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Abstract

Metabolic labeling of newly transcribed RNAs coupled with RNA-seq is being increasingly used for genome-wide analysis of
RNA dynamics. Methods including standard biochemical enrichment and recent nucleotide conversion protocols each
require special experimental and computational treatment. Despite their immediate relevance, these technologies have not
yet been assessed and benchmarked, and no data are currently available to advance reproducible research and the
development of better inference tools. Here, we present a systematic evaluation and comparison of four RNA labeling
protocols: 4sU-tagging biochemical enrichment, including spike-in RNA controls, SLAM-seq, TimeLapse-seq and TUC-seq.
All protocols are evaluated based on practical considerations, conversion efficiency and wet lab requirements to handle
hazardous substances. We also compute decay rate estimates and confidence intervals for each protocol using two
alternative statistical frameworks, pulseR and GRAND-SLAM, for over 11 600 human genes and evaluate the underlying
computational workflows for their robustness and ease of use. Overall, we demonstrate a high inter-method reliability
across eight use case scenarios. Our results and data will facilitate reproducible research and serve as a resource
contributing to a fuller understanding of RNA biology.

Key words: metabolic RNA labeling; 4sU-tagging; RNA decay rate estimation; computational workflow; kinetic and
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Introduction
To estimate the kinetics of RNA synthesis or degradation,
techniques including transcription shut-off and nascent RNA
sequencing have been developed. Although used for decades,
global transcriptional arrest methods interfere with the precise
determination of decay rates by affecting RNA processing and
stability [1] and have thus become less fashionable. Nascent RNA
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analysis methods include approaches such as run-on [2, 3], Pol II
immunoprecipitation [4] and metabolic labeling [5–7]. One of the
most recent, minimally invasive and widely applied metabolic
labeling approaches, referred to as 4sU-tagging, involves labeling
of newly transcribed RNAs with the thiol-labeled nucleoside
analog 4-thiouridine (4sU), combined with genome-wide high-
throughput sequencing [8–10]; 4sU is taken up by the cell,
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phosphorylated and incorporated into newly transcribed RNAs,
with minimal interference to gene expression [11].

In a conventional RNA turnover experiment, samples are
taken from several points over an extended time course in
the presence of 4sU, with the aim of computing RNA decay
rates or half-lives. Newly transcribed and pre-existing RNAs are
separated either by biochemical enrichment after thiol-specific
biotinylation [10], or by chemically inducing thymine-to-cytosine
(T to C) nucleotide conversions, which are detected as point
mutations in the sequencing data, enabling to distinguish the
metabolically ‘labeled reads’ from pre-existing ‘unlabeled’ reads.
Two recent studies published in Nature Methods, and a third
in Angewandte Chemie International Edition provided three
equivalent approaches, referred to as thiol(SH)- linked alkylation
for the metabolic sequencing (SLAM-seq) [12], TimeLapse-Seq
(referred to as TLS-seq in the present study) [13] and thiouridine
to cytidine conversion sequencing (TUC-seq) [14], respectively,
to study RNA dynamics directly from 4sU-labeled RNAs, without
biochemical enrichment or affinity purification. So far, SLAM-
seq has gained a larger acceptance [12, 15, 16], but all three
methods have been used to infer metabolic RNA rates in a
number of studies [17, 18]. Metabolic labeling using SLAM-seq,
TLS-seq or TUC-seq is in principle applicable to all organisms, in
cell culture as well as in vivo [15].

However, to discern between reads originating from newly
transcribed or pre-existing RNAs remains a challenging task,
due to non-negligible errors arising from the sequencing data
and modest 4sU incorporation rates, especially for short peri-
ods of labeling [12, 19, 20]. Both SLAM-seq and TUC-seq have
comparable conversion rates (>90%), while lower values were
reported for TLS-seq (around 80%), but a direct comparison using
the same starting material under the same conditions has not
yet been performed nor a systematic analysis of RNA kinetics
inferred from each protocol. Although different bioinformatics
approaches have been used to quantify kinetic rates with [7, 9,
10] or without the profiling of nascent RNA [21], at the time of
writing this manuscript, only two open-source softwares were
readily available to be used with the latest nucleotide conversion
methods. The SLAM-DUNK pipeline provides overall conversion
rates and was used to analyze SLAM-seq from 3’-end sequencing
(Quant-seq) data [12, 16, 19, 22]. The GRAND-SLAM approach is
based on a statistical Bayesian framework, providing posterior
distributions of the ratio of new-to-total RNA (NTR) [20], and was
used recently in the context of single-cell RNA sequencing [23].

Notably, little effort has been made to compare enrichment-
based and nucleotide conversion methods. Conventional,
enrichment-based methods are considered to be more laborious
and generally associated with higher costs, owing to the need
to sequence different fractions, yet offer the advantage to
employ resources only on the relevant material, especially for
the estimation of extreme decay rates [24]. When 4sU-labeled
RNAs only are sequenced after purification, e.g. using biotin-
streptavidin, this is often referred to as 4sU-seq. This approach
relies on appropriate normalization and may be affected by the
efficiency and the specificity of separation [25]. We are not aware
of any publicly available genome-wide sequencing data that
would allow a direct comparison between 4sU-tagging methods,
and there is little evidence to suggest whether any approach
outperforms the others or to persuade users to change from
biochemical to bioinformatic enrichment of newly transcribed
RNAs.

Here, we systematically compare and assess the reliability
of four methods to analyze cellular RNA dynamics based
on 4sU-tagging: one biochemical enrichment protocol using
biotin-streptavidin purification, and three nucleotide conversion

protocols, i.e. the SLAM-seq, the TLS-seq and the TUC-seq
protocol. Starting from total RNA derived from MCF-7 cells,
we constructed a set of equivalent libraries for all methods
and estimated decay rates using two different computational
workflows. We used pulseR [25], a kinetic and statistical
modelling framework based on RNA-seq read counts. To
handle data arising from nucleotide conversion protocols, we
developed a computational workflow, which we present here,
that allows to compare estimates from all four methods. In
addition, for the biochemical enrichment protocol, the use of
ERCC spike-ins enabled us to compare fraction normalization
strategies and provided a reference set of decay rates. For
the three nucleotide conversion protocols, we used GRAND-
SLAM [20] as an additional computational analysis workflow.
We demonstrate that all four protocols are reliable and have
a comparable conversion efficiency, but differ with regards to
incubation time, time on hands and stability of reagents as
well as requirements to handle hazardous substances. Decay
rates estimated with two different computational methods
were consistent for over 11 600 human genes, with variations
in terms of identifiability and confidence intervals (CIs). We
also addressed elements of tools usability and accessibility
for non-specialist users. We provide guidance on use cases
comparing biochemical enrichment and nucleotide conversion
protocols that can be used when designing labeling experiments
and constructing models. Our evaluation strategy, results and
data can serve as a resource for the community to facilitate
reproducible research, to identify the most suitable method for
specific questions and to advance our understanding of key
cellular processes.

Results
Evaluating four metabolic RNA labeling protocols

MCF-7 cells were exposed to the uridine analog 4sU for 1, 2, 4 or 8
h. Total RNA (including untreated cells at 0 h) was used as input
for four different RNA dynamics analysis protocols (Figure 1a).
In the biochemical enrichment protocol, for brevity referred to
as the biotin-streptavidin (BSA) purification method, 4sU-labeled
and unlabeled RNAs were separated by streptavidin purification
after biotinylation with methylthiosulfonate-activated biotin XX
(MTSEA-biotin XX, Methods) that has a conversion efficiency
of at least 95% [10]. External RNA Controls Consortium (ERCC)
spike-ins were added to all fractions: input, eluate (enriched
or 4sU-labeled, newly-transcribed RNA) and supernatant (unla-
beled, pre-existing RNA). Our analysis showed a gradual increase
of biotinylation with labeling time (Figure 2a and Figure S1a,
see Supplementary Data available online at http://bib.oxfordjou
rnals.org/) and of RNA concentrations from the biotin-enriched
fractions (Figure 2b). The residual amount of biotinylation signal
in the supernatant was below 2.5% for every time point, further
confirming the high efficiency of the streptavidin purification.
These observations were also supported by comparing the rela-
tive enrichment of genes with high (MYC), intermediate (PDLIM5)
or low (GAPDH) RNA turnover [26, 27] in the supernatant and elu-
ate fractions (Figure 2c and Figure S1b, see Supplementary Data
available online at http://bib.oxfordjournals.org/). The estimated
contamination in the biotin-enriched fraction at 0 h was 1.40 ±
0.50% for MYC, 2.68 ± 0.50% for PDLIM5 and 1.65 ± 0.59% for
GAPDH.

Total RNA was also used in equal amount for SLAM,
TimeLapse (abbreviated as TLS) and TUC chemistry (Methods).
RNA integrity of all samples was verified before sequencing
(Figure S1c, see Supplementary Data available online at

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data


Comparison of methods to infer RNA turnover 3

Figure 1. 4sU-tagging overview. (a) MCF-7 cells were pulse-labeled, and total RNA was used for four different labeling protocols: biochemical enrichment by BSA

purification (similar to standard 4sU-seq), SLAM-seq, TimeLapse-seq (TLS-seq) and TUC-seq. SLAM-seq, TLS-seq and TUC-seq methods induce T to C substitutions,

which are used to separate pre-existing and newly transcribed RNAs in the sequencing data. Theoretically, the fraction ratio is reflected by the read counts, but due to

non-negligible other sources of T to C mismatches, appropriate bioinformatics tools must be employed. In the BSA purification protocol, ERCC RNA spike-in controls

are added to normalize the fraction ratio in the libraries. (b) pulseR and GRAND-SLAM were used to estimate decay rates from all 4sU-tagging methods. pulseR is an

RNA-seq count-based parameter estimation framework. GRAND-SLAM is a statistical software package to estimate NTR ‘out-of-the-box’. While both methods handle

nucleotide conversion labeling experiments, only pulseR provides estimates for the BSA purification protocol.

http://bib.oxfordjournals.org/). The SLAM-seq protocol employs
the primary thiol-reactive compound iodoacetamide (IAA)
which covalently attaches a carboxyamidomethyl group to
4sU by nucleophilic substitution [12]. The TLS-seq protocol
uses a combination of 2,2,2-trifluoroethylamine (TFEA) and

sodium periodate (NaIO4) [13], and the TUC-seq protocol, an
osmium tetroxide (OsO4)-mediated transformation to convert
4sU to cytidine derivatives [14]. Instead of introducing a reverse-
transcription-dependent T to C conversion as in SLAM-seq,
TLS- and TUC-seq directly convert 4sU to cytidine in RNA. We

http://bib.oxfordjournals.org/
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Figure 2. (a-c) MCF-7 cells were labeled with 4sU for up to 8 h in two replicates. RNA was either biotinylated and employed in biochemical separation or subjected to

chemical conversion using SLAM-, TLS- or TUC-seq protocols. (a) Quantification of dot blot analysis of biotinylated RNAs (input) and supernatant of the biochemical

separation with Streptavidin-HRP. (b) RNA concentration of biotin-enriched fractions (eluate) determined by absorption measurement. (c) RT-qPCR analysis of MYC,

PDLIM5 and GAPDH mRNA in eluate fractions of the biochemical separation, normalized to the respective input. In a, b and c, mean and SD of two replicates are shown.

(d) Upper left panel: schematic representation of the restriction enzyme digestion assay probing the efficiency of chemical conversion employing the positive control

substrate (C), containing a NotI cleavage site, the negative control substrate (U) or the chemical conversion substrate (4sU). All substrates were analyzed untreated and

after chemical conversion using SLAM, TLS and TUC protocols. Lower left panel: analysis of the reaction products on 10% TBE gels. Right panel: quantification of the

relative fraction of full length band and the two cleavage products derived from NotI digestion (+NotI) in three independent experiments. untr. = untreated.

observed a relative increase in threshold cycle values (Ct values)
during cDNA library preparation for the SLAM protocol (Figure
S1d, see Supplementary Data available online at http://bib.o

xfordjournals.org/). This increase appeared to be independent
of labeling time and was also seen in 0 h samples (treated,
without 4sU) but did not affect the reliability of the method,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Comparison of methods to infer RNA turnover 5

Table 1. Summary and primary chemicals used in each labeling protocol. Hazard statements and H-codes from the globally harmonized system
of classification and labelling of chemicals (GHS) associated with each hazardous substance are found in Table S2, see Supplementary Data
available online at http://bib.oxfordjournals.org/

Method Incubation On hand Temperature pH Non-hazardous substances Hazardous substances

SLAM 15 min 15 min 50◦C 8.0 DMSO Iodoacetamide (IAA),
Sodium phosphate

TLS 1 h 15 min 45◦C Sodium periodate (NaIO4),
2,2,2-trifluoroethylamine
(TFEA), EDTA

TUC 3 h 15 min 50◦C/25◦C 8.88 Osmium tetroxide (OsO4),
Ammonium chloride
(NH4Cl), Ammonium
hydroxide (NH4OH)

BSA Biotinylation 30 min 15 min 25◦C 7.4 HEPES, MTSEA-biotin XX Sodium hydroxide
(NaOH), EDTA

BSA Streptavidin
purification

35 min 30 min 25◦C-65◦C 7.4 Tris, Sodium chloride,
Tween-20

Hydrochloric acid (HCl),
DTT, EDTA

BSA = biotin-streptavidin biochemical enrichment.

as further shown below. In all three methods, 4sU-labeled and
unlabeled RNA reads were separated in silico by the presence or
absence of characteristic base substitutions (T to C), removing
the need for an enrichment step. In practice, however, non-
negligible other sources of T to C mismatches are present,
which influence the effective labeling efficiency. Since 4sU
is randomly and freely incorporated into nascent RNA, the
reaction has to be highly efficient to guarantee sensitivity upon
sequencing. To estimate the conversion efficiency of the three
methods, we used a restriction enzyme digestion assay [13]
(Methods). The conversion efficiency of the 4sU substrate in
comparison to the positive control (C) and negative control
(U) substrates in each of the three methods was found to
be reproducible and not significantly different, SLAM 88.39 ±
3.54%, TLS 86.42 ± 13.63% and TUC 83.99 ± 13.46%, although the
cleaved fraction was higher for SLAM and TLS (Figure 2d, Figure
S1e, see Supplementary Data available online at http://bib.oxfo
rdjournals.org/ and Table S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/). Compared with the
conventional approach, these protocols require less input RNA
and are less laborious and cheaper. However, in particular for
the TLS- and TUC-seq chemistry, substances with considerable
hazardous potential have to be handled (Table 1, Table S2, see
Supplementary Data available online at http://bib.oxfordjourna
ls.org/). For OsO4 solutions, the low stability has to be considered
for consecutive experiments. These considerations are further
discussed below, after comparing consistency and inter-method
reliability.

Estimating RNA decay rates

Libraries were identically prepared in two replicates for every
time point (0, 1, 2, 4 and 8 h) for every protocol, and in addition for
every fraction in the BSA purification protocol, before being sub-
mitted to paired-end and stranded sequencing (Methods). We
then applied a uniform read processing and alignment workflow
to all samples (Methods). Mapping statistics are given in Supple-
mentary File 1 (available on GitHub). The resulting mapping
data were then used as input for two different computational
workflows (Figure 1b, and Table 2): on the one hand, pulseR [25],
a count-based parameter estimation framework using the neg-
ative binomial distribution, where RNA dynamics are described
by expressions for the mean RNA abundances in different

populations, and, on the other hand, GRAND-SLAM, a statistical
approach used to infer the proportion of newly transcribed
RNA for all nucleotide conversion methods [20]. While pulseR
handles BSA purification (standard 4sU-seq or biochemical
enrichment) and nucleotide conversion methods, GRAND-
SLAM only works with the latter, but both ultimately rely on
the assumption of a 1st order reaction with a constant rate
of transcription to estimate the decay rate δ (Methods). The
flexibility of pulseR enables to handle different designs, kinetic
models and normalization strategies. In the standard pulseR
workflow (BSA purification), normalization factors are either
derived from gene counts using maximum likelihood estimation
(MLE) or determined from ERCC spike-ins. For the nucleotide
conversion methods, fraction normalization is not an issue.
However, ‘labeled’ and ‘unlabeled’ RNAs must be separated
in silico. This can be done by finding T to C mismatches in
mapped reads, accounting for mismatches found in unlabeled
RNAs and sites of SNPs that could be erroneously identified
as chemically induced T to C conversions. Since GRAND-
SLAM needs the alignment files as input, no pre-processing
was required. However, pulseR needs RNA-seq count data
as input, thus we first had to assign reads to ‘labeled’ and
‘unlabeled’ RNA populations. Reads were then counted using
featureCounts, following the same approach as in the standard
pulseR workflow. SNP calling, implemented in GRAND-SLAM,
was done on all samples of each of the SLAM-, TLS- and TUC-
seq protocols. These results were also used to filter sites in the
pulseR approach (Methods). For the parameter estimation only,
both pulseR and GRAND-SLAM showed a comparable usage
(Table 2). While pulseR directly outputs decay rate estimates
for selected time points, in GRAND-SLAM, parameters of the
posterior distribution for the NTR are derived using Bayesian
inference from the mapping data, without additional user
intervention. To calculate decay rates for every gene, these
parameters were used, weighting the contributions of each
sample to the overall estimates, by maximum a posteriori
(MAP) estimation (Methods). Unless otherwise stated, results
are shown for all time-points.

Assessing inter-method reliability

Decay rates δ were estimated for the BSA purification proto-
col using pulseR (Methods). In a first instance, ERCC spike-
ins were used to determine the normalization factors in the
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Table 2. Description, usage and comparison of computational workflows used in this study

pulseR GRAND-SLAM

Description Maximum likelihood estimation using RNA-seq
count data [25]. R programming language. GPL-3
license. https://dieterich-lab.github.io/pulseR

Bayesian inference using mapped reads [20]. Java 1.8.
License agreement for academics. https://github.com/e
rhard-lab/gedi/wiki/GRAND-SLAM

Usage1 Elapsed 00:40:39, Memory 3.68 GB, CPU time 975602 Elapsed 00:43:11, Memory 24.84 GB, CPU time 1036403

Positives Flexible (variable design, models, e.g. could include
uridine bias, RNA processing, etc.), gene-specific
and shared parameters, different read
pre-processing can be used (only count data is
required), can handle both chemical conversion
and biochemical enrichment (incl. spike-ins),
well-documented.

Black box (read counting, SNPs finding, etc.), no
knowledge of specific programming language required,
portable (Java), in principle more robust with limited
number of samples, less affected by the choice of time
points, recently extended to single-cell applications.

Negatives More user involvement required (basic R
knowledge), read pre-processing4, less portable, for
the chemical conversion shows more variability
(more parameters to fit).

Less user control, limited documentation, difficulty to
access source code, MAP estimation left to user5, cannot
be used on matched biochemical enrichment
experiments (BSA or standard 4sU-seq).

1The benchmark was made on the SLAM-seq samples. Jobs were run on a SMP Debian 3.16.84-1 x 86_64 GNU/Linux cluster, scheduled on the same partition,
each allocated to one node and 40 CPUs. Compute nodes consisted of Intel Xeon processors E5-2650 v3, 40 cores, 256GB. Elapsed is the wall-clock time in
hours:minutes:seconds, CPU time is in cpu-seconds. Memory is the maximum memory utilized per core. For GRAND-SLAM, we used the BAM file format.
2Only fitting is reported. Mapped reads pre-processing was done in parallel and utilized on average 22.40 GB, and ran for 04:03:55. Read counting using featureCounts
utilized 678.39 MB and took 00:05:18.
3The index creation step is not reported.
4The read pre-processing and the complete pulseR workflow used in this study are available at https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling.
5Decay rates are not readily available, they need to be computed from the posterior NTR shape parameters. We used MAP estimation, see Methods.

model. In total, 19 ERCC transcripts with the highest counts
were used across replicates (Figures S2–S4, see Supplementary
Data available online at http://bib.oxfordjournals.org/, and Meth-
ods). The predicted and raw abundances for all genes showed a
good agreement for most replicates (Figure S5, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/). This
model, referred to as ‘ERCC’, had the simplest description and
the least number of fitted parameters, and thus provided a set
of reference decay rates. In the absence of spike-ins, pulseR can
also infer the normalization factors from the data. Hence, we
computed decay rates for the same gene set using the same
kinetic model description, but discarding the information from
the ERCC spike-in read counts. We refer to this model as ‘BSA’.
Hence both ERCC and BSA are based on the biochemical enrich-
ment protocol data. For the nucleotide conversion protocols,
referred to as ‘SLAM’, ‘TLS’ and ‘TUC’, estimates were obtained
with each the pulseR workflow and GRAND-SLAM. We first
determined raw mismatch statistics (4sU-mediated base con-
versions) for each protocol and all replicates (Supplementary
Files 2 and 3, available on GitHub). Mismatch rates were com-
parable between protocols, whether they were calculated with
the pulseR workflow or with GRAND-SLAM. The rate increase
with labeling time was clearly distinguishable and was also
consistent along the read length, with artefactual patterns of
mismatches at read ends being less pronounced at later time
points (Supplementary File 2, available on GitHub). In all com-
putational workflows, mismatches at read ends were discarded
(Methods).

We sought to systematically compare the four protocols with
pulseR and GRAND-SLAM using correlation as a measure of
method reliability, on a common set of genes for which estimates
were available for all methods (Figure 3 and Table S3, see Sup-
plementary Data available online at http://bib.oxfordjournals.o
rg/). The consistency between all protocols indicated a relatively
high inter-method reliability (Figure 3a). A high correlation can
be further appreciated from the perspective that any combina-
tion of protocol-computational method was independent from
the other, associated with different experimental protocols and

distinct bioinformatic treatment. These observations were fur-
ther corroborated by comparing the deviation between any pair
of methods (Figure 3b). In the absence of an enrichment step, as
is the case for the nucleotide conversion protocols, many reads
will map to pre-existing RNAs, and there will be a bias towards
expressed transcripts with slower rates (shift above the diago-
nal when comparing nucleotide conversion versus ERCC/BSA).
This was distinctly observable, particularly using only shorter or
intermediate time points to estimate the decay rates (Figures S6–
S8, see Supplementary Data available online at http://bib.oxfo
rdjournals.org/), and more prominent for GRAND-SLAM, when
compared with pulseR ERCC/BSA (with enrichment step). At
higher rates, however, estimates from the pulseR SLAM, TLS
and TUC models systematically deviated from the BSA/ERCC
results, while those from GRAND-SLAM were generally more
symmetric. Across the different subsets, the correlations gener-
ally remain high (Figure S9, see Supplementary Data available
online at http://bib.oxfordjournals.org/). While pulseR estimates
were more sensitive to the choice of time points, particularly for
the nucleotide conversion protocols, MAP estimation in GRAND-
SLAM was much less affected. GRAND-SLAM uses a kinetic
model equivalent to the BSA model implemented in pulseR,
except that it does not use the negative binomal, and where
inference on the decay rates is done as if mean abundances were
known. In pulseR, although all models were processed using
the same workflow, there were more parameters to fit for the
SLAM, TLS and TUC kinetic models, compared with the ERC-
C/BSA kinetic model, the former showing a bias towards faster
rates for a subset of genes, particularly visible at intermediate
and later time points (Figures S6–S8, see Supplementary Data
available online at http://bib.oxfordjournals.org/). These fastest
genes were mostly unidentifiable (see also Supplementary File
5, available on GitHub). It is not surprising if estimates obtained
with these models showed a slightly lower correlation, and had
higher deviations when compared with the ERCC/BSA results
(i.e. correlations were marginally higher when comparing results
between the pulseR ERCC/BSA kinetic model and those obtained
with GRAND-SLAM, compared with those of the pulseR SLAM,
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
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Figure 3. Assessing inter-method reliability. (a) Pearson’s correlation coefficient for RNA decay rate estimates δ between any pair of methods for 11 603 common genes.

(b) Scatter matrix of decay rate estimates δ between any pair of methods for 11 603 common genes with, on the lower diagonal elements, residual standard error from

a fitted regression model using the ERCC results, and root-mean-square deviation for all other comparisons. All time points (0, 1, 2, 4 and 8 h samples) were used to

estimate parameters in pulseR. The MAP estimator for δ in GRAND-SLAM was computed on the 1, 2, 4 and 8 h samples.

TLS and TUC models, irrespective of the subset of time points
used).

The overlap between approximate CIs for the nucleotide
conversion protocols and the ERCC results were also determined
(Figures S10–S13, see Supplementary Data available online at
http://bib.oxfordjournals.org/). The overlap with the pulseR
SLAM, TLS and TUC results was almost entirely restricted by the
width of the ERCC CIs. Since GRAND-SLAM estimated marginally
slower rates than those obtained with the ERCC model, and
due to its tighter intervals, the overlap was mostly restricted
to the lower end of those found by the ERCC model. Across all
three nucleotide conversion protocols, an average of 4264 genes
had non-overlapping CIs, approximately 78% of these from the
GRAND-SLAM results. However, the number of unidentifiable
parameters was higher in pulseR (on average 100 genes with
either one or both bounds undefined). At shorter time points (1
and 2 h), GRAND-SLAM estimates were largely non-overlapping,
while at later time points (4 and 8 h), it had a more symmetric
distribution with respect to the ERCC estimates (Figures S11 and
S13, see Supplementary Data available online at http://bib.oxfo
rdjournals.org/).

Comparing computational workflows

For all shared estimates (n = 11 603), RNAs with low, interme-
diate or high turnovers were classified consistently across all
methods, and decay rates were generally identifiable (small
median CI width, Figure 4a). For the other combinations of com-
putational workflow and protocol, estimates were only available

for smaller subsets of genes. By default, GRAND-SLAM excludes
certain biotypes based on the annotation, and many of these
genes constituted the pulseR-only intersections, which were
also characterized by more variability in the estimated param-
eters (blue and/or grey-shaded lines, Figure 4a). Other genes,
included in the pulseR analyses, had unidentifiable parameters
of the posterior NTR (α, β) in GRAND-SLAM for at least one
sample and thus were not included in the MAP estimation. In
pulseR, on the contrary, estimates are always available, although
not necessarily identifiable (based on the CI), for all genes in
the input count table. Low-expression gene filtering prior to
parameter estimation is, however, recommended, as is common
practice in quantitative profiling of gene expression. The user
has full control of how this is done. Here, we only used genes
with mean total read count >50. The GRAND-SLAM-specific
intersections were thus characterized by lowly expressed genes
for which estimates were not available in any of the pulseR
models, because of low-expression filtering (e.g. SLAM, TLS and
TUC, see Figure 4b). The GRAND-SLAM estimates for these sets
were associated with greater median variability (Figure 4a, SLAM
GS, TLS GS and TUC GS). When considered together, all GRAND-
SLAM-specific intersections showed a large read count variabil-
ity (Figure 4b, x-axis all intersections), revealing discrepancies
in read counting between the two methods for a subset of
genes, despite our effort to match the GRAND-SLAM parameters.
Regardless of their CIs, the GRAND-SLAM-specific estimates for
these lowly expressed genes may not be reliable. There was
also a statistically significant difference between decay rates
estimated for all shared genes and those available in any one

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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method (Figure 4c GS shared versus GS only). While the median
distribution for each subset differed for all comparisons, the
estimates were consistent for pulseR, whether they were from
the shared or the pulseR-specific gene sets (Figure 4c pulseR
shared versus pulseR only). The pulseR-specific genes were also
characterized by consistent gene ontology enrichment associ-
ations across protocols, which were arising from biotypes that
were not included in the GRAND-SLAM analyses (Figure S14, see
Supplementary Data available online at http://bib.oxfordjourna
ls.org/).

Usage and runtime for both methods were comparable but
may be affected by the chosen file format (GRAND-SLAM has its
own format based on centered interval trees, but we used the
BAM format for all comparisons), see Table 2. The pre-processing
may also affect overall runtime in the pulseR workflow. We did
not assess the influence of read mapping on estimates for each
method, but it was shown previously to be negligible for GRAND-
SLAM [20]. As for read counting, we were restricted in this work
by the parameters modifiable in GRAND-SLAM.

Other analyses

We also compared the pulseR workflow for the nucleotide
conversion protocols using a different SNP/variant caller (Sup-
plementary File 4, available on GitHub). The pulseR estimates
were not significantly affected by the choice of variant caller,
whether GRAND-SLAM or BCFtools were used to identify SNPs.
Across pulseR results only, there was essentially no difference in
estimates between the SLAM, the TLS and the TUC protocols. We
also estimated optimal labeling times and key characteristics of
RNA labeling experiments for use cases comparing biochemical
enrichment and nucleotide conversion protocols, using the
asymptotic theory of optimal design (Supplementary File 5,
available on GitHub).

The effect of long 4sU labeling durations on cellular viability
has been largely ignored in the literature, in particular in the
case of SLAM-, TLS- and TUC-seq. In https://github.com/diete
rich-lab/ComparisonOfMetabolicLabeling, we include a global
gene expression analysis between no labeling and the different
labeling durations for the nucleotide conversion protocols. We
show that exposure to 4sU for up to 8 h did not result in any sig-
nificant effect on gene expression. After 8 h of labeling, processes
involved in cellular stress responses were represented by a small
set of signature genes; however, changes in cell morphology and
viability were not observable at this time point.

Biochemical enrichment protocols, such as standard 4sU-seq
[28] or TT-seq [26], enable to map the whole human transient
transcriptome at nucleotide resolution using ultrashort and/or
progressive 4sU-tagging. Due to requirements on sequencing
depth, and largely because most previous studies employed
Quant-seq 3’end sequencing, these analyses were not attempted
with SLAM-, TLS- or TUC-seq. As noted earlier, nucleotide con-
version protocols are not currently suitable for the determi-
nation of very fast kinetics. Despite these limitations, since
we used TruSeq stranded mRNA sequencing, we decided to
include an RNA-seq analysis of differential exon usage using
the nucleotide conversion protocols. In particular, we show that
certain exons are uniquely associated to a given transcript iso-
form, and differentially used depending on the labeling duration,
which could indicate the existence of decay rate-dependent
‘isoform switching’. The supporting scripts and complete results
are available at https://github.com/dieterich-lab/ComparisonO
fMetabolicLabeling.

Discussion
4sU-tagging metabolic labeling methods have not undergone
comprehensive benchmarking nor have computational tools to
infer decay rates from such experiments. Here, we compared
four of the most recent and widely applied methods: biochemical
enrichment, referred to as BSA purification (with and without
ERCC spike-ins), SLAM-seq, TimeLapse-seq, referred to as TLS-
seq, and TUC-seq. Our results indicate that there is no protocol
that can be considered a gold standard in terms of efficiency,
reproducibility and reliability, but additional considerations are
also important. BSA purification has a higher cost, compared
with the nucleotide conversion methods, largely due to the
requirement to sequence several fractions, and because of the
price of the magnetic streptavidin beads that are generally used.
The nucleotide conversion protocols vary in the associated time,
reaction conditions and chemicals. In general, they are less
laborious than the biochemical enrichment protocol. However,
integrity of the RNA should be carefully controlled after the
chemical reaction. We noticed that incubation at higher tem-
perature, e.g. for TUC-seq, can result in significant degradation.
Furthermore, TLS-seq and TUC-seq require handling of sub-
stances with considerable hazardous potential. Although the
required amounts are low, this should be taken into account
during experimental planning. Many of the required chemicals,
as OsO4, are unstable in solution, and this can contribute to
increase in costs for these methods.

The choice of method is also highly dependent on the exper-
imental design. Incorporation rates may be a crucial parame-
ter for measurements of either fast-decaying or slow-decaying
RNAs, and in such cases, it may be less efficient to use nucleotide
conversion protocols to estimate metabolic rates. Even after 2
h, no more than 1% of all reads actually contained a T to C
conversion, thus short pulses require a large number of sequenc-
ing reads to achieve sufficient coverage for less abundant tran-
scripts, which limits sensitivity. Longer pulses have an effect
similar to an increase in sequencing depth for the labeled frac-
tion, but contain little information to infer rates for the fastest
genes. In contrast, biochemical enrichment protocols can be
used to focus the sequencing capacity on the relevant molecules
for a given experimental design [24]. However, as already noted,
this approach requires higher quantities of starting material, it
suffers from the need to normalize the fractions and estimates
can be biased by the efficiency of separation or fraction con-
tamination. Here, we showed a high efficiency of the strepta-
vidin purification and negligible contamination of the biotin-
enriched fraction. As recently advocated, contamination should
be assessed at every experiment [21].

We also aimed to test broadly applicable computational
methods: pulseR [25], a framework applicable to any type of
metabolic labeling experiments, and GRAND-SLAM [20], which
has been used to infer NTR ratios in the nucleotide conversion
protocols. In pulseR, the kinetic equations describing the
RNA populations must be specified. They directly influence
parameter optimization and the required number of time
points. In the nucleotide conversion models, the presence
of background fractions, considered as nuisance parameters,
adversely affected the CIs, which were calculated using the
profile likelihood method [25]. For the less experienced user,
the flexibility of this approach might weigh down some of
its advantages, and one might consider using GRAND-SLAM,
a portable statistical inference framework ‘out-of-the-box’.
GRAND-SLAM estimates are less affected by the choice of time
points, and the software provides a detailed output for quality

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling
https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling
https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling
https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling
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Figure 4. Comparing computational workflows. (a) UpSet plot showing the overlap between estimates across methods, median decay rate estimates δ and median CI

width for each intersection. Intersections with less than 10 estimates are not shown. (b) Scatter plot of read counts between GRAND-SLAM and those obtained with

featureCounts (pulseR workflow) for GRAND-SLAM-specific estimates. Decay rates for these genes are not available in pulseR due to low-expression gene filtering. For

SLAM, TLS and TUC, total mean read count is shown. For all intersections (lower right), the median of the total mean count across protocols is shown. Gene sets are

obtained by selecting appropriate intersections in a. (c) Box plot comparisons of decay rate estimates δ between pulseR and GRAND-SLAM for the nucleotide conversion

protocols. Comparisons are made using a two-sided Mann–Whitney test. The shared genes for SLAM (resp. TLS, TUC) are those where estimates are available for both

pulseR and GRAND-SLAM for the SLAM protocol (resp. TLS, TUC protocol), while the genes found only by one or the other method are genes for which estimates are

available only for that method using the SLAM protocol (resp. TLS, TUC protocol). For all figures, all time points (0, 1, 2, 4 and 8 h samples) were used to estimate

parameters in pulseR. The MAP estimator for δ in GRAND-SLAM was computed on the 1, 2, 4 and 8 h samples.

control, without the need to run additional analyses. Lower and
upper bounds of the posterior distribution of the NTR are given
as output for each gene and sample, but these are not readily
usable, as one is generally interested in a single estimate per
gene. Here, we computed decay rates using MAP estimation
on subsets of samples, and estimated approximate CIs using
the profile likelihood method, without nuisance parameters,
explaining the tighter intervals obtained for GRAND-SLAM.

In summary, we recommend that this kind of analy-
sis is updated regularly, as it is a fast-developing field.
Standardized methods for benchmarking metabolic labeling
protocols and extensive public data, as we present here,
can facilitate the development of computational tools, serve
as a resource for the community to promote reproducible
research and help to advance our understanding of RNA
biology.
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Methods
Tissue culture

MCF-7 cells (ACC-115) were obtained from the Leibniz Institute
DSMZ German Collection of Microorganisms and Cell Cultures.
Cells were routinely tested for mycoplasma contamination with
Venor GeM Classic (Minerva Biolabs). MCF-7 cells were cultured
at 37◦C and 5% CO2 and maintained in DMEM (Thermo Fisher
Scientific) supplemented with 10% fetal calf serum (Merck),
1×MEM non-essential amino acids (Thermo Fisher Scientific)
and 1×Penicillin/Streptomycin (Thermo Fisher Scientific). MCF-
7 cells were seeded 48 h prior to the experiment at a cell density
of 0.3×105 cells per cm2. Cells were labeled with 4-thiouridine
(4sU) (Sigma-Aldrich) at a final concentration of 200 μM for 1, 2,
4 or 8 h. Cells were scraped in DPBS and the pellet re-suspended
in Trizol (Thermo Fisher Scientific).

Isolation of total RNA

Total RNA was isolated using the Trizol method. Briefly, the cell
pellet was re-suspended in 750 μl Trizol and incubated 5 min
at room temperature before addition of 200 μl chloroform. Sam-
ples were centrifuged (20 min, 10.000 g, room temperature) and
the aqueous phase re-extracted with one volume chloroform:
isoamylalkohol (24:1) (5 min, 10.000 g, room temperature). The
RNA in the aqueous phase was precipitated with one volume
isopropanol (30 min, 20.8000 g, 4◦C), washed twice with 1 ml 80%
ethanol in DEPC-H2O and dissolved in 25 μl DEPC-H2O (10 min,
55◦C, shaking).

Biotinylation of RNA

Total RNA was biotinylated using MTSEA biotin-XX (Biotium) as
described by Duffy et al. [10]. Briefly, 160 μg total RNA was incu-
bated in 10 mM HEPES pH 7.5, 1 mM EDTA and 5 μg MTSEA biotin-
XX (freshly dissolved in DMF) in a total volume of 250 μl. Reac-
tions were incubated 30 min in the dark at room temperature.
Biotinylated RNA was recovered by extraction with one volume
phenol:chloroform:isoamylalkohol (24:24:1) (PCI) and separated
by centrifugation (5 min, 20.800 g, room temperature) using
Phase-Lock-tubes. RNA was precipitated by addition of 350 μl
isopropanol, 25 μl 5 M sodium chloride and 1 μl glycogen (Roche
Diagnostics, 20 μg μl−1) (30 min, 20.800 g, 4 ◦C). RNA was washed
twice with 500 μl 80% ethanol in DEPC-H2O and dissolved in
160 μl DEPC-H2O (10 min, 55 ◦C, shaking).

Dot blot-based detection of biotinylation

Equal volumes of input and supernatant fractions from Strep-
tavidin purification were applied to nylon membrane (Hybond-
N, GE Healthcare) using a dot blot device (Carl Roth). RNA was
crosslinked twice at 254 nm using the ‘Optimal Crosslink’ mode
of the Spectroline Select XLE-1000 crosslinker. The membrane
was blocked 20 min with PBS + 10% SDS and incubated 2 h
with Streptavidin-HRP (Thermo Fisher Scientific, 1:5000 in PBS +
10% SDS). Prior to detection with SuperSignal West Pico (Thermo
Fisher Scientific), the membrane was washed each three times
10 min with PBS + 10% SDS, PBS + 1% SDS and PBS + 0,1%
SDS. Images were acquired with the LAS4000 system (GE Health-
care). Dot blot signals were quantified using ImageQuant TL 8.1
(GE Healthcare) and normalized to a background control. Mean
and standard deviation from duplicate measurements of two
biological replicates are shown in Figure 2a.

Streptavidin purification

For purification of biotinylated RNAs, the method described by
Schwanhäusser et al. was adapted [8]; 25 μg biotinylated total
RNA was adjusted to 100 μl with DEPC-H2O and filled up with
Streptavidin binding buffer (Strep-BB) (20 mM Tris, pH 7.4, 0.5
M sodium chloride, 1 mM EDTA) to 200 μl. RNA was denatured
10 min at 65◦C and subsequently placed on ice; 100 μl magnetic
streptavidin beads (New England Biolabs) were washed once
with 200 μl Strep-BB and resuspended in 100 μl Strep-BB. RNA
and beads were incubated 15 min at room temperature on a
rotating wheel. Beads were washed three times with 500 μl Strep
washing buffer (100 mM Tris pH 7.4, 1 M sodium chloride, 10
mM EDTA, 0.1% Tween 20) prewarmed to 55◦C. RNA was eluted
three times with 100 μl freshly prepared 100 mM DTT and
elution fractions pooled for further analysis. RNA was recovered
from total RNA, supernatant and eluate by PCI extraction using
Phase-Lock-tubes and isopropanol precipitation. The amount of
recovered RNA was determined by Nanodrop measurement.

ERCC spike-ins

Two hundred nanogram RNA from the streptavidin purification
were spiked with 4 μl of a 1:1000 dilution of the universal ERCC
RNA Control Spike-in Mix 1 (Thermo Fisher Scientific). ERCC
spike-ins were used in the PulseR model to normalize the frac-
tions. Since input and supernatant fractions were diluted each
in 1:5, to mitigate the resulting amplification bias, we adjusted
ERCC read counts in input and supernatant fractions as follows:
for matched samples, we scaled the counts using the fold change
difference in intercept between fits, when compared with the
eluate fraction (the difference in mean read count for eluate
and supernatant/input when the ERCC concentration is 0). We
assumed non-significant two-way interactions. We only used
transcripts with mean read count >50 in the input fraction. For
sample 1A (no eluate fraction), we used the scaling factor average
of A samples. Based on the adjusted counts, and due to the low
dilution ratio (1:1000), a total of 19 ERCC transcripts were used to
determine the normalization factors in the model.

SLAM-seq sample preparation

Alkylation of 4sU-labeled RNA using iodoacetamide was per-
formed as described by Herzog et al. [12]. Briefly, 10 μg 4sU-
labeled total RNA was incubated in 50% DMSO, 50 mM sodium
phosphate buffer pH 8.0 and 10 mM iodoacetamide (Sigma-
Aldrich) for 15 min at 50◦C. Reaction was quenched by addition
of excess DTT and RNA was recovered by PCI (24:24:1) extraction
using Phase-Lock-tubes and isopropanol precipitation.

TimeLapse-seq sample preparation

TimeLapse-seq (TLS-seq) conversions were carried out as
described by Schofield et al. [13]; 10 μg 4sU-labeled total RNA
was added to a mixture of 600 mM TFEA, 1 mM EDTA and 100
mM sodium acetate pH 5.3. After addition of 10 mM NaIO4, the
reaction was incubated for 1 h at 45◦C. RNA was recovered by
PCI (24:24:1) extraction using Phase-Lock-tubes and isopropanol
precipitation.

TUC-seq sample preparation

RNA conversion for TUC-seq analysis was carried out as
described by Riml et al. [14]; 10 μg 4sU-labeled total RNA was
incubated with 180 mM NH4Cl and 0.45 mM OsO4 for 3 h
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at 25◦C. RNA was recovered by PCI (24:24:1) extraction using
Phase-Lock-tubes and isopropanol precipitation.

Agarose gel analysis

RNA integrity was routinely analyzed on 1% agarose gels in
TAE stained with SYBR Green II RNA Gel Stain (Thermo Fisher
Scientific). 500 ng RNA was boiled in loading buffer (10 min, 65◦C)
and chilled on ice prior to loading. Images were acquired with the
LAS4000 system (GE Healthcare).

Reverse transcription

Equal volumes of RNA recovered from streptavidin purifica-
tion or 500 ng RNA derived from chemical conversion were
reverse transcribed using the Maxima H Minus First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific) with Random Primers
according to the manufacturers protocol. Briefly, RNA was mixed
in a total volume of 15 μl with 1 μl Random Primer and 1 μl dNTP
solution and denatured (5 min, 65◦C). Reaction was completed
by addition of 4 μl 5 ×RT buffer and 1 μl Maxima enzyme and
incubated 10 min at room temperature followed by 30 min at
50◦C, and denaturation (5 min, 85◦C).

qPCR analysis

Reverse transcription reactions were diluted 1:20 and used for
qPCR analysis on a StepOnePlus instrument (Thermo Fisher Sci-
entific) with Power SYBR Green PCR Master Mix (Thermo Fisher
Scientific) and primers listed in Table S4, see Supplementary
Data available online at http://bib.oxfordjournals.org/. qPCR data
obtained from the Streptavidin purification were normalized to
the respective input (0–8 h) using the comparative Ct method [29].
For the analysis of SLAM, TLS and TUC samples, the �Ct values
relative to the untreated controls are shown.

Restriction enzyme digestion assay

The assay was performed mainly as described by Schofield
et al. [13] using identical oligonucleotides. Briefly, the synthetic
DNA template was in vitro transcribed using the T7 Megascript
kit (Thermo Fisher Scientific). For the positive control substrate
(C) and the negative control substrate (U) standard nucleotides
were used, for the chemical conversion substrate (4sU), UTP was
replaced by 4sUTP (Jena Biosciences). Reactions were incubated
for 16 h at 37◦C. The template was digested with Turbo DNase
(15 min, 37◦C). Resulting in vitro transcripts (IVT) were purified
by phenol-chloroform extraction followed by RNA Clean and
Concentrator kit (Zymo Research). Integrity of the IVTs was ana-
lyzed by gel electrophoresis on 6% TBE-urea gels (Thermo Fisher
Scientific); 120 ng of the respective IVTs were treated according
to SLAM, TLS and TUC procedures as described above; 50 ng
of purified products were reverse transcribed with SuperScript
IV (Thermo Fisher Scientific) according to the manufacturers
protocol; 2 μl of the reverse transcription was PCR amplified
using Taq polymerase (Promega); 5 μl of the PCR product was
either digested with NotI-HF (New England Biolabs) or mock
digested for 1.5 h at 37◦C. The products were separated on 10%
TBE gels (Thermo Fisher Scientific) and stained with GelRed
(Biotium). Quantification of bands from three independent
replicates was performed using ImageJ to calculate the fractions
of the full length band and the two cleavage products. Assuming
that the C substrate resembles 100% conversion efficiency and
the U substrate shows 0% conversion efficiency, the conversion

efficiency of the 4sU substrate was calculated using the cleaved
fraction.

Library preparation and sequencing

All libraries were prepared using the Illumina TruSeq mRNA
stranded sample preparation kit according to the standard pro-
tocol. Library preparation started with 200 ng total RNA plus 4 μl
ERCC spike-in (1:1000 dilution) or 1 μg total RNA. One sample was
removed from the lot due to low RNA concentration (eluate A 1
h). After poly-A selection (using poly-T oligo-attached magnetic
beads), mRNA was purified and fragmented. RNA fragments
underwent reverse transcription using random primers followed
by second strand cDNA synthesis with DNA Polymerase I and
RNase H. After end repair and A-tailing, UDI adapters were
ligated. The products were then purified and amplified (14 PCR
cycles) to create the final cDNA libraries. After library valida-
tion and quantification (Agilent 4200 tape station), equimolar
amounts of library were pooled. The pool was quantified by
using the Peqlab KAPA Library Quantification Kit and the Applied
Biosystems 7900HT Sequence Detection System and sequenced
on an Illumina NovaSeq 6000 sequencer with a PE100 protocol.

Read processing and alignment

Quality clipping and adapter removal were performed with
flexbar v3.5.0 [30], with –max-uncalled 1 –post-trim-length 248
–min-read-length 20 –qtrim-format sanger –qtrim TAIL qtrim-
threshold 10. Reads aligning to a custom bowtie2 v2.3.5 [31]
ribosomal index were discarded. All remaining reads were
aligned to the human genome (GRCh38.p7) using STAR v2.6.0c
[32], with –outFilterMultimapNmax 20 –outFilterScoreMin 1 –
outFilterMatchNminOverLread 0.7 –outFilterMismatchNmax
999 –outFilterMismatchNoverLmax 0.05 –alignIntronMin 20 –
alignIntronMax 1000000 –alignMatesGapMax 1000000 –align
SJoverhangMin 15 –alignSJDBoverhangMin 10 –alignSoftClipAt
ReferenceEnds No –outSAMattributes NH HI AS nM NM MD
jM jI XS. Reads were then sorted with samtools v1.7 [33], and
duplicates were marked and removed using Picard Tools v2.5.0
[34].

pulseR workflow

We used MLE to obtain parameter values, as implemented in
the R package pulseR v1.0.3 [25]. For a given gene, the read
count follows a negative binomial distribution X ∼ NB(m(θ , t), k),
where m(θ , t) is the mean read count, which depends on the
time of labeling t, the decay rate δ, the expression level μ in
the steady-state and sample normalization, hence θ = (μ, δ, ...)T.
The parameter k is the overdispersion of the negative binomial
distribution and is a shared parameter of the model. The NB
probability distribution function is

P(X = x) = �(x + k)
x! �(k)

(
m

m + k

)x (
m + k

k

)−k

. (1)

The logarithm of the likelihood function depends on the
points Xi and the model parameters θ

logL(θ , X) =
∑

i

log P(θ , Xi). (2)

The maximum likelihood estimator is

θ̂ = argmaxθ logL(θ , X). (3)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab219#supplementary-data
http://bib.oxfordjournals.org/
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The abundance m or mean read count of an RNA with syn-
thesis rate σ and decay rate δ is modeled using 1st order kinetics

dm
dt

= σ − δm. (4)

The expression level μ is generally derived from the total
fraction, which ensures identifiability of this parameter. In the
conventional approach (BSA purification), where labeled and
unlabeled molecules are separated, we have

mtotal = μ (5)

munlabeled = xuμe−δt (6)

mlabeled = xlμ(1 − e−δt). (7)

In this work, the normalization coefficients xu and xl were
either inferred from the data using all fractions or estimated
from the ERCC spike-in read counts. To estimate the normaliza-
tion coefficients xu and xl, two different approaches were used.
For the BSA purification without ERCC spike-ins (referred to as
the BSA model), normalization factors were inferred from the
data using all fractions during the fitting procedure. For the BSA
purification with ERCC spike-ins (referred to as the ERCC model),
the normalization factors were determined without fitting. This
can done since spike-ins were added in equal amounts to all
fractions after purification. This approach does not allow to
recover factors to account for differences in the efficiency of sep-
aration, but for simplicity, we assumed no cross-contamination
between fractions. In the model fitting, we assumed shared
normalization coefficients for samples originating from the
same time point and fraction. We only used genes with mean
read count >50 in the total samples. Counts were obtained
using featureCounts v1.5.1 [35], with -t exon -s 2 -p -B -C -M
–fraction –ignoreDup. These parameters were determined to
match as closely as possible the parameters used in GRAND-
SLAM.

In the chemical nucleotide conversion approach (SLAM-, TLS-
or TUC-seq), samples were sequenced without prior separation,
and labeled and unlabeled RNAs were differentiated on the
basis of T to C mismatches of reads mapped to the genome.
We use the term ‘labeled’ and ‘unlabeled’ to avoid introduc-
ing additional terminology, but technically, a read can be ‘new’
without being labeled (e.g. few Ts in genomic locus, and/or no
incorporation took place), and an ‘old’ read or pre-existing RNA
can be erroneously tagged as labeled.

We first identified all T to C mismatches and kept those at
positions with a base quality score greater than 20 that were at
least 5 nt from the read ends. SNP calling was done with GRAND-
SLAM on all samples of each of the SLAM-, TLS- and TUC-seq
protocols. We also used BCFtools to call SNPs and reported these
results in Supplementary File 4 (available on GitHub). Once the
SNPs were filtered, read pairs with at least one T to C mismatch
were classified as ‘labeled’, and the others were classified as
‘unlabeled’, and reads were counted using featureCounts as
described above.

The accuracy of this bioinformatic separation depends on the
sequencing errors and the 4sU incorporation rates. Even after a
8 h pulse, not all molecules are labeled, i.e. not all reads show
a T to C conversion and thus the labeled fraction never reaches

the total level μ. Besides, at 0 h, some T to C mismatches are
incorrectly identified as genuine conversions. Assuming that the
ratio of labeled to unlabeled fractions is preserved, we have

munlabeled = μ1 + μ3e−δt (8)

mlabeled = μ2 + μ3(1 − e−δt), (9)

where μ1 is the background unlabeled fraction, which never
extincts, even after long labeling times, μ2 is the background
labeled fraction (the average T to C mismatch rate in unlabeled
RNA) and μ3 is the difference between the maximum level of the
labeled fraction and μ2, hence θ = (μ1, μ2, μ3, δ, ...)T. We impose
the constraint μ1 > μ2 + μ3, i.e. the unlabeled fraction is always
greater than the maximum labeled fraction. The constraint μ3 >

0 (maximum labeled fraction is greater than the background
error) is automatically satisfied in the implementation. Since the
model includes two more parameters, we need at least three
different time points and always include the 0 h time point to
have information on μ = μ1 + μ2 + μ3. As described above, the
model was fitted to the read counts from the sequenced samples
for genes with mean read count >50. For the comparisons, we
used the following subsets of time pionts: all time points (0, 1, 2,
4, 8 h), early time points (0, 1, 2 h), intermediate time points (0, 2,
4 h) and late time points (0, 4, 8 h).

The 95% CIs for δ were computed using a likelihood ratio test
[25]. An approximate (1 − α)% CI for θ0 is the set of θ satisfying

{
θ : logL

(
θ̂
)

− logL (θ) ≤ 1
2
X 2

1,1−α

}
, (10)

where θ̂ is the maximum likelihood estimate of the model
parameters, ignoring normalisation factors when fitted, and
where the 95% quantile of the chi-squared distribution with
1 degree of freedom is X 2

1,1−α ≈3.84, for α = 0.05. The profile-
likelihood method reduces logL to a function of δ by treating the
other components of θ as nuisance parameters, and maximizing
the likelihood over them.

GRAND-SLAM

Globally refined analysis of newly transcribed RNA and decay
rates using SLAM-seq (GRAND-SLAM) is a statistical framework
to infer posterior distributions of new and old RNA from chemi-
cal nucleotide conversion metabolic labeling experiments [20].
We used GRAND-SLAM v2.0.5f with -strandness Antisense -
overlap Unique -trim5p 5 -trim3p 5 on all samples of each of the
SLAM-, TLS- and TUC-seq protocols. The regression model for
the T to C mismatch rate in unlabeled RNA was infered from the
0 h samples in each protocol.

To obtain estimates of decay rates from GRAND-SLAM for
matched subsets of time points, we use the approximate poste-
rior beta densities for proportion parameters measured at time
points 1, 2, 4 and 8 h (and similarly for early, intermediate
and late time points, as described above). Solving Eq. (4), and
setting the initial abundance to zero for newly synthesized RNA
(labeled) and to the steady state for pre-existing RNA (unlabeled),
we can derive an expression for the ratio of new to total RNA

NTR(δ) = mlabeled

mlabeled + munlabeled
= 1 − e−δt. (11)
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We used Eq. (11) to estimate the decay rate δ from the output
of GRAND-SLAM. Assuming that the proportion of new and
old RNA for gene g is a beta distributed random variable with
shape parameters α and β, and probability density function
bg(NTR; α, β), then the distribution of the transformed random
variable is

bg(NTR(δ); α, β)
dNTR

dδ
= t

B(α, β)
(1 − e−δt)α−1e−βδt. (12)

The output of GRAND-SLAM provides these approximate beta
posterior densities (αi, βi) measured at times ti. We can then find
the MAP estimator for the decay rate δ by maximising

l(δ) =
∑

i

(αi − 1) log(1 − e−δti ) − βiδti (13)

for any subset of time points, where i ⊆ {1, 2, 4, 8}. We estimated
the 95% CIs for δ as described above using the profile-likelihood
method; however, in this case, there was only one parameter.

Statistical and comparative analyses

All correlations were reported using the Pearson’s correlation
coefficient. To determine the overlap between the different
genes sets, we adapted and used functions from the R package
UpSetR v1.4.0 [36]. To compare selected genes sets, significance
was measured using Mann–Whitney U-test (two-sided), at a
threshold of ∗ ≤ 0.05 (∗∗∗∗ ≤ 0.0001). GO enrichment to assign
functional annotation to selected genes sets was performed
with topGO v2.34.0 [37]. The universe of genes consisted of all
annotated genes with median (across protocols) mean count
(across samples) >50, using the featureCount tables, which was
the most extensive. The overlap O between CIs was determined
as follows:

Omin = max
(
lower boundERCC, lower boundj

)
(14)

Omax = min
(
upper boundERCC, upper boundj

)
, (15)

where j = SLAM, TLS, TUC. With this definition, there is no
overlap, e.g. if the maximum lower bound is greater than the
minimum upper bound.

Key Points
• 4sU-tagging metabolic labeling methods include bio-

chemical enrichment after thiol-specific biotinylation,
and recent approaches such as SLAM-seq, TimeLapse-
seq or TUC-seq that rely on bioinformatic enrichment
of newly transcribed RNAs.

• To infer genome-wide kinetics of RNA abundance
remains a challenging task, and there is currently
no general solution allowing to incorporate high-
throughput sequencing data from both biochemical
and bioinformatic enrichment protocols.

• We propose an open-source computational workflow
to compare rate estimates from all protocols, provid-
ing decay rates and confidence intervals using two
different bioinformatics tools, including our proposed
workflow, through a detailed practical comparison.

• We benchmark for the first time all these RNA label-
ing protocols, demonstrating a comparable conversion
efficiency and a high inter-method reliability.

• We provide data and resources to advance repro-
ducible research.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

Data and software availability

Sequencing data for MCF-7 cells for all four protocols used
in this study are available at NCBI’s Sequence Read Archive
through the BioProject accession number PRJNA726397. The
pulseR source code is available at https://github.com/diete
rich-lab/pulseR under the GPL-3 license. All scripts used in
the analysis presented in this study, data used for the figures
as well as results generated with pulseR and GRAND-SLAM
are available at https://github.com/dieterich-lab/Compariso
nOfMetabolicLabeling.
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