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Abstract: High concentrations of potentially toxic elements (PTE) create global environmental stress
due to the crucial threat of their impacts on the environment and human health. Therefore, determin-
ing the concentration levels of PTE and improving their prediction accuracy by sampling optimization
strategy is necessary for making sustainable environmental decisions. The concentrations of five
PTEs (Pb, Cd, Cr, Cu, and Zn) were compared with reference values for Shanghai and China. The
prediction of PTE in soil was undertaken using a geostatistical and spatial simulated annealing
algorithm. Compared to Shanghai’s background values, the five PTE mean concentrations are much
higher, except for Cd and Cr. However, all measured values exceeded the reference values for China.
Pb, Cu, and Zn levels were 1.45, 1.20, and 1.56 times the background value of Shanghai, respectively,
and 1.57, 1.66, 1.91 times the background values in China, respectively. The optimization approach
resulted in an increased prediction accuracy (22.4% higher) for non-sampled locations compared
to the initial sampling design. The higher concentration of PTE compared to background values
indicates a soil pollution issue in the study area. The optimization approach allows a soil pollution
map to be generated without deleting or adding additional monitoring points. This approach is also
crucial for filling the sampling strategy gap.

Keywords: background value; concentration; prediction accuracy; soil pollution; optimization

1. Introduction

The quality of the urban ecosystem depends on the green space soil quality. Soil
quality refers to the soil’s ability to ensure biological productivity, maintain environmental
quality, and promote organism health functions within the limit of ecosystems [1]. Rapid
urbanization, industrialization [2] and greenery development will affect the soil quality in
urban areas [3]. Therefore, urban areas become the sources of various pollutant elements
that can be accumulated for an extended period of time in the soil [4–6]. Studies on the
concentrations of potentially toxic elements (PTE) in urban soils, previously known as
heavy metals, started in the 1960s and identified massive heavy metals sources of urban
soil pollution [4,5]. The origins of PTE in urban soils are natural and anthropogenic.
The pedogenesis processes are considered the natural source of PTE in the soil [7]. The
anthropogenic factors are the crucial sources of PTE in soils and predominantly result
from urban development and urbanization [8], the distribution of vehicles and the types
of fuels [9], emission from industries and transportation [10], smelting, manufacturing,
mining, and coal-burning [11]. Based on these factors, urban soils are enriched with a high
level of PTE compared to threshold values [12–14].

Numerous studies about PTE in urban soils have been conducted in many cities
around the world, including Glasgow [15], London [16], Hong Kong [17], New Orleans [18],
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and Oslo [19]. To date, studies on urban areas in North Pakistan [2], Brazilian Amazon [20],
South-central Poland [21], Southwest Iran [22], Eastern China [23], Istanbul Turkey [24],
Xiangtan Central China [25], and Krakow Poland [26]. These studies showed increased
concentrations of PTE in urban soils. High concentrations of PTE, especially in green
space soils, create global environmental stress due to the crucial threat to the environment
and human health [27]. High concentrations of PTE in the environment are a concern
due to their toxicity, persistence, and bioaccumulation, which threaten the health of all
living systems [28]. For example, PTE in soil affects the key microbial processes, decreases
soil microorganism diversity and activity [29], and impacts the food chain systems in
the environment [30]. Health issues associated with PTE are associated with respiration,
hand-mouth ingestion, and direct skin contact [31]. Excessive intake can lead to digestive
disorders, respiratory diseases, abdominal pain, vomiting, anorexia, burnout, hemolysis,
liver, and gallbladder damage [30]. Since urban green spaces are places where local
populations can rest, play, and socialize, they often serve as family gathering sites after
work [32]. These may favor contact with soil contaminants. Many previous studies focused
on industrial areas and zones. Recently, the evaluation of PTE has become a high priority in
urban greening space soils [33]. Furthermore, many authors are concerned about analyzing
the total contents of PTE compared with background values to evaluate the environmental
quality [31,34]. Nevertheless, the analysis of the total concentrations of PTE, compared with
threshold values in the soil, may not always be a sufficient strategy for assessment [35–37],
and in identifying appropriate remediation strategies [38].

Monitoring PTE concentrations with improved prediction accuracy through an op-
timization strategy is necessary for obtaining reliable results in surveying soil pollution
and making sustainable environmental decisions on urban green spaces. Optimization
is the process of selecting the optimal sample points and layouts based on the distance
between the observation points and the interpolation grid [39]. One useful method using
geostatistical tools for sampling design and predicting concentrations of soil pollution
is kriging. Kriging not only provides an interpolated concentration map, but it is also
useful in linking the prediction variance [40]. Minimizing the mean kriging variance as
the objective function is used to optimize the sampling scheme and produce a space-filling
distribution over the area of interest [41,42]. This optimization ensures the prediction of
soil pollution and fills the sampling strategy gap by perpetuating limited sampling points,
without deleting and adding monitoring points using spatial simulated annealing (SSA)
algorithm. Such optimization and improved sampling design [39,41,43] are very useful,
since no standardized approaches exist for choosing sample size and locations for soil and
air pollution [44].

The main objectives of this work were as follows: (i) Evaluate the concentration levels
of five PTE (copper (Cu), zinc (Zn), cadmium (Cd), chromium (Cr), and lead (Pb)) in green
space soil; (ii) improve the prediction accuracy of the initial sampling design using an
optimization strategy, and showing methodological approaches how to generate of soil
pollution map without the extra expense. Since the pre-survey launched before found
that the urban green soils were mainly dominated by these five elements. The Shanghai
municipality started to focused on: (1) Investigating the contamination situation and
sources differentiation of the five PTE on greens spaces soils, (2) managing and reducing
soil pollution risks on urban parks [45].

2. Materials and Methods
2.1. Study Area

The study is conducted in Shanghai, one of China’s most highly developed and
densely populated cities. It is located at 31.14◦ N and 121.29◦ E (Figure 1). Shanghai is
one of the most extensive coastal cities in eastern China, which plays a crucial role in its
main economic, financial, trade, and shipping center, with the most important industrial
centers in China. The town covers about 6340.5 km2, of which 6218.65 km2 is the land, and
the rest is water, and it covers 0.06% of China’s total territory [46]. The soil types mainly



Int. J. Environ. Res. Public Health 2021, 18, 4820 3 of 14

include paddy soil, fluvial-aquic soil, and coastal saline soil [46]. The entire green spaces
in 2015 were about 3593.5 km2 [47]. The city has characterized the subtropical monsoon
climate, with an annual mean temperature of 16 ◦C and yearly average precipitation is
approximately 1200 mm.
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2.2. Soil Sampling and Chemical Analysis

A total of 460 surface soil (0–20 cm) samples were collected from different green spaces
in 2018. The locations were recorded using a global positioning system (GPS) and displayed
in Figure 1. Five random soil samples were collected using a soil corer (2.5 cm diameter)
and then pooled into one composite sample. The composite samples were air-dried, cleared
of visible plant roots and residues. In order to ensure the complete digestion of soil samples,
the air-dried soils were ground and passed through a 0.15 mm nylon mesh sieve. For each
sample, 0.5 g of soil was digested with a concentrated mixture of HNO3, HF, and HClO4 as
stated in the EPA 3052 method [48]. Mixed acid digestion makes the soil digestion more
complete. Therefore, compared with the aqua regia digestion, the result of mixed acid
digestion becomes higher, which is closer to the actual concentrations of PTE in the soil.
The five PTE, including Cu, Zn, Cd, Cr, and Pb contents, were measured using Inductively
Coupled Plasma Mass Spectrometry (ICP-MS, NexION 300X, Spectralab Scientific Inc.
Markham, ON L3R 3V6, Canada). The limit of detection (LOD) and limit of quantification
(LOQ) for the different metals were determined. The LOD for analysis of Cr, Cu, Zn, Cd,
and Pb were 0.47 mg kg−1, 0.25 mg kg−1, 0.70 mg kg−1, 0.01 mg kg−1, and 0.30 mg kg−1,
respectively. The LOQ of the above five PTE was four times their respective LOD. Certified
soils (GSS series, China) were used as standard reference materials to verify the accuracy
of the method, and the recovery rate of all measured PTE was 95–105%. All tested glass
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and blanks were soaked in HNO3, rinsed, and Milli-Q water to prevent contamination of
the testing instrument.

2.3. Geostatistical Methods

Geostatistics is an extension tool in GIS that describes the spatial variation and carries
out spatial interpolations [49]. The semivariance function and the kriging interpolations
were used to produce the initial interpolation map on green spaces soil [50].

Semivariogram is equal to one-half of the expected value of the squared differences
between values of X at locations (i) and (i + h) [51],

γ(h) =
1

2m(h) ∑m(h)
i=1 [Z(xi)− Z(xi + h)]2 (1)

where m(h) is the number of pairs of observations separated by distance h, Z(xi) is the
sample value of the variable Z at location xi, and Z(xi + h) is the sample value of the
variable Z at location xi + h.

The ordinary Kriging interpolation is one of the most frequently used geostatistics
tools to estimate unknown values using the sample data [52],

ẑ(x0) =
n

∑
i=0

yiz(xi) (2)

where ẑ(x0) is the value to be estimated at the location of x0; and z(xi) is the known value
at the sampling site xi; yi represents constant values of each local neighborhood. While, n
represents the number of sites or sampling points within the search neighborhoods used
for the estimation.

The existing monitoring points were visualized and analyzed using exploratory spatial
data analysis (ESDA) tools. ESDA was used to assess the degree of spatial association and
examine how the data are normally distributed [53,54]. The spatial clusters and outliers
of existing data sets were identified using Local Moran’s I [55] and Global Moran’s I
statistic [56].

2.4. Prediction Accuracy Improvement Procedures

The prediction accuracy improvements can normally be achieved by optimizing
sample locations over the geographical areas [57]. Optimization usually consists of adding,
removing, and moving stations or sampling points [58]. One of the optimization algorithms
used to add, remove, and transfer stations to generate optimized sampling sizes and
designs is called SSA [42]. The SSA algorithm uses the mean kriging variance (MKV) as the
objective function to obtain an optimal sample layout. In this case, the initial design was
optimized by moving existing spatial points to the given study surface areas using soil Pb
data as an example. Sample optimization by SSA also considers the kriging prediction and
fitting variogram models [59]. Then, data were log-transformed before spatial optimization
analysis was undertaken. The detailed optimization and evaluation techniques were
explained as follows.

Perturb Initial Sampling Design by SSA and Evaluations

A 100 m × 100 m grid size overlaid on the study greens spaces areas, and an initial
(before optimized) kriging soil Pb predictions and MKV were produced. Then, 50 to
200 random existing sample points were perturbed using 10,000 times iterations by the
SSA algorithm. A new combination is generated, and the MKV values are compared
with the initial sampling layout’s value. The combination is accepted if the change has
improved the MKV values. The maximum perturbed sampling points were decided based
on the improved MKV values. The process continued until the prediction variance became
constant or higher. The best-improved MKV combination was chosen, and a kriging
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prediction map and sampling distributions were generated. Finally, to evaluate prediction
accuracy improvement, cross-validations were performed.

2.5. Statistical Analysis Software and Tools

Spatial sampling optimization and descriptive statistics were performed using the R
Statistical Software (version 4.0.2) [60,61]. The spatial clusters and outliers of existing data
sets were analyzed using the software GeoDa (version 1.14.0) [62]. Arc GIS (10.4 version) is
also used to produce the kriging prediction maps.

3. Results and Discussion
3.1. Mean Concentrations and Summary Statistics of Potentially Toxic Elements

The summary statistics and mean concentration of the five PTE in urban green space
soils are indicated in Table 1. The highest and lowest mean concentrations were found
for Zn, and Cd, respectively. The soil mean background values in Shanghai [63] and
China [64] are used as reference values to compare the present study’s values. Compared to
Shanghai’s background values, the mean concentrations of PTE in urban green spaces soil
are much higher, except for Cd and Cr. All measured mean values exceed China’s reference
values (Table 1). Pb, Cu, and Zn concentrations were 1.45, 1.20, 1.56 times the background
value of Shanghai, respectively, and 1.57, 1.66, 1.91 times the mean background values in
China. The higher values of PTE in the soil in comparison to background values indicate
there is a soil pollution issue in the study areas.

Table 1. Description statistics of PTE in urban green spaces soil (mg kg−1).

PTE Mean Median Range
Values SD CV (%) Background Values

of Shanghai *
Background Values

of China **

Pb 36.96 31.70 13.41–175.8 20.20 54.66 25.47 23.50
Cu 34.41 30.27 10.09–225.4 19.04 55.32 28.59 20.70
Zn 130.3 113.6 49.15–1098 84.83 65.10 83.68 68.00
Cr 73.09 73.20 38.24–143.2 10.76 14.73 75.00 57.30
Cd 0.21 0.17 0.06–3.68 0.21 100.50 0.13 0.08

* [63], ** [64], CV = Coefficients of variation, SD = Standard Deviation. PTE = potentially toxic elements.

Similarly, the coefficients of variation (CV, %) for Pb, Cu, Zn, and Cd were higher,
meaning more significant variations among the urban green spaces soils (Table 1). The
high CV of Pb, Cu, Zn, and Cd suggests soil pollution sources in urban green spaces are
from anthropogenic sources [65]. On the contrary, the Cr CV is low, which means both
natural and anthropogenic factors govern its spatial distribution. The lower CV value of
Cr is consistent with many other studies [66–68].

The present study is consistent with the previous findings on the park and roadside
green spaces in Shanghai [69], but inconsistent with results found on road-greenbelts,
except for Pb [70]. The average values of Zn and Cr were significantly higher than the
values reported in the western city of Urumqi in China [71]. The mean concentrations of
the majority of the five pollutants considered in our study were lower than those found in
studies that reported about ten years ago in roadside soil, dust, and sediment in eastern
cities in China, including Shanghai [46], Guangzhou [72], and Hangzhou [73] (Table 2).
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Table 2. PTE mean concentrations level (mg kg−1) of sampling of global urban green space areas.

Study Areas Pb Cu Zn Cr Cd Reference

Parks of Seville, Spain 161.0 72.00 210.0 75.00 - [74]
Mexico City, Mexico 82.00 54.00 219.0 - 116.0 [75]
Konya Park, Turkey 289.4 427.4 289.8 14.0 21.0 [76]
Stockholm, Sweden 104.0 47.0 157.0 27.0 0.43 [77]

Tunas City, Cuba 42.0 94.0 199.0 97.0 - [78]
Pensacola, USA 23.98 6.26 33.22 9.01 0.13 [79]
Urumqi, China 43.22 42.54 94.79 30.97 0.71 [71]

Guangzhou, China 240.0 176.0 586.0 78.8 2.41 [72]
Hangzhou, China 202.1 116.0 321.4 51.25 1.59 [73]
Shanghai, China 70.69 59.25 301.4 107.9 0.52 [46]
Shanghai, China 36.96 34.40 130.3 73.09 0.21 This study

Note: - = not data available. PTE = potentially toxic elements.

Compared to the average concentrations in worldwide studies, Pb, Cu, and Zn values
of our study were much lower than reported values from Spain, Mexico, Turkey, Sweden,
and Cuba, but Cr concentration was much higher than the study from Turkey and Sweden
(Table 2). In this study, the Cr concentration value was 2.7 and 5.2 times higher than the
concentrations values found from Sweden, and Turkey, respectively (Table 2). For all
investigated pollutants, the mean concentration values were higher than those observed in
the City of Pensacola, USA (Table 2). The differences in results between this study and other
studies could be due to the test method, level of urbanization in the city, the management
strategies on urban green space soils [8], and the sources for variation of PTE [7], such as
emissions from industry and transportation [10], smelting, manufacturing, mining, and
coal-burning [11].

3.2. Optimization Strategy and Evaluation of Existing Monitoring Points

The spatial interpolation in kriging is undertaken by accounting for the following
assumptions [49]: (1) Data with a normal distribution, (2) data are stationary, and (3) data fit
a variogram and spatial autocorrelation. Prior to carrying out the optimization strategy and
the evaluation of prediction accuracy, these assumptions should be assessed and evaluated.

3.2.1. Spatial Patterns of Existing Monitoring Points

The spatial patterns and distribution of each PTE are shown in Table 3. All variables
revealed a clustered spatial distribution with a statistical significance (p value < 0.01) and a
positive spatial autocorrelation in the existing data sets. The most clustered positive spatial
autocorrelation pattern was observed for Pb and Cd (Table 3). Global Moran’s I Index
values confirmed that the spatial points are clustered and non-randomness. Similarly, the
kurtosis and skewness values for all pollutants, except Cr, were higher, which means the
data are not normally distributed (Table 3). The higher Kurtosis values showed many
outlier data sets, and the majority of them are clustered at relatively low values. However,
it does not state which spatial location features are spatial clustering [80]. Spatial outliers
or local outliers are neighboring values that are spatially located at a certain distance [81].
Local Indicators of Spatial Association (LISA), known as Anselin’s Local Moran’s I, were
used to visualize and identify the degree of spatial instability and outliers of the given
data set [55].
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Table 3. Global Moran’s I Summary of statics for an existing data set of PTE in green space areas.

Variables Moran’s I Variance Z-Score p-Value Distribution Skewness Kurtosis

Pb 0.159968 0.000312 9.178694 0.000000

Clustered

3.31 14.97
Cu 0.134803 0.000403 6.824677 0.000000 5.01 35.06
Zn 0.134243 0.00028 8.143643 0.000000 6.77 55.94
Cr 0.196636 0.000428 9.614280 0.000000 1.43 8.41
Cd 0.057502 0.000286 3.530263 0.000415 10.01 130.23

PTE = potentially toxic elements.

The results of univariate Local Moran’s I scatter plots of the four PTE in the soil
at 12905 m threshold distance divided into four association neighborhood layouts are
indicated in the supporting data files, Figure 1. The upper right quadrant (high values
above the mean surrounded by high values, HH), the lower left (low values surrounded
by low values, LL); the upper left (low values surrounded by high Values, LH); and
the lower right (high values surrounded by low values, HL). Spatial outlier values that
include HL and LH values and spatial clusters that include HH and LL values are also
indicated. For example, for soil Pb data sets, a 45 feature has neighboring features with
values above the mean surrounded by HH values, and one features surrounded by LL
values, which is the part of a cluster or pattern data set (Figure 2). In contrast, 19 data
points have nearby features with different values (low high and high low), and this feature
is a spatial outlier. Spatial outliers are the values that are different from the values recorded
in their surrounding location, while spatial patterns often exhibit spatial continuity and
autocorrelation with nearby samples [81]. These spatial outliers influence the spatial
structure modeling and prediction of soil pollutant concentrations in urban green spaces.
Therefore, the outliers were excluded, and data were transformed before the optimization
strategy was undertaken.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 15 
 

 

The results of univariate Local Moran’s I scatter plots of the four PTE in the soil at 
12905 m threshold distance divided into four association neighborhood layouts are in-
dicated in the supporting data files, Figure 1. The upper right quadrant (high values 
above the mean surrounded by high values, HH), the lower left (low values surrounded 
by low values, LL); the upper left (low values surrounded by high Values, LH); and the 
lower right (high values surrounded by low values, HL). Spatial outlier values that in-
clude HL and LH values and spatial clusters that include HH and LL values are also in-
dicated. For example, for soil Pb data sets, a 45 feature has neighboring features with 
values above the mean surrounded by HH values, and one features surrounded by LL 
values, which is the part of a cluster or pattern data set (Figure 2). In contrast, 19 data 
points have nearby features with different values (low high and high low), and this fea-
ture is a spatial outlier. Spatial outliers are the values that are different from the values 
recorded in their surrounding location, while spatial patterns often exhibit spatial con-
tinuity and autocorrelation with nearby samples [81]. These spatial outliers influence the 
spatial structure modeling and prediction of soil pollutant concentrations in urban green 
spaces. Therefore, the outliers were excluded, and data were transformed before the op-
timization strategy was undertaken.  

 
Figure 2. Univariate Local Moran’s I scatter plots at 12905 m threshold distance of soil Pb. 

3.2.2. Spatial Structures and Dependency  
The theoretical Semivariogram models are used to kriging interpolation and opti-

mizing the existing points. The best-fitting Semivariogram models were selected based 
on root mean square error (RMSE), average standard error (ASE), and root mean square 
standardized error (RMSSE) values, indicated in Table 4. The best-fitted model is con-
sidered to be the one with the smallest value of RMSE, the absolute values of mean errors 
near to zero, the mean square error (MSE) near zero, and the RMSSE closest to 1 [82]. 
Based on these criteria, the fitted semivariograms models for each soil element are 

Figure 2. Univariate Local Moran’s I scatter plots at 12,905 m threshold distance of soil Pb.



Int. J. Environ. Res. Public Health 2021, 18, 4820 8 of 14

3.2.2. Spatial Structures and Dependency

The theoretical Semivariogram models are used to kriging interpolation and optimiz-
ing the existing points. The best-fitting Semivariogram models were selected based on
root mean square error (RMSE), average standard error (ASE), and root mean square stan-
dardized error (RMSSE) values, indicated in Table 4. The best-fitted model is considered
to be the one with the smallest value of RMSE, the absolute values of mean errors near to
zero, the mean square error (MSE) near zero, and the RMSSE closest to 1 [82]. Based on
these criteria, the fitted semivariograms models for each soil element are summarized in
Table 5. The best-fit spatial model of Pb and Cr was spherical, whereas Zn and Cu were
best-fitted using the Gaussian model. The Cd was fitted with the exponential model. In the
semivariograms, the nugget values represent the variability of the measured variables at a
certain distance. The spatial dependence and variation of soil properties can be categorized
based on the Nugget/Sill ratio values. Suppose the Nugget/Sill ratio is less than 25%,
between 25% and 75%, and greater than 75%, the variable has strong, moderate, and
weak spatial dependence [83], respectively. All studied elements had a moderate-to-strong
spatial dependency, and fit the assumptions around spatial autocorrelation (Table 5). The
Nugget/Sill ratio also indicated predominant sources or soil PTE factors, either natural or
anthropogenic factors. Strong spatial dependence can be attributed to intrinsic factors, and
weak spatial dependence can be attributed to extrinsic factors [83].

Table 4. Kriging prediction errors of interpolation by the ordinary kriging method.

PTE Mean Error RMSE MSE ASE RMSSE

Pb 0.091 19.22 0.001 19.99 0.993
CU 0.295 18.52 0.009 18.93 1.120
Zn 0.422 81.35 0.002 104.43 0.828
Cr 0.004 9.89 −0.002 11.06 0.898
Cd 0.000 0.21 0.001 0.22 0.994

RMSE = root mean square error, RMSSE= root mean square standardized error, MSE = mean standardized error,
ASE = average standard error, PTE = potentially toxic elements.

Table 5. Theoretical fitting semivariograms models and spatial dependency.

PTE Model Nugget
(C0)

Partial Sill
(C)

Sill
(C0 + C) Range (m) Nugget Ratio %

C0/(C0 + C)
Spatial

Dependency

Pb Spherical 0.047 0.133 0.18 2263.30 26.11 Moderate
Cu Gaussian 0.053 0.128 0.181 2597.00 29.28 Moderate
Zn Gaussian 0.000 0.141 0.141 213.98 0.00 Strong
Cr Spherical 0.000 0.015 0.015 120.48 0.00 strong
Cd Exponential 0.000 0.238 0.238 140.93 0.00 Strong

PTE = potentially toxic elements.

3.2.3. Prediction Accuracy Improvement by Optimization Strategy

A kriging interpolation surface of the study green spaces soil before optimized here-
after refers to the initial sampling design shows a predicted Pb MKV of 131.74 mg kg−1.
The kriging concentration of Pb in the initial sampling design displays spatial heterogeneity
with a high prediction hotspot, which is located in the high clustered sampling points
and low concentration at the edge segment, since these are the sparse and lacking in
sampled areas (Figure 3a). It is also clearly noted that there are many non-sampled green
spaces areas at the initial sampling design, which leads to high spatial prediction variance
(131.74 mg kg−1). In this study, the MKV as the objective function was used in the SSA
algorithm to optimize the initial sampling design [84,85]. Each SSA iteration step only
involves moving one random sampling point, and the row and column of the covariance
matrix are changed. As Figure 3b shows, after optimization, soil Pb sampling points were
placed with a better uniformity over the study area than the initial sampling design.
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Figure 3. The initial sampling (A) and optimized (B) design Soil Pb concentration mapping on urban green spaces.

The MKV values also were calculated after the initial sampling design is perturbed by
SSA (10,000 iterations). The initial soil Pb MKV (131.7 mg kg−1) decreased to 128.9 mg kg−1

under 50 random spatial samplings perturbed and 102.3 mg kg−1 by 200 random spatial
samples perturbed (Table 6). This means the existing soil Pb sampling points captured
22.4% of the total kriged variance improvement and increased the accuracy of un-sampled
green spaces without extra sampling points.

Table 6. The improvement MKV after the initial sampling design was perturbed by SSA.

Numbers of Points Perturbed Soil Pb MKV (mg kg−1) Improvement MKV (%)

50 128.9 2.16
100 118.2 10.25
150 109.1 17.16
200 102.3 22.36

To evaluate the prediction accuracy and improvements in the initial sampling design,
we performed a cross-validation comparison based on prediction RMSE, RMSSE, and
ASE (Figure 4). The values identified for RMSE, RMSSE, and ASE of 20.63, 1.006, and
21.12, respectively, before the initial sampling design was optimized; the values were 19.22,
0.99, 19.99, respectively, after the initial sampling design optimized by SSA. The better
prediction accuracy could be found in the smaller values of RMSE, the closer values of
RMSE with ASE, and the values of RMSSE approximate to one (Figure 4). In contrast,
the value of RMSSE is higher than one for the initial sampling design, which explains the
underestimation of the variability of soil Pb predictions on green spaces soil. Figure 3a
also shows a higher variability of soil Pb predication concentration in the study areas by
comparing the optimized sampling configuration. Many studies confirmed that the initials
sampling design samples, optimized by SSA methods, provided closer prediction results
to the actual value and the lowest value of mean-variance of spatial prediction [84,86–90].
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4. Conclusions

The current work has been carried out to investigate the five potentially toxic element
concentrations and identify a method to improve prediction accuracy in the non-sampled
locations in urban green space soils. The mean concentrations of five pollutants in urban
green areas are much higher than Shanghai’s background values, except for Cd and Cr.
However, all measured values exceed the mean reference values in China. The concen-
trations of Pb, Cu, and Zn were 1.45, 1.2, 1.56 times the background value of Shanghai,
respectively, and 1.57, 1.66, 1.91 times the background values of China, respectively. The
higher values, in comparison to the background values, may indicate the presence of soil
pollution in the study areas. Similarly, the higher CV means more significant variation
exists among urban green spaces soils.

The second objective was to improve the prediction values of non-sampled locations
by optimized limited sampling points in the SSA algorism. As a result, an improvement in
prediction accuracy by 22.4% was found for spatial prediction in non-sampled locations.
Similarly, the lower mean-variance values of spatial prediction were comparable to those
the initial sampling design. Therefore, this optimization approach ensures good quality of
soil pollution predictions without deleting or adding monitoring points.
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