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Abstract

Objective: Cardiac-implantable electronic device (CIED) infections are associated with significant morbidity
and mortality. In this review, we describe the risk factors and pathogenesis of CIED infections and review the
rationale and the evidence for the use of antibiotic-eluting envelopes (ABEs) in patients at increased risk for
CIED infections.

Findings: The majority of CIED infections are caused by staphylococci that involve generator pocket and
occur due to contamination of the device or the pocket tissues at the time of implantation. Clinical trials
have shown that extending the duration of post-operative systemic antibacterial therapy is not beneficial in
reducing CIED infection rate. However, ABEs that reduce device migration after implantation and provide
sustained local delivery of prophylactic antibiotics at the pocket site, may provide benefit in reducing
infection. Currently, there are two types of commercially available CIED envelope devices in the United
States. The first ABE device (TYRX™, Medtronic Inc., Monmouth Junction, NJ) is composed of a synthetic
absorbable mesh envelope that elutes minocycline and rifampin and has been shown to reduce CIED pocket
infections in a large multi-center randomized clinical trial. The second ABE device (CanGaroo-G™, Aziyo
Biologics, Silver Spring, MD) is composed of decellularized extracellular matrix (ECM) and was originally
designed to stabilize the device within the pocket, limiting risk for migration or erosion, and providing a
substrate for tissue ingrowth in a preclinical study. This device has shown promising results in a preclinical
study with local delivery of gentamicin. Compared with artificial materials, such as synthetic surgical mesh,
biologic ECM has been shown to foster greater tissue integration and vascular ingrowth, a reduced
inflammatory response, and more rapid clearance of bacteria.

Conclusions and Relevance: ABE devices provide sustained local delivery of antibiotics at the generator
pocket site and appear beneficial in reducing CIED pocket infections. Given the continued increase in the
use of CIED therapy and resultant infectious complications, innovative approaches to infection prevention
are critical.

Categories: Cardiology, Infectious Disease, Quality Improvement
Keywords: cardiac implantable electronic device (cied), pocket infection, envelope, infection prevention and control,
antibiotics pathogen

Introduction And Background

Infections are a devasting complication of cardiac-implantable electronic devices (CIED) therapy and are
associated with increased morbidity, mortality, and cost. Moreover, reported rates of CIED infection are
rising faster even when accounting for the continuous growth in CIED implantation [1]. This might be
because of the CIED implantation in patients with multiple risk factors, such as older age and multiple
comorbidities [1]. Prevention of CIED-related infection, therefore, is a key consideration in the design and
implantation of CIEDs. Evidence-based prophylactic approaches include the use of preoperative antibiotics,
thorough surgical skin disinfection, and the implantation of CIED with antibiotic-eluting envelopes

[2]. Emerging evidence supports the efficacy of these antibiotic-eluting envelopes that provide high local
antibiotic concentrations in the surgical pocket, with minimal systemic exposure [3]. Currently, there are
two commercially available CIED envelope devices in the United States. This article reviews the evidence
describing the rationale for these antibiotic-eluting envelopes in patients undergoing CIED implantation.

Review
CIED infections: Incidence, costs, and risk factors

In the absence of comprehensive and mandatory registries, the estimates of the incidence of CIED infections
in North America mostly rely on observational studies and vary based on study type, CIED type, and follow-
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up duration. A recent analysis of a claims database from 2016 reported a cumulative incidence of CIED
infection within one-year post-implant of 1.18% for initial implantation and 2.37% for device replacement
[4]. Other studies have reported an incidence of CIED-related infection as high as 7% following device
reintervention [5]. Although studies report a wide range of estimated costs of managing CIED infection,
depending on the patient population and the need for device removal and/or hospitalization, the costs are
consistently high [6].

Risk factors for CIED infection include both patient and procedural factors and are summarized in Table 1 [6-

8].

Patient factors Procedural factors

Age, previous valvular surgery, device reimplantation, renal failure or Presence of temporary wire, need for re-intervention, use of

dialysis, heart failure, chronic lung disease, cerebrovascular surgical drains, multiple procedures, type of CIED, duration of
disease, recent fever (<24 hours), development of hematoma, the procedure, presence of preexisting transvenous leads
diabetes, corticosteroid use, oral anticoagulation (abandoned), length of the procedure

TABLE 1: Risk factors for CIED infection

CIED: cardiac-implantable electronic device.

Microbiology and pathogenesis of CIED-related infections

Coagulase-negative Staphylococci (primarily Staphylococcus epidermidis) and S. aureus account for >70% of
all CIED infections (Figure 1) [9]. Less common pathogens include Gram-negative cocci and fungi. The
prevalence of antibiotic-resistant Staphylococcus spp. (particularly S. aureus) differs based on the study and
geographic location of the study population and must be considered when managing CIED infections

[2]. Clinical presentation ranges from local infection of the surgical pocket to bacteremia and endocarditis
[2]. Majority of CIED-related infections due to contamination of the pocket by skin flora during the initial
implantation or subsequent revision procedures. Pocket infection can also occur following erosion of the
device or leads through the skin. Infection of the CIED pocket can then propagate along the leads into the
intravascular system, resulting in bloodstream infection and valvular endocarditis. Occasionally, patients
may develop hematogenous seeding of the electrode or pocket from a distant source [2].

Culture negative

7%
Fungal '
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Polymicrobial
7%

Gram negative bacilli
9%

Coagulase negative
staphylococci
42%

Other Gram positive coccl
4%
Oxacillin resistant S.
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aureus
25%

FIGURE 1: Common microbiology and pathogenesis of CIED-related
infections

CIED: cardiac-implantable electronic device.

The initial attachment of microorganisms to the device is mediated by the characteristics of the organism
and the device surface. Microbes may also adhere to extracellular matrix (ECM) proteins produced by the
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host that coat the device surface in the pocket; this mechanism is particularly relevant to new device

technologies, such as CIED envelopes. As additional bacteria attach to the bacteria already adhered to the
device surface, a biofilm of bacterial layers and intercellular adhesins develops, which makes the bacteria
more resistant to antibiotics and immune defenses, specifically by inhibiting penetration to the local area

2].

Prevention of CIED-related Infections
Standard Prophylaxis (Excluding Antibiotic-Eluting Device Envelopes)

Prophylaxis is the preferred strategy to reduce morbidity and mortality associated with CIED infection

[2]. Evidence-based approaches to reduce infection risk include preoperative administration of antibiotics
and thorough skin antisepsis [2]. Parenteral antibiotics administered prior to implantation procedure have
been shown to significantly reduce the incidence of device-related infections [2,10]. In one double-blind
trial, 649 patients were randomized to IV cefazolin or placebo, both administered immediately before the
procedure [10]. The trial was terminated early due to clear evidence of benefit; infections occurred in 0.63%
of the cefazolin group and 3.28% of the placebo group (relative risk 0.19; P=0.016). Based on this landmark
trial, the American Heart Association recommends the administration of parenteral antibiotics within an
hour of CIED procedures [2].

Skin antisepsis is another standard preoperative technique for reducing CIED infection risk [2]. Some
evidence suggests benefits to the use of chlorhexidine-alcohol over povidone-iodine, mostly based on a
single randomized study of patients undergoing clean-contaminated surgeries, mostly abdominal and
thoracic (not CIED-related). This study reported a significantly lower infection rate with chlorhexidine-
alcohol compared to povidone-iodine (9.5% vs. 16.1%; P=0.004) [11]. Other common prophylactic techniques
include optimization of the patient’s clinical status, a chlorhexidine scrub (Hibiclens) prior to the procedure,
eradication of nasal bacteria methicillin-resistant S. aureus (MRSA), and irrigation of the surgical pocket
with antibiotics. It is worth noting that evidence does not definitively support their efficacy for the
prevention of CIED infections [12]. Similarly, there is currently no evidence to support the use of
postoperative antibiotics [8]. However, despite the minimal evidence, these strategies are common in
clinical practice. In the large cohort of 6983 patients in the recently reported WARP-IT study, 74.5% received
pocket irrigation with antimicrobial solutions, and 29.6% received post-procedure antibiotics [3].

Antibiotic-Eluting CIED Envelopes

Antimicrobial-impregnated CIED envelopes have been developed to hold devices securely in place to
provide a stable environment and to reduce infection risk [13]. These devices deliver a prolonged, high
concentration of antibiotics effective against common CIED pathogens within the CIED pocket. Because
most CIED contaminations are believed to occur at the time of implantation, these envelopes should provide
an effective method of CIED infection prophylaxis. Evidence from other surgical procedures supports the
efficacy of local antibiotic delivery to prevent wound infections [14-16]. For example, the use of gentamicin-
impregnated collagen implants significantly reduces the risk for sternal wound infections in high-risk
patients undergoing cardiac surgery [15-17]. Studies of this collagen-based technology identified high
gentamicin concentrations at the surgical site and very low serum drug levels, suggesting that antibiotic is
concentrated at the site of potential infection while minimizing systemic exposure and the risk for adverse
events or the development of bacterial resistance [16-19].

Two CIED envelope devices are currently available for use in the US. Both are absorbable. One is made from
absorbable multifilament block copolymer comprised of glycolide, caprolactone, and trimethylene carbonate
mesh that is coated with an absorbable polyacrylate polymer containing minocycline and rifampin. The
other envelope is made from decellularized, non-crosslinked ECM, which is derived from porcine intestinal
submucosa; this device is hydrated in a gentamicin solution prior to implantation (Figure 2). These
envelopes are designed to stabilize the CIED within the pocket, limiting the risk for migration or erosion. The
envelopes also provide a substrate for tissue ingrowth and allow for the local delivery of antibiotics.
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FIGURE 2: ECM is hydrated in a gentamicin solution prior to
implantation

ECM: extracellular matrix.

Synthetic Mesh Envelope

The CIED envelope made of synthetic mesh (TYRX™; Medtronic, Inc., Monmouth Junction, NJ) elutes
minocycline and rifampin for a minimum of seven days. An earlier version of the device (AEGIS) consisted of
non-absorbable polypropylene but was associated with significant pocket fibrosis, making removal of a
generator and/or leads difficult. A newer version was developed that is fully absorbed within approximately
nine weeks after implantation. Initial retrospective studies suggested potential benefits to this device, and
these findings were further supported by the prospective CITADEL and CENTURION studies [20-

22]. Combined analysis of these studies identified a significantly lower CIED-related infection rate among
prospectively enrolled patients treated with the synthetic mesh envelope, compared to historical controls
(0.4% vs. 2.2%; P=0.0023) [22]. A recent meta-analysis of five cohort studies reported a pooled odds ratio of
0.31(0.17,0.58, 95% CI, P=0.0002) for CIED infection with versus without antibacterial envelopes for CIED
implantation [23].

Importantly, the efficacy of the synthetic envelope was recently reported in a prospective multicenter
randomized clinical trial (WRAP-IT 2019) [3]. This trial enrolled 6983 patients undergoing CIED
implantation, replacement, or revision to receive the synthetic mesh envelope or not (control). Overall, 25
patients in the envelope group and 42 patients in the control group met the primary endpoint (infection
resulting in device extraction or revision, long-term antibiotic therapy with infection recurrence, or death)
within 12 months of the procedure (12-month estimated event rate 0.7% vs. 1.2%, respectively; P=0.04). In
addition, long-term follow (36 months) of WRAP-IT study reported major CIED-related infections occurred
in 32 envelope patients and 51 control patients (Kaplan-Meier [KM] estimate 1.3% vs. 1.9%; hazard ratio
[HR] 0.64; 95% confidence interval [CI] 0.41-0.99; P=0.046). Any CIED-related infection occurred in 57
envelope patients and 84 control patients (KM estimate 2.1% vs 2.8%; HR 0.69; 95% CI 0.49-0.97; P=0.030).
System- or procedure-related complications occurred in 235 envelope patients and 252 control patients (KM
estimate 8.0% vs. 8.2%; HR 0.95; 95% CI 0.79-1.13; P<0.001 for noninferiority) [24].

Although the results of this well-designed study (WRAP-IT) achieved statistical significance (i.e., P<0.05),
the findings were not as robust as anticipated due to lower than anticipated overall infection rate. Moreover,
the number-needed-to-treat (NNT) for this study to prevent one CIED infection was 200 patients, an
elevated number compared to other preventive therapies. Therefore, further refinements are needed to
optimize the clinical benefits and costs of these novel envelopes.

ECM Envelope
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Another CIED envelope that uses different materials and antibiotics is currently available. The CanGaroo-
G™ envelope (Aziyo Biologics, Silver Spring, MD) is made with a biologic material that utilizes ECM, rather
than synthetic mesh, to create a bioscaffold for tissue integration and neovascularization (Figure 2). This
ECM envelope is made of a four-layer biomaterial derived from decellularized, non-crosslinked porcine
intestinal submucosa. Prior to implantation, the ECM envelope is hydrated in a gentamicin solution (20 mL
of 40 mg/mL solution) for two minutes. The ECM envelope can be used for transvenous pacemakers as well
as subcutaneous implantable cardioverter defibrillators (SICD). Xiang and Levine described the first
published clinical procedural use of the SICD envelope to anchor the SICD to the thoracic wall

[25]. Preclinical studies suggest that the ECM envelope delivers high concentrations of gentamicin to the
surrounding tissues, with minimal systemic exposure, providing excellent efficacy against Staphylococcus
spp. and other CIED pathogens [26]. Importantly, the release of gentamicin from the ECM envelope peaks
early (within one hour), followed by a gradual, sustained release over one week. This pharmacokinetic profile
matches the presumed mechanism of CIED infection, which most often involves contamination of the pocket
by skin flora at the time of implantation. In the recently published preclinical animal infection model, no
bacteria were recovered from any culture after 12 hours of exposure to the gentamicin containing ECM
envelope. Serum gentamicin levels dropped below the limit of quantification at 15 hours after implant

[27]. Gentamicin concentration in the ECM envelope remained relatively stable for up to seven days

[27]. These findings suggest that gentamicin containing ECM envelope is effective in reducing bacterial
burden in the implant pocket.

Synthetic vs. biologic materials

Compared with artificial materials, such as synthetic surgical mesh, biologic ECM has been shown to foster
greater tissue integration and vascular ingrowth, a reduced inflammatory response, and more rapid
clearance of bacteria [28-33]. Numerous studies have demonstrated that ECM-based materials, particularly
non-crosslinked materials, promote site-specific functional tissue remodeling [28,29]. Non-crosslinked
biologic materials have also been shown to minimize foreign body response, inflammation, and fibrosis and
foster angiogenesis and cell differentiation as part of the remodeling process [30,31]. As a result of reduced
inflammation and enhanced tissue ingrowth and angiogenesis, these biologic materials can promote the
elimination of bacteria and thereby reduce infection risk [32]. Moreover, some studies suggest that ECM
bioscaffolds have inherent bactericidal activity [33]. Certain antibacterial factors are active within the intact
ECM, whereas others are released during modification of the matrix after implantation. It has been
suggested that components of intact ECM promote a transformation in macrophage phenotype from
predominantly pro-inflammatory (called M1) to anti-inflammatory (M2). M1-type macrophages mediate
tissue damage and promote an inflammatory response [34]. Infiltration of M2-type macrophages has been
shown in the early stages of tissue repair, and depletion of M2-type macrophages has been shown to inhibit
the formation of vascularized granulation and scar tissues [35]. Repair materials with different
characteristics stimulate differing macrophage responses, and a correlation has been shown between early
macrophage response and tissue remodeling outcomes [36]. A greater proportion of M2 macrophages has
been associated with positive remodeling outcomes, as occurs with non-cross-linked ECM. In contrast,
synthetic materials and highly cross-linked biologic materials typically trigger a more robust foreign body
response, including chronic inflammation and fibrous encapsulation of the material, rather than integration

into host tissues [28,31]. The inflammatory response to synthetic and cross-linked materials is characterized
by a predominance of M1 phenotype, which facilitates the formation of scar tissue and encapsulation of the
material [35,37]. Based on this evidence, biologic repair materials are generally preferred over synthetic
materials in contaminated surgical fields [38].

Envelope-delivered antibiotics

Studies of multiple surgical procedures have reported reduced infection rates with the local application of
antibiotics. Based on this evidence, the microbiology of CIED infections, and bactericidal data, current CIED
envelope devices utilize either rifampin/minocycline or gentamicin for infection prophylaxis.

Rifampin and Minocycline

Rifampin inhibits bacterial DNA-dependent RNA synthesis, whereas minocycline inhibits bacterial protein
synthesis. Both agents are active against Staphylococcus spp. [8]. The reported MIC of rifampin for S. aureus
and coagulase-negative Staphylococci isolated from CIED infections is ~0.5 to 2 mg/L [39]. In vitro studies
have demonstrated rifampin has activity against S. epidermidis biofilms, especially in combination with
certain other agents, whereas many other tested antibiotics were ineffective [40]. The addition of rifampin
to minocycline has been shown to potentiate its in vitro antibacterial effect, including on resistant strains
such as MRSA [41]. The combination of both drugs also reduces resistance to rifampin [42].

The combination of rifampin/minocycline has been used extensively in antibiotic-impregnated catheters.
Studies report significant reductions in the risk for infection with rifampin/minocycline-impregnated
catheters compared to standard catheters in neurosurgical procedures [43], chemotherapy administration
[44], and other central venous catheter applications [45]. Studies of the synthetic mesh CIED envelope,
which elutes a combination of rifampin and minocycline, have demonstrated a reduction in bacterial
contamination in rabbit models, including the elimination of Staphylococcus spp., Escherichia coli, and other
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bacterial species [46]. The aforementioned WRAP-IT study demonstrated significant (P<0.05) reductions in
CIED-related infections with the rifampin/minocycline synthetic envelope, compared to no envelope [3].

Gentamicin

Gentamicin is an aminoglycoside that inhibits bacterial protein synthesis and has a broad-spectrum
bactericidal activity that includes Staphylococcus spp. and aerobic Gram-negative organisms. Susceptibility
studies demonstrate >3-log reductions in bacterial colonization (i.e., >99.9% reductions), both in vitro and
in vivo including the bacteria most commonly isolated from CIED infections. The minimum inhibitory
concentration (MIC) for gentamicin for common CIED pathogens (e.g., Staphylococcus spp.) has been
reported to be ~0.5 to 4 mg/L [39,47].

Gentamicin has demonstrated efficacy in vitro against Staphylococcal biofilms; in one study, only
daptomycin had similar efficacy among single-agent antibiotics [48]. Similarly, an in vitro pharmacodynamic
study demonstrated 3-log reductions in S. aureus inoculates across a sixfold range of gentamicin
concentrations [49].

Some clinical data and animal studies also suggest the antimicrobial efficacy of gentamicin for the
prevention of CIED-related infections [27]. Local use of gentamicin has been shown to reduce infection rates
in patients undergoing CIED implantation [24,50].

The main limitation of the systemic use of gentamicin is its association with risk for nephrotoxicity and
ototoxicity. Consequently, systemic administration of aminoglycosides has been used sparingly for several
decades, thereby limiting the development of resistance to this class of antibiotics. Conversely, as described
above, local administration of gentamicin has demonstrated efficacy in multiple surgical procedures,
without the risks of systemic exposure [15-17,23,50].

The effects of gentamicin are concentration-dependent, requiring a high concentration in the surgical site to
produce high bactericidal activity, even against organisms with low susceptibility or resistance to this agent.
When administered into the surgical site, gentamicin concentrations in local tissues can exceed 300 mg/L,
whereas systemic exposure is limited to ~1-2 mg/L [18]. In one study of sternal wound infection, treatment
using a collagen implant loaded with gentamicin was effective, even when antibiotic-resistant S. epidermidis
was present, presumably due to the high local concentrations of gentamicin [18]. Therefore, local
administration of gentamicin using an ECM envelope provides high early tissue concentrations of
antibiotics, with minimal systemic exposure.

Currently, the efficacy of gentamicin delivering ECM envelope has been reported in preclinical animal
infection models and clinical case report [25,27]. A prospective randomized clinical study is needed to prove
the safety and efficacy of CIED infection reduction. It is worth mentioning that a similar preclinical animal
model was used earlier to investigate the safety and efficacy of minocycline/rifampin synthetic envelope
[46]. The results of such animal experiments were later confirmed in a prospective randomized clinical trial

3.

Conclusions

Minimizing risks of adverse outcomes associated with CIED implantation, especially infection, is of
paramount importance to prevent serious complications that warrant device removal. New CIED envelope
technologies demonstrate promise to reduce generator pocket infection. Preclinical and clinical data support
the efficacy of local antibiotic delivery through synthetic or ECM-based CIED envelopes eluting
rifampin/minocycline and gentamycin, respectively. Moreover, the ECM envelope typically stimulates tissue
remodeling and angiogenesis, thereby minimizing inflammation and promoting bacterial clearance. Large,
prospective studies are needed to help refining indications and judicious use of the ECM envelope to prevent
CIED infection.
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