repeated.
Application: Fitting a Model of Yeast Cell Cycle Control Using Both Qualitative and

Quantitative Data

To demonstrate the capabilities of PyBioNetFit to parameterize models using both qualitative and quan-

titative data, we used PyBioNetFit to re-solve a challenging, published parameterization problem involving

a model of yeast cell cycle control developed by Tyson and co-workers (Chen et al., 2000, 2004; Csikász-

Nagy et al., 2006; Kraikivski et al., 2015; Oguz et al., 2013). Early versions of this model were parameterized

by hand-tuning (Chen et al., 2000, 2004), and later by problem-specific code with a search space informed

by previous hand-tuned results (Oguz et al., 2013). In our previous work, we used problem-specific code to

parameterize themodel ab initio (Mitra et al., 2018). Our problem formulation used themodel described by

Oguz et al. (2013) and Laomettachit (2011), incorporating the qualitative data tabulated by Laomettachit

et al. (2016) and the quantitative data of Spellman et al. (1998) (Table 2, Problem 8). Our goal in this

work was to use PyBioNetFit to obtain a similar quality of fit to previous work. Because this example serves

primarily as an illustration of PyBioNetFit functionality, we configured the problem to be identical to the

previous study (Mitra et al., 2018) in terms of models, datasets, and objective function.

PyBioNetFit contains all the features needed to repeat the fitting job of Mitra et al. (2018). The input files to

run the fitting job are provided as Data S1 (Problem 8). Like in the original study, we performed optimization

using scatter search, as described in Transparent Methods.

We ran the fitting job in PyBioNetFit, and the resulting fit was of similar quality to that of previous work. We

present a subset of the results in Figure 5 and the parameterized model in Data S1 (Problem 8). Our reported

fit is the best result from 40 independent replicates. Convergence plots for all 40 replicates are shown in Fig-

ure S1. We achieved a minimum objective function value of 80, compared with 70 in Mitra et al. (2018). A dif-

ference is not surprising given the stochastic nature of the SS algorithm (or anymetaheuristic). For comparison,

our best objective function value from a starting sample of 500 randomparameter sets was 5,493. Our fit is not

identical to the previously published fit, which is expected because some model parameters were shown not

to be identifiable (Mitra et al., 2018). However, like the published fit, the fit generated by PyBioNetFit shows

reasonable consistency with the qualitative data (Figures 5A–5F). In five of the six example panels shown, the

parameterized model is consistent with the constraint indicated by the horizontal lines (as described in the
iScience 19, 1012–1036, September 27, 2019 1025

Figure 5. Example Outputs of the Model for Yeast Cell Cycle Control Parameterized with PyBioNetFit

(A–F) Selected output showing agreement with qualitative data. Two output variables are shown: V (A–C), representing cell volume, andORI (D–F), a flag that

indicates origin activation is completed when its value reaches 1. Results for three selected yeast strains are shown: wild-type (A and D), which is viable; a

mutant (cln3D bck2D) (B and E), which has a G1 arrest phenotype; and another mutant (cdc14-ts) (C and F), which has a telophase arrest phenotype.

Horizontal lines indicate qualitative constraints: time courses should exceed black dash-dot lines and should not exceed red dashed lines.

(G–L) Selected output showing agreement with quantitative data of Spellman et al. (1998) (red diamonds). These plots were shown in Mitra et al. (2018) with

the best-fit results obtained in that study. Gene expression levels are shown for CLB2T (G), CLN2 (H), CKIT (I), CDC20T (J), PDS1T (K),and CLB5T (L).

See also Figure S1.
figure caption). In one panel (Figure 5E), the time course is inconsistent with the constraint, illustrating that

although most constraints are satisfied by our best fit, not all are satisfied. The fit found by PyBioNetFit also

captures certain features of the quantitative data (Figures 5G–L), such as, for example, the location of the

peaks in (G) and (H). Amore rigorous analysis of themisfit to quantitative datawould require information about

experimental measurement error, which was not available for this dataset.

Applications beyond Fitting: Model Checking

Although PyBioNetFit was designed for model parameterization, the property specification language of

PyBioNetFit has additional applications in the analysis of parameterized models, namely, model checking

and design. To demonstrate these applications, we consider the model of Shirin et al. (2019) (Figure 6A).

The model describes the interactions between four kinases involved in the regulation of autophagy, a

cellular recycling process. The model also describes the effects of six types of drugs in modulating these

interactions and the level of autophagy. In the original study, this model was used to investigate the capa-

bilities of the six drugs (labeled D1 through D6) to control the number of autophagic vesicles (AVs) in a cell.

For our analysis, we assume that the published parameterization of the model, which was shown to be

consistent with certain experimental data in the original study, is acceptable.

Model checking, as defined here, consists of evaluating whether a particular model satisfies a set of spec-

ified properties. To illustrate model checking, we considered eight hypothetical alternatives to the model

of Shirin et al. (2019), each obtained by removing one of the labeled interactions from the network illus-

trated in Figure 6A. These changes are arbitrary for demonstration of the model checking workflow, but

represent a scenario that could arise in practice: often, many models of the same biological process are

developed by different research groups for different purposes, and a particular interaction might be
1026 iScience 19, 1012–1036, September 27, 2019

Figure 6. Applications of PyBioNetFit in Analysis of a Parameterized Model

(A) Schematic of the model to be analyzed, adapted from Shirin et al. (2019). Six drugs labeled D1 through D6 are capable

of modulating various processes in the network shown. Interactions among kinases considered in the model are

numbered 1–8.

(B) Model checking performed by PyBioNetFit of hypothetical alternatives to the model shown in (A). Each alternative

model version (numbered 1–8) was obtained by removing one interaction from (A), corresponding to the version number.

Each model version was checked against 10 qualitative behaviors characterized by Shirin et al. (2019): the change

(increase or decrease) in AV count in response to a particular drug at a particular stress level, high (++) or medium (+).

(C) Optimizing drug dosing to achieve a desired system behavior. This table shows the minimal constant drug

concentration to reduce AV count to 20 per cell or below, in a cell under high stress. Gray rows show optimized doses for

each drug individually. The blue row shows the optimized dose by simultaneously tuning all six drug concentrations.

Although all six drug doses were allowed to vary, the optimal solution had only two drugs with nonzero dose.

(D) Time course of AV counts under the treatments shown in (C). The gray broken line shows the response to treatment

with D3 only, the gray dash-dot line shows the response to treatment with D4 only, and the blue solid line shows the

response to the optimized six-drug dose. Responses to D2 or D6 only are indistinguishable from the response to the

optimized dose (but require more total drug than with the optimized drug combination).
present in one model but absent in another. In such a scenario, it is reasonable to ask whether the interac-

tion is important to the model’s ability to reproduce certain system properties. As system properties to be

checked in our demonstration, we use the characterization of the system’s response to drug treatment by

Shirin et al. (2019), which we take to be the established truth. Specifically, for the six drug treatments al-

lowed in the model and two levels of cellular stress (determined by the energy and nutrient parameters

of the model, CEn and CNu), Shirin et al. (2019) characterized the change in the number of AVs relative to

control. Ten of these 12 model settings resulted in an increase or decrease in AV count. For our model

checking exercise, we determined whether each of our hypothetical alternative models is able to repro-

duce these 10 qualitative behaviors.

To perform model checking in PyBioNetFit, we must express each property of interest in BPSL. For this

model, properties can be written as inequalities between the AV count for the untreated case and AV

counts for the drug-treated cases. In PyBioNetFit, this type of case-control comparison is configured by

performing simulations corresponding to multiple versions of the model—here, one version for each

stress/drug combination considered plus one version at each stress level with no drug. As described in

the section Workflow Enabled by PyBioNetFit, PyBioNetFit requires each of these simulations to have a

unique suffix (a string defined in the BNGL or CONF file). These suffixes can be used in the PROP file to refer

to the outputs of specific simulations. For example, suppose that the simulation of wild-type has the suffix

data, the simulation with drug D2 has suffix data_D2, and after the system has equilibrated, the AV count
iScience 19, 1012–1036, September 27, 2019 1027

should be lower in the presence of D2. We assume that the system is equilibrated in the time window of

120–240 min. Then the constraint would be written as

data.AV > data_D2.AV between 120,240

The full implementation of the model checking problem in PyBioNetFit is provided as Data S1 (Problem 9).

The results of model checking are shown in Figure 6B. Four of the variant models (versions 1–4) remain

consistent with all 10 system properties, whereas the other four (versions 5–8) no longer satisfy one or

more of the properties. In the context of this model, these results suggest that interactions 1–4 in Figure 6A

are not essential to the qualitative properties that we considered. More generally, this example demon-

strates the ability of PyBioNetFit’s model checking utility to help distinguish between models.

Applications beyond Fitting: Design

In a design problem, we seek perturbations of a system to achieve a set of desired properties defined in

BPSL. To illustrate a design problem in PyBioNetFit, we consider a problem similar to the original study

of Shirin et al. (2019). Namely, we want to choose the concentrations of drugs D1 through D6 so as to drive

the AV count below a desired threshold, while minimizing the total quantity of drug used. We arbitrarily

choose a threshold of 20 AVs and set CEn = CNu = 0.1 (on a scale of 0–1), corresponding to a high level

of cellular stress. In the original study, arbitrary time courses of drug dosing were permitted and simulta-

neous dosing of up to two drugs at a time (out of the six drugs in the model) was considered. Here, we solve

a different problem in which we limit ourselves to constant drug concentrations, but allow for simultaneous

dosing of up to six drugs.

We configure this problem as a fitting problem in PyBioNetFit, in which the free parameters to be estimated

represent the unknown concentrations of each of the six drugs. The desired system property of reducing AV

count below 20 is implemented as an inequality constraint, and the goal to minimize drug concentration is

implemented as a quantitative data point (i.e., minimizing the difference between the actual total drug

dose and 0). The full configuration of this problem is provided as Data S1 (Problem 9).

The optimization results are shown in Figure 6C (bottom row). For comparison, we also performed optimiza-

tions in which only one of the drug concentrations was allowed to vary (Figure 6C). The results are consistent

with those reported by Shirin et al. (2019). Note that the optimized combined dose allowing all six drugs uses

less total drug than any of the single-drug doses. The optimized dosing schemes for both single-drug and

combination treatments achieve the desired property of driving AV count below 20 (Figure 6D).

This example illustrates an additional, important class of problems that can be addressedwith PyBioNetFit: the

design of perturbations to a biological system to achieve specified behavior. More specifically, the example

illustrates optimization of targeted drug treatments, which has been a long-standing goal in systems biology

(Fitzgerald et al., 2006). The automated design of perturbations, with formal definition of target behavior, is

systematic and less likely to miss effective perturbations than an ad hoc approach to model analysis.

DISCUSSION

Comparison to Related Tools

Some features of PyBioNetFit are unique and novel, whereas other features have some overlap with other

available optimization tools. Here we analyze and discuss the strengths and weaknesses of PyBioNetFit

when compared with other published tools.

As PyBioNetFit was designed for parameterization of rule-basedmodels written in BNGL, our primary com-

parison is with PyBioNetFit’s predecessor, BioNetFit 1 (Thomas et al., 2016), which was previously state of

the art for this application domain. In particular, no other tools to our knowledge support parameterization

of models simulated with BioNetGen’s stochastic algorithms (BioNetGen SSA, and NFsim). PyBioNetFit

makes major improvements over BioNetFit 1 in terms of new functionality, as well as improved implemen-

tation of BioNetFit 1 functionality.

In our experience, PyBioNetFit far outperforms BioNetFit 1. As one example comparison, we ran Problem 2

in BioNetFit 1 with population size 144 (Data S1, Problem 2). We considered using the cluster-computing
1028 iScience 19, 1012–1036, September 27, 2019

capabilities of BioNetFit 1 but found that the fitting ran faster on a single node (due to overhead in commu-

nicating with the cluster manager). BioNetFit 1 was unable to reach the target objective value within 10 h in

any of five fitting replicates. For comparison, the fastest PyBioNetFit algorithm at a parallel count of 144 on

a cluster had amedian run time of 1.9 h (Figure 3B), which is a significantly better performance by theMann-

Whitney U test (p = 1.1 3 10�3).

A larger set of software is available for parameterization of ODE models defined in SBML. For smaller ODE

models, we recommend gradient-based methods implemented in other tools as a starting point, as these

algorithms tend to be more efficient than metaheuristics for problems where they are feasible (Raue et al.,

2013). Data2Dynamics (Raue et al., 2015) uses forward sensitivity analysis (Leis and Kramer, 1988) to calcu-

late the gradient of the objective function. Its default optimizer, which the developers recommend for most

applications (Raue et al., 2013), is MATLAB’s lsqnonlin function (which implements a trust region-reflective

algorithm, MathWorks, 2018). Gradient-based methods are also supported in COPASI (Hoops et al., 2006),

which calculates gradients by the finite difference approximation. We chose not to include gradient-based

methods in PyBioNetFit at this time because existing tools already provide acceptable solutions.

In rugged parameter landscapes, gradient-based methods are susceptible to becoming trapped in local

minima and slowed near saddle points. This issue can be addressed by performing multiple optimization

runs at different start points but can become limiting if the parameter space has too many local minima.

Metaheuristic algorithms can also become trapped in local minima, but experience suggests that they

are more capable of escape than gradient-based methods. Various factors likely contribute to this capa-

bility, including uphill moves, random behavior, and exchange of information between multiple searchers.

We expect forward sensitivity analysis to perform well for ODE problems on the typical scale of the prob-

lems benchmarked by Hass et al. (2019). This method has been shown to scale roughly linearly with respect

to the number of free parameters (Kapfer et al., 2019). The cost also depends on the number of equations.

Scaling with respect to number of equations is of particular interest for rule-derived ODE models because

such models often result in many more equations than typically arise in manually formulated ODE models.

Even fairly simple rule-based models (in terms of number of parameters and rules defined) can imply hun-

dreds to thousands of differential equations.

To illustrate the scaling behavior (with respect to number of ODEs) of forward sensitivity analysis as imple-

mented in Data2Dynamics, we measured the run time of optimization on the ODE models of Problems 1

and 2, which were also used to benchmark PyBioNetFit. We note that Data2Dynamics can run multiple in-

dependent optimization runs in parallel to improve the probability of finding a good solution, but, in

contrast to the parallelization of metaheuristic algorithms, this parallelization cannot improve the wall

time of an individual run. On Problem 1 (a conventional ODE model with 30 equations and 46 parameters),

Data2Dynamics completed optimization in 4 min, compared with median run times ranging from 11 to

14 min on 288 cores for the four metaheuristic algorithms of PyBioNetFit. Multiple runs of Data2Dynamics

on this problem suggested that there is not large variability in run times between runs. On Problem 2

(a rule-derived ODE model with 356 equations and 37 parameters), Data2Dynamics required 8 h to com-

plete one optimization run, compared with median run times ranging from 1.5 to 3.6 h on 288 cores for

the four algorithms of PyBioNetFit. In this case, Data2Dynamics used a significant amount of run time sim-

ply for setup of the forward sensitivity equations. Of course, one cannot draw broad conclusions based on

the results of only two problems. However, these results are consistent with what we would expect given

that integration of ODE systems with many equations is costly, and forward sensitivity analysis requires

more expensive integration (to calculate sensitivities with respect to each parameter) than is needed for

simple objective function evaluation. The illustrated behavior is also what we would expect for gradient-

based optimization in COPASI.

Recent work has demonstrated that adjoint sensitivity analysis can be effective for gradient computation for

larger ODE models when forward sensitivity analysis is inefficient (Fröhlich et al., 2018). This approach has

been used to solve a parameterization problem with 1,200 equations and 4,100 parameters (Fröhlich et al.,

2018), which is a larger scale than we have considered with PyBioNetFit. To the best of our knowledge,

adjoint methods have yet to be demonstrated for rule-derived ODE systems (or any system with many

more equations than free parameters), but the good scaling properties of adjoint methods suggest such

an approach would be feasible. The package AMICI (Fröhlich et al., 2017) supports adjoint sensitivity
iScience 19, 1012–1036, September 27, 2019 1029

analysis for biological applications but offers only limited workflows. (Adjoint sensitivity analysis is also

available in some general-purpose ODE solvers, Rackauckas et al., 2018.) AMICI is designed for use with

time-series data with a known initial condition. Model parameterization can be performed by writing

code to use AMICI in combination with the optimization toolbox PESTO (Stapor et al., 2018). We recom-

mend that AMICI/PESTObe used for parameterizing largeODEmodels (hundreds of differential equations

or larger) if the available workflows support the problem of interest.

A unique feature of PyBioNetFit is its support for a domain-specific property specification language (BPSL).

To our best knowledge, no other biological modeling tool has a comparable functionality for specification

of qualitative properties. Previous work on biological property specification (Clarke et al., 2008; David et al.,

2012; Heath et al., 2008; Hussain et al., 2015; Khalid and Jha, 2018; Kwiatkowska et al., 2008; Liu and Faeder,

2016) relied on bespoke software, whereas BPSL can be used with the general-purpose functionality of

PyBioNetFit. BPSL is also designed to be more human readable than conventional linear temporal logic

(LTL), for instance. We expect a BPSL statement (but not an LTL expression) to be understandable to

anyone with a background in biological modeling. For example, consider the following BPSL statement:

A<1 between B = 2, B = 3

This statement is equivalent to the following LTL expression:

F(B = 2) 0((:(B = 2))U(B = 2^(A < 1WB = 3)))

where F is the ‘‘future’’ operator,U is the ‘‘until’’ operator, andW is the ‘‘weak until’’ operator. A drawback of

BPSL relative to LTL is that the available enforcement keywords (Table 1) enable only a subset of what is

possible with LTL. However, the current BPSL grammar is sufficient to support all constraints formulated

in Mitra et al. (2018) to fit the yeast cell cycle model of Oguz et al. (2013) and Laomettachit (2011). PyBio-

NetFit was written with extensibility in mind, such that it is possible to add to the BPSL grammar as needs

arise in other modeling problems. We also note that although PyBioNetFit is the first tool to support BPSL,

information represented in BPSL need not be tied to one model or software tool. In the future, it will be

possible for us or others to develop additional tools compatible with BPSL.

Figure 7 summarizes the niche filled by PyBioNetFit in relation to other software supporting complete

fitting workflows for biological models. PyBioNetFit is unique in its support for qualitative data (including

model checking and design applications) and for its built-in, well-engineered support for cluster

computing. PyBioNetFit is also notable for its multiple algorithm options that provide algorithm-level

parallelization. BioNetFit 1 provides only one such algorithm, and other tools support only paralleliza-

tion of independent runs. PyBioNetFit has the largest overlap in functionality with its predecessor

BioNetFit 1, but as described above, PyBioNetFit far outperforms BioNetFit 1 in head-to-head compari-

sons. PyBioNetFit is recommended over BioNetFit 1 for all overlapping features, including parameteriza-

tion of stochastic models. Data2Dynamics and COPASI tend to have use cases distinct from PyBioNetFit,

such as for ODE problems that benefit from gradient-based optimization using forward sensitivity analysis

or the finite difference approximation.
Comparison to Problem-Specific Coding

PyBioNetFit joins Data2Dynamics and COPASI in the class of software supporting standardized biological

model-definition formats and complete workflows for model parameterization and has strengths that are

complementary to these existing tools. These free-standing applications contrast with the approach of

using problem-specific code written in a high-level programming language such as Python, R, or

MATLAB. We acknowledge that problem-specific code is a good choice in some use cases, such as

when the model of interest is already implemented in one of these languages, or when analyzing a model

with an unusual feature that is not supported in SBML or BNGL. Many packages are available that can

help streamline model parameterization in high-level programming languages. For coding a model,

one could use standard differential equation packages, or PySB (Lopez et al., 2013), a package for build-

ing biological models in Python. Gradient-based algorithms with forward sensitivity analysis are available

in dMod (Kaschek et al., 2019). Other packages implement metaheuristic optimization algorithms (Egea

et al., 2014; Garrett, 2012; Fortin et al., 2012) and Bayesian uncertainty quantification algorithms (Eydgahi

et al., 2013; Gupta et al., 2018; Shockley et al., 2018). AMIGO (Balsa-Canto et al., 2016) is a notable
1030 iScience 19, 1012–1036, September 27, 2019

Figure 7. Venn Diagram Comparing the Functionality Provided in PyBioNetFit with that of Three Other Programs

Supporting Parameterization of Biological Models

The abbreviations in the diagram stand for the following features: AP, algorithm-level parallelization: each algorithm step

runs multiple objective function evaluations in parallel; BNGL, support for BNGL models; BS, bootstrapping; BUQ,

Bayesian uncertainty quantification; CL, command-line interface; CN, native support for cluster computing. (Although any

program can be run on a cluster with sufficient configuration by the user, PyBioNetFit was designed for this purpose. Its

documentation includes instructions for how to run the program on multiple cluster nodes, and we have demonstrated

this use case with up to 8 nodes, 288 cores.) FD, finite difference approximation; FS, forward sensitivity analysis; G,

gradient-based algorithms; GUI, GUI for configuring and running fitting; M, metaheuristic algorithms; MA, multiple

algorithm options available; MATLAB, MATLAB interface; NC, free with no commercial dependencies; ODE, support for

ODE models; PL, profile likelihood; QD, fitting with qualitative data (including model checking and design applications);

SBML, support for SBML models; SM, support for stochastic models.
MATLAB optimization toolbox. Packages such as dask.distributed (Rocklin, 2015) are available to help

with parallelization on clusters.

Even with the sophistication of these tools, some amount of custom code is necessary to use these tools to

solve a given problem of interest. We argue that in cases where writing BNGL or SBML models is feasible,

the functionality of PyBioNetFit is preferable to problem-specific code. PyBioNetFit combines all the

functionality required for model parameterization into a single package. It removes the need for debug-

ging at the level of the programming language, which reduces the propensity for errors in the modeling

work. PyBioNetFit allows a modeler to instead focus on designing models and choosing appropriate

algorithms for parameterization and analysis. BPSL facilitates consideration of qualitative data, improving

on our published approach using problem-specific code (Mitra et al., 2018).

A second advantage of using PyBioNetFit is in the reproducibility of results (Medley et al., 2016; Walte-

math and Wolkenhauer, 2016). Although it is possible to create well-documented, reproducible problem-

specific code, using IPython or R notebooks, for example, such good practices are not always followed.

Often problem-specific code is developed to be run on a specific machine, without portability in mind.

Concerns of expedience dominate the coding effort. In contrast, PyBioNetFit achieves a separation of

concerns, in which a job can be documented by providing the set of input files used, along with the

version number of the code, and there is no need to disentangle this information from the implementa-

tion of any algorithm.

Continued Development of PyBioNetFit

PyBioNetFit is released open source on GitHub (https://github.com/lanl/PyBNF) with the hope that we and

others will continue to improve PyBioNetFit. The GitHub page includes an active issue tracker that facili-

tates reporting of bugs and feature requests.
iScience 19, 1012–1036, September 27, 2019 1031

https://github.com/lanl/PyBNF

We welcome contributions to PyBioNetFit from the community. We designed PyBioNetFit such that

it should be straightforward to implement additional optimization and MCMC algorithms, as we

are aware that many such algorithms are described in the literature. The PyBioNetFit documentation

(Mitra and Suderman, 2019) includes instructions for contributing new algorithms to the PyBioNetFit

code base.

Conclusion

PyBioNetFit offers a versatile set of tools, which we expect to be useful in parameterization of new biolog-

ical models. PyBioNetFit is best in class for BNGL-formatted models, and notable for its support for

stochastic biological models. PyBioNetFit supports several workflows, including fitting to time-series

data, dose-response data, and qualitative data. We provide the first available implementation of our recent

approach (Mitra et al., 2018) for leveraging both quantitative and qualitative data in a single parameteriza-

tion problem. This approach is enabled by BPSL, which can also be used for model checking and design.

The workflows supported in PyBioNetFit can be used for parameterizing standard ODE models, although

for this application, gradient-based tools may be more efficient.

Our hope is that PyBioNetFit lowers the technical barrier to parameter fitting, by enabling fitting without

problem-specific coding. PyBioNetFit will promote reproducible modeling by encouraging the use of

existing model standards (BNGL and SBML).

We have shown that parameter identification can be challenging, and the best choice of fitting algorithm is

not always obvious. By providing robust implementations of several algorithms, we encourage experimen-

tation with different algorithms and settings to find the best choice for a problem of interest.

Limitations of the Study

PyBioNetFit can solve a wide variety of biological modeling problems, but is not the best solution for every

problem. As described in the main text, many ODE models are more effectively parameterized using

gradient-based algorithms. In addition, PyBioNetFit’s metaheuristic algorithms can find fits that appear

reasonable, but cannot guarantee that a global optimum has been reached. Parameterization using

qualitative data, as implemented in BPSL, has the limitation that the objective function lacks a statistical

interpretation, and so cannot be used in Bayesian uncertainty quantification algorithms.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The most recent version of PyBioNetFit is v1.0.1, available online at https://github.com/lanl/PyBNF. The

repository includes a user manual, Documentation_PyBioNetFit.pdf. The same user manual is avail-

able online as a standalone website (Mitra and Suderman, 2019). General information about PyBioNetFit is

available at http://bionetfit.nau.edu/.

PyBioNetFit can be installed on any current Linux, macOS, or Windows computer, as well as on Linux clus-

ters. Installation of Python 3 is required if it is not already included with the operating system. Root access is

not usually required, allowing for PyBioNetFit to be readily installed on shared clusters. PyBioNetFit can be

installed from source by downloading the code at the above GitHub link, or can be installed directly using

the pip package manager with the command

python3 -m pip install pybnf

Data associated with the example fitting problems (Table 2) are provided as Data S1 and are also available

online at https://github.com/RuleWorld/RuleHub/tree/2019Aug21/Published/Mitra2019. MCMC samples

associated with Figure 4 are available in the BioStudies database (http://www.ebi.ac.uk/biostudies) under

accession number S-BSST240.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.08.045.
1032 iScience 19, 1012–1036, September 27, 2019

https://github.com/lanl/PyBNF
http://bionetfit.nau.edu/
https://github.com/RuleWorld/RuleHub/tree/2019Aug21/Published/Mitra2019
http://www.ebi.ac.uk/biostudies
https://doi.org/10.1016/j.isci.2019.08.045

ACKNOWLEDGMENTS

This work was supported by grant R01GM111510 from the National Institute of General Medical Sciences

(NIGMS) of the National Institutes of Health (NIH). W.S.H. acknowledges support from the Joint Design of

Advanced Computing Solutions for Cancer (JDACS4C) program established by the U.S. Department of En-

ergy (DOE) and the National Cancer Institute (NCI) of NIH. R.S. and A.I. acknowledge support from the

Center for Nonlinear Studies at Los Alamos National Laboratory (LANL), which is operated for the National

Nuclear Security Administration (NNSA) of the DOE under contract 89233218CNA000001. H.M.S. acknowl-

edges the support of grant R01GM123032 from NIGMS/NIH and grant P41EB023912 from the National

Institute of Biomedical Imaging and Bioengineering (NIBIB) of NIH. We thank J. Kyle Medley and

Kiri Choi for assistance with libRoadRunner development. We thank Adrian Hauber for assistance with

Data2Dynamics. Computational resources used in this study included the following: the Darwin cluster

at LANL, which is supported by the Computational Systems and Software Environment (CSSE) subprogram

of the Advanced Simulation and Computing (ASC) program at LANL, which is funded by NNSA/DOE; re-

sources were provided by the LANL Institutional Computing program, which is funded by NNSA/DOE, and

Northern Arizona University’s Monsoon computer cluster, which is funded by Arizona’s Technology and

Research Initiative Fund.

AUTHOR CONTRIBUTIONS

W.S.H. and R.G.P. designed the study. E.D.M. and R.S. wrote the software. A.I. performed alpha testing.

E.D.M. and J.C. performed benchmarking. A.H. and H.S. upgraded libRoadRunner to enable integration

into PyBioNetFit. E.D.M. and W.S.H. wrote the manuscript with input from the other authors. All authors

read and approved the final manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 1, 2019

Revised: June 21, 2019

Accepted: August 22, 2019

Published: September 27, 2019
REFERENCES

Balsa-Canto, E., Henriques, D., Gábor, A., and
Banga, J.R. (2016). AMIGO2, a toolbox for
dynamic modeling, optimization and control in
systems biology. Bioinformatics 32, 3357–3359.

Betancourt, M. (2017). A conceptual introduction
to Hamiltonian Monte Carlo. arXiv, https://arxiv.
org/abs/1701.02434.

Blinov, M.L., Faeder, J.R., Goldstein, B., and
Hlavacek, W.S. (2004). BioNetGen: software for
rule-based modeling of signal transduction
based on the interactions of molecular domains.
Bioinformatics 20, 3289–3291.

Blinov, M.L., Faeder, J.R., Goldstein, B., and
Hlavacek, W.S. (2006). A network model of early
events in epidermal growth factor receptor
signaling that accounts for combinatorial
complexity. BioSystems 83, 136–151.

Boehm, M.E., Adlung, L., Schilling, M., Roth, S.,
Klingmüller, U., and Lehmann, W.D. (2014).
Identification of isoform-specific dynamics in
phosphorylation-dependent STAT5 dimerization
by quantitative mass spectrometry and
mathematical modeling. J. Proteome Res. 13,
5685–5694.

Suderman, R., Mitra, E.D., Lin, Y.T., Erickson, K.E.,
Feng, S., and Hlavacek, W.S. (2019). Generalizing
Gillespie’s direct method to enable network-free
simulations. Bull. Math. Biol. 81, 2822–2848.

Brännmark, C., Palmér, R., Glad, S.T., Cedersund,
G., and Strålfors, P. (2010). Mass and information
feedbacks through receptor endocytosis govern
insulin signaling as revealed using a parameter-
free modeling framework. J. Biol. Chem. 285,
20171–20179.

Cao, Y., Li, S., and Petzold, L. (2002). Adjoint
sensitivity analysis for differential-algebraic
equations: algorithms and software. J. Comput.
Appl. Math. 149, 171–191.

Carpenter, B., Gelman, A., Hoffman, M.D., Lee,
D., Goodrich, B., Betancourt, M., Brubaker, M.,
Guo, J., Li, P., and Riddell, A. (2017). Stan: a
probabilistic programming language. J. Stat.
Softw. 76, 1–32.

Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J.,
Novak, B., and Tyson, J.J. (2000). Kinetic analysis
of a molecular model of the budding yeast cell
cycle. Mol. Biol. Cell 11, 369–391.

Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross,
F.R., Novak, B., and Tyson, J.J. (2004). Integrative
analysis of cell cycle control in budding yeast.
Mol. Biol. Cell 15, 3841–3862.
iSci
Chernick, M.R., and LaBudde, R.A. (2011). An
Introduction to Bootstrap Methods with
Applications to R (John Wiley & Sons).

Chib, S., and Greenberg, E. (1995).
Understanding the Metropolis-Hastings
algorithm. Am. Stat. 49, 327–335.

Choi, K., Medley, J.K., König, M., Stocking, K.,
Smith, L., Gu, S., and Sauro, H.M. (2018).
Tellurium: an extensible python-based modeling
environment for systems and synthetic biology.
BioSystems 171, 74–79.

Chylek, L.A., Harris, L.A., Tung, C.-S., Faeder, J.R.,
Lopez, C.F., and Hlavacek, W.S. (2013). Rule-
based modeling: a computational approach for
studying biomolecular site dynamics in cell
signaling systems. Wiley Interdiscip. Rev. Syst.
Biol. Med. 6, 13–36.

Chylek, L.A., Akimov, V., Dengjel, J., Rigbolt,
K.T.G., Hu, B., Hlavacek, W.S., and Blagoev, B.
(2014). Phosphorylation site dynamics of early
T-cell receptor signaling. PLoS One 9, e104240.

Clarke, E.M., Emerson, E.A., and Sistla, A.P.
(1986). Automatic verification of finite state
concurrent system using temporal logic
specifications. ACM Lett. Program Lang. Syst. 8,
244–263.
ence 19, 1012–1036, September 27, 2019 1033

http://refhub.elsevier.com/S2589-0042(19)30323-2/sref2
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref2
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref2
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref2
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref4
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref4
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref4
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref4
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref4
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref5
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref5
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref5
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref5
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref5
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref6
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref6
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref6
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref6
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref6
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref6
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref6
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref106
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref106
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref106
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref106
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref8
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref8
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref8
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref8
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref8
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref8
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref9
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref9
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref9
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref9
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref10
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref10
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref10
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref10
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref10
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref11
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref11
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref11
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref11
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref12
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref12
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref12
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref12
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref13
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref13
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref13
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref14
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref14
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref14
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref15
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref15
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref15
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref15
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref15
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref16
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref16
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref16
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref16
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref16
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref16
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref17
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref17
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref17
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref17
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref18
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref18
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref18
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref18
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref18

Clarke, E.M., Grumberg, O., Peled, D., and Belta,
P.C. (1999). Model Checking (Cambridge: MIT
Press).

Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris,
L.A., Jha, S.K., and Legay, A. (2008). Statistical
model checking in BioLab: applications to the
automated analysis of T-cell receptor signaling
pathway. In Computational Methods in Systems
Biology, M. Heiner and A.M. Uhrmacher, eds.
(Springer), pp. 231–250.

Csikász-Nagy, A., Battogtokh, D., Chen, K.C.,
Novák, B., and Tyson, J.J. (2006). Analysis of a
generic model of eukaryotic cell-cycle regulation.
Biophys. J. 90, 4361–4379.

Danos, V., and Laneve, C. (2004). Formal
molecular biology. Theor. Comput. Sci. 325,
69–110.

David, A., Larsen, K.G., Legay, A., Miku�cionis, M.,
Poulsen, D.B., and Sedwards, S. (2012). Runtime
verification of biological systems. In Leveraging
Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change,
T. Margaria and B. Steffen, eds. (Springer),
pp. 388–404.

Dunster, J.L., Byrne, H.M., and King, J.R. (2014).
The resolution of inflammation: a mathematical
model of neutrophil and macrophage
interactions. Bull. Math. Biol. 76, 1953–1980.

Earl, D.J., and Deem, M.W. (2005). Parallel
tempering: theory, applications, and new
perspectives. Phys. Chem. Chem. Phys. 7, 3910.

Eberhart, R. and Kennedy, J.. (1995), A new
optimizer using particle swarm theory, in MHS’95.
Proceedings of the Sixth International
Symposium on Micro Machine and Human
Science, IEEE, pp. 39–43.

Efron, B., and Tibshirani, R.J. (1993). An
Introduction to the Bootstrap (Chapman and
Hall).

Egea, J.A., Henriques, D., Cokelaer, T.,
Villaverde, A.F., MacNamara, A., Danciu, D.-P.,
Banga, J.R., and Saez-Rodriguez, J. (2014).
MEIGO: an open-source software suite based on
metaheuristics for global optimization in systems
biology and bioinformatics. BMC Bioinformatics
15, 136.

Erickson, K.E., Rukhlenko, O.S., Shahinuzzaman,
M., Slavkova, K.P., Lin, Y.T., Suderman, R., Stites,
E.C., Anghel, M., Posner, R.G., Barua, D., et al.
(2019). Modeling cell line-specific recruitment of
signaling proteins to the insulin-like growth factor
1 receptor. PLoS Comput. Biol. 15, e1006706.

Eydgahi, H., Chen,W.W., Muhlich, J.L., Vitkup, D.,
Tsitsiklis, J.N., and Sorger, P.K. (2013). Properties
of cell death models calibrated and compared
using Bayesian approaches. Mol. Syst. Biol. 9,
644.

Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov,
M.L., Metzger, H., Redondo, A., Wofsy, C., and
Goldstein, B. (2003). Investigation of early events
in FceRI-mediated signaling using a detailed
mathematical model. J. Immunol. 170, 3769–
3781.

Faeder, J.R., Blinov, M.L., Goldstein, B., and
Hlavacek, W.S. (2005). Rule-based modeling of
biochemical networks. Complexity 10, 22–41.
1034 iScience 19, 1012–1036, September 27, 2019
Faeder, J.R., Blinov, M.L., and Hlavacek, W.S.
(2009). Rule-based modeling of biochemical
systems with BioNetGen. MethodsMol. Biol. 500,
113–167.

Fey, D., Halasz, M., Dreidax, D., Kennedy, S.P.,
Hastings, J.F., Rauch, N., Munoz, A.G., Pilkington,
R., Fischer, M., Westermann, F., et al. (2015).
Signaling pathway models as biomarkers:
patient-specific simulations of JNK activity
predict the survival of neuroblastoma patients.
Sci. Signal. 8, 1–16.

Fitzgerald, J.B., Schoeberl, B., Nielsen, U.B., and
Sorger, P.K. (2006). Systems biology and
combination therapy in the quest for clinical
efficacy. Nat. Chem. Biol. 2, 458–466.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A.,
Parizeau, M., and Gagné, C. (2012). DEAP:
evolutionary algorithms made easy. J. Mach.
Learn. Res. 13, 2171–2175.

Fröhlich, F., Theis, F.J., and Hasenauer, J. (2014).
Uncertainty analysis for non-identifiable
dynamical systems: profile likelihoods,
bootstrapping and more. In Computational
Methods in Systems Biology, P. Mendes, J.O.
Dada, and K. Smallbone, eds. (Springer
International Publishing), pp. 61–72.

Fröhlich, F., Kaltenbacher, B., Theis, F.J., and
Hasenauer, J. (2017). Scalable parameter
estimation for genome-scale biochemical
reaction networks. PLoS Comput. Biol. 13,
e1005331.

Fröhlich, F., Kessler, T., Weindl, D., Shadrin, A.,
Schmiester, L., Hache, H., Muradyan, A., Schütte,
M., Lim, J.-H., Heinig, M., et al. (2018). Efficient
parameter estimation enables the prediction of
drug response using a mechanistic pan-cancer
pathway model. Cell Syst. 7, 567–579.e6.

Gandomi, A.H., Yang, X.-S., Talatahari, S., and
Alavi, A.H. (2013). Metaheuristic algorithms in
modeling and optimization. In Metaheuristic
Applications in Structures and Infrastructures,
A.H. Gandomi, X.-S. Yang, S. Talatahari, and A.H.
Alavi, eds. (Elsevier), pp. 1–24.

Garrett, A. (2012). Inspyred: a framework for
creating bio-inspired computational intelligence
algorithms in Python. https://github.com/
aarongarrett/inspyred.

Gelman, A., and Rubin, D.B. (1992). Inference
from iterative simulation using multiple
sequences. Stat. Sci. 7, 457–511.

Gillespie, D.T. (2006). Stochastic simulation of
chemical kinetics. Annu. Rev. Phys. Chem. 58,
35–55.

Glover, F., Laguna, M., and Martı́, R. (2000).
Fundamentals of scatter search and path
relinking. Control Cybernetics 29, 652–684.

Gupta, A., and Mendes, P. (2018). An overview of
network-based and -free approaches for
stochastic simulation of biochemical systems.
Computation 6, 9.

Gupta, S., Hainsworth, L., Hogg, J.S., Lee, R.E.C.
and Faeder, J.R.. (2018), Evaluation of parallel
tempering to accelerate Bayesian parameter
estimation in systems biology, in 2018 26th
Euromicro International Conference on Parallel,
Distributed and Network-based Processing
(PDP), pp. 690–697.

Harmon, B., Chylek, L.A., Liu, Y., Mitra, E.D.,
Mahajan, A., Saada, E.A., Schudel, B.R., Holowka,
D.A., Baird, B.A., Wilson, B.S., et al. (2017).
Timescale separation of positive and negative
signaling creates history-dependent responses to
IgE receptor stimulation. Sci. Rep. 7, 15586.

Harris, L.A., Hogg, J.S., Tapia, J.-J., Sekar, J.A.P.,
Gupta, S., Korsunsky, I., Arora, A., Barua, D.,
Sheehan, R.P., and Faeder, J.R. (2016).
BioNetGen 2.2: advances in rule-based
modeling. Bioinformatics 32, 3366–3368.

Hass, H., Loos, C., Alvarez, E.R., Timmer, J.,
Hasenauer, J., and Kreutz, C. (2019). Benchmark
problems for dynamic modeling of intracellular
processes. Bioinformatics. https://doi.org/10.
1093/bioinformatics/btz020. Epub ahead of print.

Heath, J., Kwiatkowska, M., Norman, G., Parker,
D., and Tymchyshyn, O. (2008). Probabilistic
model checking of complex biological pathways.
Theor. Comput. Sci. 391, 239–257.

Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee,
S.L., Serban, R., Shumaker, D.E., and Woodward,
C.S. (2005). SUNDIALS: suite of nonlinear and
differential/algebraic equation solvers. ACM
Trans. Math. Softw. 31, 363–396.

Hlavacek, W.S., Csicsery-Ronay, J., Baker, L.R.,
Ramos Álamo, M.D.C., Ionkov, A., Mitra, E.D.,
Suderman, R., Erickson, K.E., Dias, R., Colvin, J.,
et al. (2018). A step-by-step guide to using
BioNetFit. In Modeling Biomolecular Site
Dynamics, 1945, W.S. Hlavacek, ed. Methods in
Molecular Biology (Humana Press), pp. 391–419.

Hoops, S., Gauges, R., Lee, C., Pahle, J., Simus,
N., Singhal, M., Xu, L., Mendes, P., and Kummer,
U. (2006). Copasi - a complex pathway simulator.
Bioinformatics 22, 3067–3074.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H.,
Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J.,
Bray, D., Cornish-Bowden, A., et al. (2003). The
systems biology markup language (SBML): a
medium for representation and exchange of
biochemical network models. Bioinformatics 19,
524–531.

Hussain, F., Langmead, C.J., Mi, Q., Dutta-
Moscato, J., Vodovotz, Y., and Jha, S.K. (2015).
Automated parameter estimation for biological
models using Bayesian statistical model
checking. BMC Bioinformatics 16, S8.

Kapfer, E.-M., Stapor, P., and Hasenauer, J.
(2019). Challenges in the calibration of large-scale
ordinary differential equation models. bioRxiv,
690222, https://www.biorxiv.org/content/10.
1101/690222v1.

Khalid, A. and Jha, S.K.. (2018), Calibration of rule-
based stochastic biochemical models using
statistical model checking, in 2018 IEEE
International Conference on Bioinformatics and
Biomedicine (BIBM), IEEE, pp. 179–184.

Kaschek, D., Mader, W., Fehling-Kaschek, M.,
Rosenblatt, M., and Timmer, J. (2019). Dynamic
modeling, parameter estimation, and uncertainty
analysis in R. J. Stat. Softw. 88, https://doi.org/10.
18637/jss.v088.i10.

http://refhub.elsevier.com/S2589-0042(19)30323-2/sref19
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref19
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref19
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref20
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref20
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref20
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref20
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref20
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref20
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref20
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref21
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref21
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref21
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref21
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref22
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref22
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref22
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref23
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref24
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref24
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref24
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref24
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref25
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref25
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref25
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref27
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref27
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref27
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref28
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref28
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref28
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref28
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref28
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref28
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref28
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref29
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref29
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref29
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref29
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref29
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref29
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref30
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref30
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref30
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref30
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref30
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref31
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref31
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref31
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref31
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref31
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref31
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref31
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref32
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref32
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref32
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref33
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref33
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref33
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref33
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref34
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref34
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref34
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref34
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref34
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref34
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref34
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref35
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref35
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref35
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref35
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref36
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref36
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref36
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref36
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref37
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref37
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref37
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref37
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref37
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref37
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref37
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref38
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref38
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref38
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref38
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref38
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref39
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref39
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref39
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref39
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref39
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref39
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref40
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref40
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref40
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref40
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref40
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref40
https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref42
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref42
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref42
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref43
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref43
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref43
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref44
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref44
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref44
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref45
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref45
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref45
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref45
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref47
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref47
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref47
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref47
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref47
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref47
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref48
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref48
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref48
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref48
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref48
https://doi.org/10.1093/bioinformatics/btz020
https://doi.org/10.1093/bioinformatics/btz020
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref50
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref50
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref50
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref50
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref51
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref51
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref51
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref51
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref51
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref1
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref1
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref1
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref1
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref1
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref1
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref1
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref52
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref52
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref52
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref52
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref53
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref53
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref53
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref53
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref53
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref53
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref53
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref54
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref54
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref54
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref54
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref54
https://www.biorxiv.org/content/10.1101/690222v1
https://www.biorxiv.org/content/10.1101/690222v1
https://doi.org/10.18637/jss.v088.i10
https://doi.org/10.18637/jss.v088.i10

Kiselyov, V.V., Versteyhe, S., Gauguin, L., and De
Meyts, P. (2009). Harmonic oscillator model of the
insulin and IGF1 receptors’ allosteric binding and
activation. Mol. Syst. Biol. 5, 243.

Kocieniewski, P., Faeder, J.R., and Lipniacki, T.
(2012). The interplay of double phosphorylation
and scaffolding in MAPK pathways. J. Theor. Biol.
295, 116–124.

Kozer, N., Barua, D., Orchard, S., Nice, E.C.,
Burgess, A.W., Hlavacek, W.S., and Clayton,
A.H.A. (2013). Exploring higher-order EGFR
oligomerisation and phosphorylation–a
combined experimental and theoretical
approach. Mol. Biosyst. 9, 1849–1863.

Kraikivski, P., Chen, K.C., Laomettachit, T., Murali,
T.M., and Tyson, J.J. (2015). From START to
FINISH: computational analysis of cell cycle
control in budding yeast. NPJ Syst. Biol. Appl. 1,
15016.

Kühn, C., and Hillmann, K. (2016). Rule-based
modeling of labor market dynamics: an
introduction. J. Econ. Interact. Coord. 11, 57–76.

Kwiatkowska, M., Norman, G., and Parker, D.
(2008). Using probabilistic model checking in
systems biology. ACM SIGMETRICS Perform.
Eval. Rev. 35, 14.

Laomettachit, T. (2011). Mathematical Modeling
Approaches for Dynamical Analysis of Protein
Regulatory Networks with Applications to the
Budding Yeast Cell Cycle and the Circadian
Rhythm in Cyanobacteria, PhD thesis (Virginia
Polytechnic Institute and State University).

Laomettachit, T., Chen, K.C., Baumann, W.T., and
Tyson, J.J. (2016). A model of yeast cell-cycle
regulation based on a standard component
modeling strategy for protein regulatory
networks. PLoS One 11, e0153738.

Lee, D., and Wiswall, M. (2007). A parallel
implementation of the simplex function
minimization routine. Computat. Econ. 30,
171–187.

Lee, E., Salic, A., Krüger, R., Heinrich, R., and
Kirschner, M.W. (2003). The roles of APC and axin
derived from experimental and theoretical
analysis of the Wnt pathway. PLoS Biol. 1,
116–132.

Leeuw, T., Wu, C., Schrag, J.D., Whiteway, M.,
Thomas, D.Y., and Leberer, E. (1998). Interaction
of a G-protein b-subunit with a conserved
sequence in Ste20/PAK family protein kinases.
Nature 391, 191–195.

Leis, J.R., and Kramer, M.A. (1988). The
simultaneous solution and sensitivity analysis of
systems described by ordinary differential
equations. ACM Trans. Math. Softw. 14, 45–60.

Liu, B. and Faeder, J.R.. (2016), Parameter
estimation of rule-based models using statistical
model checking, in 2016 IEEE International
Conference on Bioinformatics and Biomedicine
(BIBM), IEEE, pp. 1453–1459.

Lopez, C.F., Muhlich, J.L., Bachman, J.A., and
Sorger, P.K. (2013). Programming biological
models in Python using PySB. Mol. Syst. Biol.
9, 646.
Manz, B.N., Jackson, B.L., Petit, R.S., Dustin, M.L.,
and Groves, J. (2011). T-cell triggering thresholds
are modulated by the number of antigen within
individual T-cell receptor clusters. Proc. Natl.
Acad. Sci. U S A 108, 9089–9094.

MathWorks. (2018). Least-squares (model fitting)
algorithms. https://www.mathworks.com/help/
optim/ug/least-squares-model-fitting-
algorithms.html.

Medley, J.K., Goldberg, A.P., and Karr, J.R.
(2016). Guidelines for reproducibly building and
simulating systems biology models. IEEE Trans.
Biomed. Eng. 63, 2015–2020.

Medley, J.K., Choi, K., König, M., Smith, L., Gu, S.,
Hellerstein, J., Sealfon, S.C., and Sauro, H.M.
(2018). Tellurium notebooks - an environment for
reproducibile dynamical modeling in systems
biology. PLoS Comput. Biol. 14, e1006220.

Mitra, E., and Suderman, R. (2019). PyBioNetFit.
https://pybnf.readthedocs.io/en/latest/.

Mitra, E.D., Dias, R., Posner, R.G., and Hlavacek,
W.S. (2018). Using both qualitative and
quantitative data in parameter identification for
systems biology models. Nat. Commun. 9, 3901.

Monine, M.I., Posner, R.G., Savage, P.B., Faeder,
J.R., and Hlavacek, W.S. (2010). Modeling
multivalent ligand-receptor interactions with
steric constraints on configurations of cell-surface
receptor aggregates. Biophys. J. 98, 48–56.

Moraes, A.O.S., Mitre, J.F., Lage, P.L.C., and
Secchi, A.R. (2015). A robust parallel algorithm of
the particle swarm optimization method for large
dimensional engineering problems. Appl. Math.
Model. 39, 4223–4241.

Mukhopadhyay, H., Cordoba, S.-P., Maini, P.K.,
van der Merwe, P.A., and Dushek, O. (2013).
Systems model of T cell receptor proximal
signaling reveals emergent ultrasensitivity. PLoS
Comput. Biol. 9, e1003004.

Nelder, J.A., and Mead, R. (1965). A simplex
method for function minimization,. Computer J.
7, 308–313.

Neri, F., Cotta, C., and Moscato, P. (2012).
Handbook of Memetic Algorithms, Vol. 379
(Springer).

Oguz, C., Laomettachit, T., Chen, K.C., Watson,
L.T., Baumann, W.T., and Tyson, J.J. (2013).
Optimization and model reduction in the high
dimensional parameter space of a budding yeast
cell cycle model. BMC Syst. Biol. 7, 53.

Pargett, M., and Umulis, D.M. (2013). Quantitative
model analysis with diverse biological data:
applications in developmental pattern formation.
Methods 62, 56–67.

Pargett, M., Rundell, A.E., Buzzard, G.T., and
Umulis, D.M. (2014). Model-based analysis for
qualitative data: an application in Drosophila
germline stem cell regulation. PLoS Comput.
Biol. 10, e1003498.

Penas, D.R., Banga, J.R., González, P., andDoallo,
R. (2015). Enhanced parallel differential evolution
algorithm for problems in computational systems
biology. Appl. Soft Comput. 33, 86–99.
iSci
Penas, D.R., González, P., Egea, J.A., Doallo, R.,
and Banga, J.R. (2017). Parameter estimation in
large-scale systems biology models: a parallel
and self-adaptive cooperative strategy. BMC
Bioinformatics 18, 52.

Posner, R.G., Geng, D., Haymore, S., Bogert, J.,
Pecht, I., Licht, A., and Savage, P.B. (2007).
Trivalent antigens for degranulation of mast cells.
Organ. Lett. 9, 3551–3554.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and
Flannery, B.P. (2007). Numerical Recipes 3rd
Edition: The Art of Scientific Computing
(Cambridge University Press).

Rackauckas, C., Ma, Y., Dixit, V., Guo, X., Innes,
M., Revels, J., Nyberg, J., and Ivaturi, V. (2018). A
comparison of automatic differentiation and
continuous sensitivity analysis for derivatives of
differential equation solutions. arXiv, https://
arxiv.org/abs/1812.01892.

Raue, A., Schilling, M., Bachmann, J., Matteson,
A., Schelke, M., Kaschek, D., Hug, S., Kreutz, C.,
Harms, B.D., Theis, F.J., et al. (2013). Lessons
learned from quantitative dynamical modeling in
systems biology. PLoS One 8, e74335.

Raue, A., Steiert, B., Schelker, M., Kreutz, C.,
Maiwald, T., Hass, H., Vanlier, J., Tönsing, C.,
Adlung, L., Engesser, R., et al. (2015).
Data2Dynamics: a modeling environment
tailored to parameter estimation in dynamical
systems,. Bioinformatics 31, 3558–3560.

Rocklin, M.. (2015), Dask: Parallel computation
with blocked algorithms and task scheduling, in
Proceedings of the 14th Python in Science
Conference, pp. 130–136.

Romano, D., Nguyen, L.K., Matallanas, D., Halasz,
M., Doherty, C., Kholodenko, B.N., and Kolch, W.
(2014). Protein interaction switches coordinate
Raf-1 and MST2/Hippo signalling. Nat. Cell Biol.
16, 673–684.

Shirin, A., Klickstein, I.S., Feng, S., Lin, Y.T.,
Hlavacek, W.S., and Sorrentino, F. (2019).
Prediction of optimal drug schedules for
controlling autophagy. Sci. Rep. 9, 1428.

Shockley, E.M., Vrugt, J.A., and Lopez, C.F.
(2018). PyDREAM: high-dimensional parameter
inference for biological models in python.
Bioinformatics 34, 695–697.

Smith, A.E., and Coit, D.W. (1997). Penalty
functions. In Handbook of Evolutionary
Computation, T. Baeck, D. Fogel, and Z.
Michalewicz, eds. (Oxford University Press),
pp. C5.2:1–C5.2:6, chapter C5.2.

Sneddon, M.W., Faeder, J.R., and Emonet, T.
(2011). Efficient modeling, simulation and coarse-
graining of biological complexity with NFsim.
Nat. Methods 8, 177–183.

Somogyi, E.T., Bouteiller, J.-M., Glazier, J.A.,
König, M., Medley, J.K., Swat, M.H., and Sauro,
H.M. (2015). LibRoadRunner: a high performance
SBML simulation and analysis library.
Bioinformatics 31, 3315–3321.

Sorokina, O., Sorokin, A., Armstrong, J.D., and
Danos, V. (2013). A simulator for spatially
extended kappa models. Bioinformatics 29,
3105–3106.
ence 19, 1012–1036, September 27, 2019 1035

http://refhub.elsevier.com/S2589-0042(19)30323-2/sref58
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref58
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref58
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref58
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref59
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref59
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref59
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref59
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref60
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref60
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref60
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref60
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref60
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref60
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref61
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref61
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref61
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref61
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref61
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref62
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref62
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref62
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref63
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref63
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref63
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref63
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref64
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref64
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref64
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref64
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref64
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref64
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref65
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref65
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref65
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref65
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref65
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref66
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref66
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref66
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref66
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref67
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref67
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref67
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref67
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref67
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref68
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref68
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref68
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref68
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref68
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref69
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref69
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref69
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref69
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref71
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref71
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref71
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref71
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref72
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref72
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref72
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref72
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref72
https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html
https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html
https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref74
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref74
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref74
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref74
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref75
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref75
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref75
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref75
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref75
https://pybnf.readthedocs.io/en/latest/
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref77
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref77
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref77
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref77
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref78
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref78
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref78
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref78
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref78
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref79
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref79
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref79
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref79
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref79
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref80
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref80
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref80
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref80
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref80
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref81
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref81
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref81
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref82
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref82
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref82
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref83
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref83
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref83
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref83
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref83
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref84
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref84
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref84
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref84
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref85
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref85
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref85
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref85
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref85
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref86
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref86
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref86
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref86
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref87
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref87
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref87
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref87
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref87
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref88
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref88
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref88
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref88
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref89
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref89
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref89
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref89
https://arxiv.org/abs/1812.01892
https://arxiv.org/abs/1812.01892
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref91
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref91
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref91
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref91
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref91
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref92
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref92
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref92
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref92
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref92
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref92
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref94
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref94
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref94
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref94
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref94
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref95
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref95
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref95
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref95
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref96
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref96
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref96
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref96
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref97
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref97
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref97
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref97
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref97
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref98
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref98
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref98
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref98
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref99
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref99
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref99
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref99
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref99
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref100
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref100
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref100
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref100

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer,
V.R., Anders, K., Eisen, M.B., Brown, P.O.,
Botstein, D., and Futcher, B. (1998).
Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Mol. Biol.
Cell 9, 3273–3297.

Stapor, P., Weindl, D., Ballnus, B., Hug, S., Loos,
C., Fiedler, A., Krause, S., Hroß, S., Fröhlich, F.,
and Hasenauer, J. (2018). PESTO: parameter
EStimation TOolbox. Bioinformatics 34, 705–707.

Storn, R., and Price, K. (1997). Differential
evolution - a simple and efficient heuristic for
global optimization over continuous spaces.
J. Glob. Optim. 11, 341–359.

Suderman, R., and Deeds, E.J. (2013). Machines
vs. ensembles: effective MAPK signaling through
heterogeneous sets of protein complexes. PLoS
Comput. Biol. 9, e1003278.

Suderman, R. and Hlavacek, W.S.. (2017), TRuML:
A translator for rule-based modeling languages,
in Proceedings of the 8th ACM International
Conference on Bioinformatics, Computational
Biology, and Health Informatics, Vol. 1, ACM
Press, New York, New York, USA, pp. 372–377.
1036 iScience 19, 1012–1036, September 27, 2019
ter Braak, C.J.F., and Vrugt, J.A. (2008).
Differential Evolution Markov chain with snooker
updater and fewer chains. Stat. Comput. 18,
435–446.

Thomas, B.R., Chylek, L.A., Colvin, J., Sirimulla, S.,
Clayton, A.H., Hlavacek, W.S., and Posner, R.G.
(2016). BioNetFit: a fitting tool compatible with
BioNetGen, NFsim and distributed computing
environments. Bioinformatics 32, 798–800.

Villaverde, A.F., Frölich, F., Weindl, D.,
Hasenauer, J., and Banga, J.R. (2019).
Benchmarking optimization methods for
parameter estimation in large kinetic models.
Bioinformatics 35, 830–838.

Waltemath, D., andWolkenhauer, O. (2016). How
modeling standards, software, and initiatives
support reproducibility in systems biology and
systems medicine. IEEE Trans. Biomed. Eng. 63,
1999–2006.

Webb, S.D., Sherratt, J.A., and Fish, R.G. (2011).
Cells behaving badly: a theoretical model for the
Fas/FasL system in tumour immunology. Math.
Biosci. 179, 113–129.
Xu, W., Smith, A.M., Faeder, J.R., and Marai, G.E.
(2011). RuleBender: a visual interface for rule-
based modeling. Bioinformatics 27, 1721–1722.

Xue, M., and Del Bigio, M.R. (2000). Intracerebral
injection of autologous whole blood in rats: time
course of inflammation and cell death. Neurosci.
Lett. 283, 230–232.

Yi, T.-M., Kitano, H., and Simon, M.I. (2003). A
quantitative characterization of the yeast
heterotrimeric G protein cycle. Proc. Natl. Acad.
Sci. U S A 100, 10764–10769.

Yu, R.C., Pesce, C.G., Colman-Lerner, A., Lok, L.,
Pincus, D., Serra, E., Holl, M., Benjamin, K.,
Gordon, A., and Brent, R. (2008). Negative
feedback that improves information transmission
in yeast signalling. Nature 456, 755–761.

Zheng, Y., Sweet, S.M.M., Popovic, R., Martinez-
Garcia, E., Tipton, J.D., Thomas, P.M., Licht, J.D.,
and Kelleher, N.L. (2012). Total kinetic analysis
reveals how combinatorial methylation patterns
are established on lysines 27 and 36 of histone
H3. Proc. Natl. Acad. Sci. U S A 109, 13549–13554.

http://refhub.elsevier.com/S2589-0042(19)30323-2/sref101
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref101
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref101
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref101
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref101
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref101
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref101
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref102
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref102
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref102
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref102
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref103
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref103
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref103
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref103
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref104
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref104
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref104
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref104
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref7
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref7
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref7
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref7
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref107
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref107
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref107
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref107
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref107
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref108
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref108
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref108
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref108
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref108
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref109
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref109
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref109
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref109
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref109
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref110
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref110
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref110
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref110
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref111
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref111
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref111
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref112
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref112
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref112
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref112
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref113
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref113
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref113
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref113
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref114
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref114
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref114
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref114
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref114
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref115
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref115
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref115
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref115
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref115
http://refhub.elsevier.com/S2589-0042(19)30323-2/sref115

ISCI, Volume 19
Supplemental Information
PyBioNetFit and the Biological Property

Specification Language

Eshan D. Mitra, Ryan Suderman, Joshua Colvin, Alexander Ionkov, Andrew Hu, Herbert
M. Sauro, Richard G. Posner, and William S. Hlavacek

Transparent Methods

Implementation details

PyBioNetFit is written in Python 3.6. The PyBioNetFit package includes novel code, and
functionality that is provided through installation of dependencies. The following features are
implemented by novel code: all supported optimization and MCMC algorithms, parsing of
CONF, EXP, and PROP files, and processing of simulation results, including evaluating a
user-selected objective function. Full documentation of the PyBioNetFit code and its features
is provided in the user manual (Mitra and Suderman, 2019).

Implementations of algorithms are based on published descriptions. Myriad variants of the
algorithms have been described in the literature; here we cite the specific descriptions that we
referred to when implementing the algorithms in PyBioNetFit. The iDE algorithm is described
in Penas et al. (2015), and our DE and aDE algorithms are based on the simpler algorithm
described in the same reference. Our implementation of PSO is based on Moraes et al.
(2015). Our implementation of SS follows the outline presented in the introduction of Penas et
al. (2017), and uses the recombination method of Egea et al. (2009). Our implementation of
MH MCMC is described in Kozer et al. (2013). Our implementation of PT is described in
Gupta et al. (2018). Our implementation of SA is analogous to MH, but with a temperature
parameter that decreases over the course of the run. Our parallelized implementation of the
simplex algorithm is described in Lee and Wiswall (2007). All algorithms are described in full
detail in the PyBioNetFit user manual (Mitra and Suderman, 2019).

PyBioNetFit includes four choices for objective functions using quantitative data, which are
described in the user manual (Mitra and Suderman, 2019). Briefly, the objective functions all
take the form ∑

i

(y i− ŷ i)
2
/wi , where y i are experimental data points, ŷ i are model

outputs, and w i depends on the choice of objective function (specified in the CONF file).
The qualitative objective function uses a static penalty formulation as follows. Each BPSL
statement is converted to an inequality gi(ŷ) where gi is a function of the model outputs

ŷ . For example, for the BPSL statement A<4 always, the inequality would be
max(A)−4<0 . The corresponding term in the objective function is Ci⋅max(0, gi(ŷ)) ,

where Ci is the constraint weight specified in BPSL. If both quantitative and qualitative
data are used, the contributions from the two datasets are added together, with the choices of
Ci determining the relative weighting. A recommended heuristic for choosing the weights is

discussed in Mitra et al. (2018). Briefly, in the absence of additional information, one assumes
that all constraints should have roughly equal influence on the objective value. In this case the
Ci should be chosen to offset differences in the expected scale of constraint violation. For

example, a constraint A>0.01 could be assigned a weight 100 times that of a constraint
B>1 . Additionally, all Ci should be scaled such that both the quantitative and the

qualitative data make reasonable contributions to the objective function (i.e., roughly equal
contributions if the two datasets are taken to be equally trusted and equally important).

PyBioNetFit interfaces with the dask.distributed (Rocklin, 2018; 2015) package to provide
parallelization on multi-core workstations or computer clusters. PyBioNetFit submits
simulation jobs to dask.distributed, and dask.distributed assigns those jobs to the available

workers as efficiently as possible. Dask.distributed is automatically installed during installation
of PyBioNetFit. The user does not typically need to interact directly with dask.distributed,
except when using certain unusual cluster environments (e.g., clusters in which SSH access
between nodes is only possible with host-based authentication).

PyBioNetFit uses third-party software to run simulations of models. libRoadRunner (Somogyi
et al., 2015) is a Python package used to run SBML models. libRoadRunner is automatically
installed during installation of PyBioNetFit and does not require manual configuration.
BioNetGen (Harris et al., 2016) is used to run BNGL models; it provides the simulation
methods described in Results as BioNetGen ODE, BioNetGen SSA, and NFsim. BioNetGen
must be installed manually as a dependency of PyBioNetFit. The path to BioNetGen must be
provided to PyBioNetFit using the bng_command key in the CONF file or by setting the
environment variable BNGPATH. Complete installation instructions are provided in the user
manual (Mitra and Suderman, 2019). Simulation settings (e.g., integration tolerance) are
determined by the simulator used; we used the simulator defaults for all demonstrations. In
the case of BioNetGen, these settings can be configured in a BNGL file.

Running benchmark problems

Example fitting problems were run in PyBioNetFit using the model, data and configuration
files provided in Supplemental Data, using a variety of computing resources as described in
the README files in Supplemental Data. The configuration files include all technical details of
the fitting runs such as parameter bounds and algorithmic settings.

Timed benchmark problems (Figure 3) were run on a homogeneous computer cluster,
consisting of Intel E5-2695_v4 nodes. Each node had 36 cores, 125 GB RAM, and a base
clock rate of 2.10 GHz. The nodes supported multithreading (2 threads per core), but
PyBioNetFit was configured such that only one worker process per core was created. To run
benchmarks with a specified number of cores, PyBioNetFit v0.2.2 was run with the
appropriate number of nodes allocated (benchmarks using 36, 72, 144, and 288 cores were
run on allocations of 1, 2, 4, and 8 nodes respectively). For 18-core benchmarks, two
PyBioNetFit processes with 18 worker processes each were simultaneously run on the same
36-core node.

Input files required to run the four benchmarks are provided in Supplemental Data (Problems
1-4). The parallel_count and population_size settings in the provided CONF files
were edited to equal the number of available cores for the run. For SS, because the number
of parallel simulations for population size n is n(n−1) , population_size was instead
set to 4, 6, 9, 11, and 17 for core counts of 18, 36, 72, 144, and 288 respectively. Note that in
general it is possible to set population_size to any value regardless of core count. We
chose to have population_size follow core count in these benchmarks because this is
how we would expect a typical user to configure a fitting problem.

For Bayesian uncertainty quantification (Figure 4), we used PyBioNetFit to sample 270,000
parameter sets by MH and 54,000 parameter sets by PT (configuration provided in
Supplemental Data (Problem 6)). Note that the PT run used the same total number of
simulations, but obtained fewer samples because only the replicas at the lowest temperature
are sampled. To compare with the results of Harmon et al. (2017), we used the raw list of

270,000 samples generated in the original study. Raw data from all three runs are available in
the BioStudies database (http://www.ebi.ac.uk/biostudies) under accession number S-
BSST240. We generated histograms (Figure 4A-F) directly from the lists of sampled
parameters. To generate prediction uncertainty plots (Figure 4G-L), we reran simulations
using each sampled parameter set, and plotted the median, and the 16th and 84th percentile
values, at each time point. We note that the 16th and 84th percentile curves were plotted
erroneously in the original study, and are accurate in the present work.

Fitting of the yeast cell cycle control model (Figure 5) consisted of 40 fitting replicates, run on
a heterogeneous set of nodes on multiple computer clusters. Each replicate used 2 nodes
each with 28 to 44 cores, and completed in under 48 hours. Model, data, and configuration
files required to run this problem are provided in Supplemental Data (Problem 8). We
configured the fitting job using SS, and kept the same algorithmic settings as the original
study with a few exceptions. Whereas the original study performed a single fitting job for
70,000 iterations, we ran an ensemble of 40 replicates of the job for 5,000 iterations each. We
also added a short, 500-iteration refinement of the best fit using the simplex local search
algorithm. The choice of 40 fitting replicates was arbitrary, but we note that our total number of
iterations (200,000 across all replicates) is considerably larger than in the original study.
Convergence plots for these runs (Figure S1) show that individual replicates do not make
steady improvements after iteration 1000, which suggests that our protocol of using multiple
replicates is a reasonable alternative to a single, long fitting run. We also note that taking the
best result from among multiple replicates is a standard technique for handling the poorly
characterized convergence properties of metaheuristic algorithms.The modified protocol is
better able to take advantage of parallelism: with sufficient parallel resources, all replicates
can be run in parallel, and the entire fitting job can be completed in about 30 hours, compared
to about 10 days in the original study.

To analyze the autophagy model (Figure 6), we implemented the model of Shirin et al.
(2019) in SBML format using COPASI (Hoops et al., 2006). We ran PyBioNetFit on the input
files provided in Supplemental Data (Problem 9), which includes the SBML model file.

http://www.ebi.ac.uk/biostudies

Figure S1. Convergence of a PyBioNetFit job to parameterize a model of yeast cell cycle
control, Related to Figure 5. Forty independent replicates were performed of the fitting job
provided in Supplemental Data (Problem 8). The minimum objective function value reached is
plotted with respect to iteration number for each of the 40 replicates. The overall best fit
obtained is shown in Figure 5.

Supplemental References

Egea, J.A., Balsa-Canto, E., García, M.-S.G., Banga, J.R., 2009. Dynamic optimization of

nonlinear processes with an enhanced scatter search method. Industrial & Engineering
Chemistry Research 48, 4388–4401. https://doi.org/10.1021/ie801717t

Gupta, S., Hainsworth, L., Hogg, J.S., Lee, R.E.C., Faeder, J.R., 2018. Evaluation of parallel
tempering to accelerate Bayesian parameter estimation in systems biology, in: 2018 26th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP). pp. 690–697. https://doi.org/10.1109/PDP2018.2018.00114

Harmon, B., Chylek, L.A., Liu, Y., Mitra, E.D., Mahajan, A., Saada, E.A., Schudel, B.R.,
Holowka, D.A., Baird, B.A., Wilson, B.S., Hlavacek, W.S., Singh, A.K., 2017. Timescale
separation of positive and negative signaling creates history-dependent responses to IgE
receptor stimulation. Scientific Reports 7, 15586. https://doi.org/10.1038/s41598-017-
15568-2

Harris, L.A., Hogg, J.S., Tapia, J.-J., Sekar, J.A.P., Gupta, S., Korsunsky, I., Arora, A., Barua,
D., Sheehan, R.P., Faeder, J.R., 2016. BioNetGen 2.2: Advances in rule-based modeling.
Bioinformatics 32, 3366–3368. https://doi.org/10.1093/bioinformatics/btw469

Hoops, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P.,
Kummer, U., 2006. COPASI - A COmplex PAthway SImulator. Bioinformatics 22, 3067–
3074. https://doi.org/10.1093/bioinformatics/btl485

Kozer, N., Barua, D., Orchard, S., Nice, E.C., Burgess, A.W., Hlavacek, W.S., Clayton, A.H.A.,
2013. Exploring higher-order EGFR oligomerisation and phosphorylation—a combined
experimental and theoretical approach. Molecular BioSystems 9, 1849–1863.
https://doi.org/10.1039/c3mb70073a

Lee, D., Wiswall, M., 2007. A parallel implementation of the simplex function minimization
routine. Computational Economics 30, 171–187. https://doi.org/10.1007/s10614-007-
9094-2

Mitra, E., Suderman, R., 2019. PyBioNetFit [WWW Document]. URL
https://pybnf.readthedocs.io/en/latest/ (accessed 3.8.19).

Mitra, E.D., Dias, R., Posner, R.G., Hlavacek, W.S., 2018. Using both qualitative and
quantitative data in parameter identification for systems biology models. Nature
Communications 9, 3901. https://doi.org/10.1038/s41467-018-06439-z

Moraes, A.O.S., Mitre, J.F., Lage, P.L.C., Secchi, A.R., 2015. A robust parallel algorithm of the
particle swarm optimization method for large dimensional engineering problems. Applied
Mathematical Modelling 39, 4223–4241. https://doi.org/10.1016/j.apm.2014.12.034

Penas, D.R., Banga, J.R., González, P., Doallo, R., 2015. Enhanced parallel differential
evolution algorithm for problems in computational systems biology. Applied Soft
Computing 33, 86–99. https://doi.org/10.1016/j.asoc.2015.04.025

Penas, D.R., González, P., Egea, J.A., Doallo, R., Banga, J.R., 2017. Parameter estimation in
large-scale systems biology models: a parallel and self-adaptive cooperative strategy.
BMC Bioinformatics 18, 52. https://doi.org/10.1186/s12859-016-1452-4

Rocklin, M., 2018. Dask.distributed [WWW Document]. URL
http://distributed.dask.org/en/latest/ (accessed 11.29.18).

Rocklin, M., 2015. Dask: Parallel computation with blocked algorithms and task scheduling,
in: Proceedings of the 14th Python in Science Conference. pp. 130–136.

Shirin, A., Klickstein, I.S., Feng, S., Lin, Y.T., Hlavacek, W.S., Sorrentino, F., 2019. Prediction
of optimal drug schedules for controlling autophagy. Scientific Reports 9, 1428.
https://doi.org/10.1038/s41598-019-38763-9

Somogyi, E.T., Bouteiller, J.-M., Glazier, J.A., König, M., Medley, J.K., Swat, M.H., Sauro,
H.M., 2015. LibRoadRunner: A high performance SBML simulation and analysis library.
Bioinformatics 31, 3315–3321. https://doi.org/10.1093/bioinformatics/btv363

	PyBioNetFit and the Biological Property Specification Language
	Introduction
	Results
	Workflow Enabled by PyBioNetFit
	Property Specification with BPSL
	Metaheuristic Fitting Algorithms
	Local Optimization
	Comparison to a Gradient-Based Optimization Method
	Uncertainty Quantification
	Application: Fitting a Model of Yeast Cell Cycle Control Using Both Qualitative and Quantitative Data
	Applications beyond Fitting: Model Checking
	Applications beyond Fitting: Design

	Discussion
	Comparison to Related Tools
	Comparison to Problem-Specific Coding
	Continued Development of PyBioNetFit
	Conclusion
	Limitations of the Study

	Methods
	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References

