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Amorphous CuO is considered as an excellent cocatalyst, owing to its large surface area
and superior conductivity compared with its crystalline counterpart. The current work
demonstrates a facile method to prepare amorphous CuO, which is grown on the surface
of graphitic carbon nitride (g-C3N4) and is then applied for the photocatalytic degradation
of tetracycline hydrochloride. The prepared CuO/g-C3N4 composite shows higher
photocatalytic activities compared with bare g-C3N4. Efficient charge transfer between
g-C3N4 and CuO is confirmed by the photocurrent response spectra and
photoluminescence spectra. This work provides a facile approach to prepare low-cost
composites for the photocatalytic degradation of antibiotics to safeguard the environment.
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INTRODUCTION

The release of a great deal of different refractory antibiotics applied for the diseases of animal therapy,
as well as for crop production into the natural water bodies by municipal and pharmaceutical
industries, is considered to be a concerning issue over the past few years. The incomplete metabolism
of antibiotics results in the excessive accumulation of these compounds in the ground and on the
surface of water bodies to cause strong drug toxicity and reduces the efficiency of life-saving
medicines. Their long persistence in ground water has led to the generation of serious antibiotic-
resistant microbiota, which is a major threat to human existence. Therefore, it is extremely important
to dispose these antibiotics from the bodies of ground water before they cause severe damage to
human beings and aquatic animals.

Traditional methods used for removing pollutants and antibiotics are no longer effective to ensure
the safety of water. Photocatalysis (Yan et al., 2020a; Yan et al., 2020b; Zhang H. et al., 2021; Li et al.,
2021; Zhu et al., 2021), a green technology has recently shown exceptional performance in the
photodegradation of a large number of organic pollutants (Khaledian et al., 2019; Liu et al., 2019; Yan
et al., 2019; Gholami et al., 2020; Zhang et al., 2020). As a polymeric semiconductor photocatalyst,
graphitic carbon nitride (g-C3N4) has shown outstanding performance and is widely favored due to
its low toxicity, high chemical and thermal stability, and low-cost precursor materials (Wen et al.,
2017a; Qi et al., 2020b; Di et al., 2020; Shi et al., 2020; Wu et al., 2020). Its moderate band gap and
suitable conduction band (CB) and valance band (VB) positions are extremely important to produce
highly active reactive oxygen species (ROS) under solar light irradiation for the effective removal of
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antibiotics from water (Zada et al., 2020). However, its low
utilization of sunlight and high charge recombination
characteristics are responsible for its low photocatalytic activity
and low removal efficiency of organic pollutants (Hao et al., 2020;
Wang et al., 2021). It is urgently needed to introduce the
photocatalysts with improved photocatalytic activity to address
water pollution.

Transition metal oxides are extremely promising materials for
semiconductor photocatalysts (Zhang G. et al., 2021; Shan et al.,
2021). Especially, CuO is very important due to its high
abundance, low cost, non-toxic property, high intrinsic
thermal safety, and environmental benignity. CuO is a p-type
semiconductor with a narrow band gap between 1.2 and 1.5 eV
(Liu et al., 2014). It has received much attention for its extensive
applications in gas sensors, solar photovoltaics, and as a
heterogeneous catalyst. It is well known that amorphous metal
oxides or metal sulfides are superior to their crystalline
counterparts as they possess the advantage of lower synthesis
temperature, simpler synthesis process, and larger specific area.
Moreover, a number of previous studies have highlighted its
excellent hole/electron mobility in comparison to its crystalline
counterpart, such as amorphous MoSx, NiS, Co3O4, etc. (Yuan
et al., 2015; Wen et al., 2017b; Yu et al., 2019). Amorphous
materials are considered to possess excellent redox centers in bulk
on the surface to process highly efficient photocatalysis compared
with its crystalline form. Although the band gap of amorphous
CuO is slightly larger than that of the crystalline CuO, its excellent
charge conductivity and superior surface area play an extremely
positive role in the photocatalytic processes (Huang et al., 2015).
Thus, it is of much interest to fabricate composite photocatalysts
with amorphous CuO as cocatalyst for improving the
performance of photocatalysis.

In this work, a photocatalyst composed of amorphous CuO
and g-C3N4 was fabricated utilizing a facile method, which
involved heating melamine in a muffle furnace and then
growing different mass percent ratios of amorphous CuO. The
fabricated samples showed enhanced photodegradation activities
for the removal of tetracycline hydrochloride antibiotics. The
improved photocatalytic performance of CuO/g-C3N4 was
attributed to the extended visible light absorption and
enhanced charge separation after the growth of amorphous
CuO as cocatalysts on the surface of g-C3N4. Finally, a
possible photocatalytic mechanism was proposed based on the
experimental results. This work provides an effective method for
the design of a high-efficiency photocatalyst using amorphous
cocatalysts.

EXPERIMENTAL SECTION

Synthesis
For the preparation of g-C3N4, 20 g of melamine was ground and
transferred to a 100-ml crucible. The crucible was closed and
heated in a muffle furnace at 520°C for 4 h at the rate of 2°C/min.
The amorphous CuO with different mass percentage ratios was
grown on the surface of g-C3N4 by dispersing 0.21 g of g-C3N4 in
20 ml of solvent (10 ml of ethanol and 10 ml of water) under

vigorous stirring for 30 min. A given mass of Cu(NO3)2·H2O was
added, and stirring continued for another 30 min. Two milliliters
of ammonia was added to the mixture, and the mixture was then
placed in a stainless steel autoclave at 120°C for 4 h. The naturally
cooled mixture was centrifuged and washed three times with
distilled water to remove any impurities. It was then dried at 80°C
in an oven overnight and calcined at 200°C for 1 h. The samples
were represented as X%-CuO/g-C3N4 where “X%” stands for the
percentage of amorphous CuO in the mixture.

Characterization
The crystal structure of the fabricated samples was examined by
x-ray diffraction (XRD) utilizing the Bruker D8 Advance
Diffractometer with Cu-Kα radiation. The Fourier transform
infrared (FT-IR) spectra were obtained utilizing the Nicolet
Magna 560 spectrophotometer to investigate the functional
groups. ESCALAB MKII x-ray photoelectron spectrometer
with Mg-Kα radiation was employed to evaluate the chemical
states of the elements, and the binding energies were calibrated
with the binding energy of the adventitious carbon. Transmission
electron microscopic (TEM) images of the samples were acquired
with JEM-2010 apparatus. The ultraviolet-visible diffused
reflectance spectra (UV-vis DRS) were measured with UV-
3600, Shimadzu spectrophotometer with an integrating sphere
attachment. The photoelectrochemical study was conducted with
an IVIUM V13806 electrochemical workstation.

Evaluation of Photocatalytic Performance
The photocatalytic activities of the different samples were
evaluated from the photodegradation of tetracycline
hydrochloride antibiotics. Fifty milligrams of the given
antibiotic was dissolved in 1,000 ml of water. Fifty millilters of
the respective solution was placed into a photochemical reactor
made of quartz and mixed with 0.2 g photocatalyst. The mixture
was first stirred in the dark for 30 min to attain adsorption/

FIGURE 1 | X-ray diffraction (XRD) patterns of graphitic carbon nitride
(g-C3N4) and CuO/g-C3N4 samples.
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desorption equilibrium between the adsorbed and unadsorbed
antibiotic molecules. It was then illuminated with a 500-W Xe
lamp for 2 h at a wavelength of over 365 nm. After every interval
of 20 min, 5 ml of the liquid portion was centrifuged, and the
concentration of the antibiotics was examined with a UV-Vis
spectrophotometer (UV-3600, Shimadzu) at 357-nm wavelength.
The photoluminescence (PL) spectra were obtained by a Varian
Cary Eclipse spectrometer.

RESULTS AND DISCUSSION

X-Ray Diffraction Analysis
The XRD patterns of the as-prepared samples are given in
Figure 1. The g-C3N4 has two characteristic diffraction peaks,
one at 13.02° and the other at 27.3°, which agrees well with the
standard pattern of g-C3N4 (JCPDS87-1,526) (Yang et al., 2013).
The peak at 13.02° is due to the inter-planar staking units of the
aromatic system in conjugation, and the peak at 27.3° is due to the
inter-layer structural packing units (Qi et al., 2019d; Qi et al.,
2020a). These peaks are indexed to (100) and (002) crystal planes
corresponding to a distance of 0.675 and 0.324 nm, respectively
(Li et al., 2014; Qi et al., 2019c). After growing CuO on g-C3N4, no
obvious peak of CuO was detected, indicating its amorphous
nature. The intensity of the inter-planar staking peak of g-C3N4

has been reduced slightly, which shows the uniform distribution
of amorphous CuO on the surface of g-C3N4.

Ultraviolet-Visible Diffused Reflectance
Spectra Analysis
The light absorption properties of the samples were investigated
by UV-Vis DRS (Figure 2). The g-C3N4 absorbs the light photons
with a wavelength of 470 nm and gives a direct band gap of
2.64 eV, which is consistent with the previous report (Ong et al.,
2015; Qi et al., 2021). CuO has a narrow band gap of lower than
1.5 eV, which means a strong visible light absorption ability
(Verma et al., 2019). When amorphous CuO was grown on

the surface of g-C3N4, the light absorption was slightly
increased, and the absorption wavelength was shifted slightly
toward the higher wavelength side. Compared with g-C3N4, the
absorption edge of 7%-CuO/g-C3N4 was shifted to 479 nm at
2.59 eV. The red shift results from the mixing of the electron
orbitals of CuO and g-C3N4. The 7%-CuO/g-C3N4 sample shows
a broad shoulder peak ranging from 600 to 800 nm because of the
d-d transition between the energy levels of Cu2p orbital (Qi et al.,
2020c). The above result concludes that CuO has been
successfully loaded on the surface of g-C3N4. The light
absorption property of g-C3N4 has been increased after the
loading of CuO. Thus, more visible light photons can be
utilized by CuO/g-C3N4 for enhanced photoactivity.

Transmission Electron Microscopy Analysis
TEM measurement is an effective method to study the structural
properties of 7%-CuO/g-C3N4. Figure 3A presents the TEM
image of 7%-CuO/g-C3N4 with thin multilayered structures.
When CuO was grown on its surface, the layered structure of
g-C3N4 still persisted, and its morphology showed no detectable
changes due to a low synthesis temperature approach
(Figure 3B). The absence of the lattice fringes of CuO in the
composite is an indication that CuO is amorphous. The elemental
mapping of the sample suggests the presence of C, N, O, and Cu
in the composite. The distribution of both Cu and O shows that
these elements are uniformly and homogeneously grown on the
surface of g-C3N4, as shown in Figures 3C–G. EDS spectrum
(Figure 4) demonstrates that C, N, Cu, and O elements are evenly
distributed on the 7%-CuO/g-C3N4 sample. Additionally, the
existence of CuO was further verified with EDS spectra.

Fourier Transform-Infrared Analysis
The FT-IR spectra were obtained to investigate the functional
groups in the fabricated samples, and the results are shown in
Figure 5. The peak at 802 cm−1 is attributed to the breathing
mode of triazine rings of g-C3N4 (Zhu et al., 2017; Huo et al.,
2019). The FT-IR peaks between 1,231 and 1,620 cm−1 are
accredited to the C-N stretching mode of the aromatic ring,

FIGURE 2 | Ultraviolet-visible diffused reflectance spectra (UV-Vis DRS) of g-C3N4 and 7%-CuO/g-C3N4 samples.
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and these originate from C≡N stretching modes (Dai et al., 2014;
Li et al., 2017). A broader peak at 3,121 cm−1 is attributed to the
stretching vibrational mode of the –NH group of the aromatic

ring (Cao et al., 2017; Qi et al., 2020d). These peaks are slightly
reduced in their intensities when amorphous CuO was grown on
g-C3N4. The FT-IR results indicate that the structure of g-C3N4

FIGURE 3 | (A) Transmission electron microscopy (TEM) and (B) HRTEM images of 7-%CuO/g-C3N4, and (C–G) corresponding elemental mapping showing the
distribution of C, N, Cu, and O.

FIGURE 4 | EDS spectrum of 7-%CuO/g-C3N4.
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remained unchanged after the loading of CuO. This means that
CuO has been well combined with g-C3N4, which is consistent
with the XRD result.

The surface chemical states of the elements in the
composite were determined by XPS measurement. The XPS
results demonstrate that the 7%-CuO/g-C3N4 sample contains
C, N, Cu, and O elements as shown in Figure 6A. High-
resolution XPS spectrum of carbon is shown in Figure 6B.
Carbon shows two binding energy peaks at 284.6 and
287.6 eV, which are attributed to the sp2-hybridized
C-atom bonded to the N-atom of the aromatic ring and
NH2 group, respectively (Hayat et al., 2019; Wu et al.,
2015). The binding energy peaks of the N-atom are located
at 398.2, 400.1, and 403.8 eV (Figure 6C). The former two
peaks are due to the C�N-C and N-(C)3, respectively, while
the last peak is attributed to the π–π* satellite (Lin et al., 2015;
Qi et al., 2019a). The binding energy peak at 932.6 eV with a
satellite peak at 942.8 eV is attributed to the Cu2p3/2, and the
peak at 952.6 eV with a satellite peak at 962.8 eV is due to the
Cu2p1/2 of Cu2p (Figure 6D) (Shen et al., 2018). The XPS
peaks of the O-atom are located at 530.4, 531.3, and 532.4 eV
(Figure 6E), which are attributed to the O-atom of the crystal
lattice of CuO and O-atom of adsorbed water molecules,
respectively (Qi et al., 2018). The obtained XPS data
indicate that CuO has been effectively coupled with g-C3N4.

Photocatalytic Activity
The photocatalytic activities of the as-prepared CuO/g-C3N4

composites were evaluated by selecting tetracycline hydrochloride
antibiotic for degradation under the irradiation from simulated
solar light (λ > 365 nm). From Figure 7A, the photocatalytic
activity of g-C3N4 is very low due to poor charge separation.
When amorphous CuO was grown on the surface of g-C3N4, the
photocatalytic activities were improved, and the degradation efficiency
increased as the amount of CuO increased. After reaction for 60min,
the degradation of tetracycline hydrochloride is 24% for g-C3N4 and

55% for 7%-CuO/g-C3N4. The apparent reaction rate constant (k) is
calculated in the photocatalytic degradation of tetracycline
hydrochloride (Figure 7B). The kinetic constant of 7%-CuO/
g-C3N4 (0.014min−1) is almost three times higher than that of
g-C3N4 (0.005min−1). The improved photocatalytic activity is
related to the extended visible light absorption and improved
charge separation due to the introduction of amorphous CuO
on the surface of g-C3N4. Another important role of CuO is
acting as an oxidation cocatalyst, which promotes the
separation and transport of holes and improves the oxidation
ability of the photocatalyst.

Electrochemical Analysis
The measurement of transient photocurrent against time during
photoelectrochemical measurement was used to study the charge
separation for photocatalysis. The photocatalysts were deposited
on the surface of indium-doped tin oxide glass and were used as
the working electrode, while Ag/AgCl and platinum were used as
the reference electrode and counter electrode, respectively. The
electrolyte solution was composed of 0.1 M KCl. The greatly
improved photocatalytic activity of the optimized 7%-CuO/
g-C3N4 sample was attributed to the excellent charge
separation in the given composite. The photocurrent response
spectra were obtained, as shown in Figure 8. The 7%-CuO/
g-C3N4 shows enhanced photocurrent compared with pure
g-C3N4, which suggests that charge recombination has been
quenched in the given sample to impart excellent
photocatalytic activity. The photocurrent response spectra
show that the interface of amorphous CuO and g-C3N4 favors
the charge transfer and separation in the composite, indicating its
important role in the photocatalytic process.

Photoluminescence Analysis
In order to show the enhanced charge separation in the
fabricated CuO/g-C3N4 composite, PL spectra were obtained,
as shown in Figure 9. As can be observed, an emission peak of
g-C3N4 is located at 460 nm, which agrees with the previous
results (Liu and Ma, 2020; Zhang M. et al., 2021). The intensity
of PL peak is high in case of g-C3N4, which shows poor charge
separation. However, when amorphous CuO was grown over
g-C3N4, the PL intensity was significantly reduced. Since the PL
peak is low, charge separation is high (Lu et al., 2017; Qi et al.,
2019b). The lower PL signal shown by the 7%-CuO/g-C3N4

composite is due to the adsorption of amorphous CuO on
g-C3N4 surface that extends the internal charge
transformation and decreases the charge recombination
between the excited e– and h+. This has increased the lifetime
of working charges to result in increased reaction time. It is
concluded that the optimized composite is suitable for
enhancing the photocatalytic degradation of antibiotics due
to an enhanced charge separation.

Photocatalytic Mechanism
The photocatalytic degradation of antibiotics over amorphous
CuO-coupled g-C3N4 has been discussed in detail. The charge
separation and transformation are illustrated in Figure 10. When
irradiated with light, the electrons are promoted to the CB of

FIGURE 5 | Fourier transform-infrared (FT-IR) spectra of g-C3N4 and
7%-CuO/g-C3N4 samples.
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FIGURE 6 | X-ray photoelectron spectroscopy (XPS) spectra of 7%-CuO/g-C3N4: survey scan (A), C1s (B), N1s (C), Cu2p (D), and O1s (E).

FIGURE 7 | Photoactivities for the decomposition of tetracycline hydrochloride using g-C3N4 and CuO/g-C3N4 as photocatalysts.
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g-C3N4, leaving positive holes in the VB. The generated electrons
in the CB easily transfer to the g-C3N4 surface, in which the
electrons can reduce the adsorbed O2 molecules to form super
oxide anions (•O2−), which either directly reacts with antibiotic
molecules. At the side of the VB, when p-type semiconductor
CuO was closely attached on the n-type semiconductor of
g-C3N4, the p–n junction was formed at the interface of CuO
and g-C3N4 (Belaissa et al., 2016; Hua et al., 2019). Thus, the inner
electric field in the p–n junction promotes the transfer of holes
from the VB of g-C3N4 to CuO, and these holes oxidize the water
to produce hydroxyl radicals (•OH) to degrade the antibiotics.
Thus, the CuO/g-C3N4 composite shows an improved
photocatalytic performance for the decomposition of organic
pollutants.

CONCLUSION

In conclusion, the amorphous CuO with excellent charge
conductivity was loaded on the surface of g-C3N4 to form a
composite and then applied for the photodegradation of
tetracycline hydrochloride antibiotic. The prepared CuO/g-C3N4

composites show enhanced photocatalytic activities compared with
the bare g-C3N4. It has been found that the g-C3N4 loaded with
CuO shows the considerably positive effect for charge transfer in
the composites. This work provides a facile and feasible approach
for the preparation of low-cost composites for the photocatalytic
degradation of antibiotics to safeguard our environment.
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