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Objective: Amyotrophic lateral sclerosis (ALS) clinical trials based on single end points only 

partially capture the full treatment effect when both function and mortality are affected, and may 

falsely dismiss efficacious drugs as futile. We aimed to investigate the statistical properties of 

several strategies for the simultaneous analysis of function and mortality in ALS clinical trials.

Methods: Based on the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database, 

we simulated longitudinal patterns of functional decline, defined by the revised amyotrophic lateral 

sclerosis functional rating scale (ALSFRS-R) and conditional survival time. Different treatment 

scenarios with varying effect sizes were simulated with follow-up ranging from 12 to 18 months. 

We considered the following analytical strategies: 1) Cox model; 2) linear mixed effects (LME) 

model; 3) omnibus test based on Cox and LME models; 4) composite time-to-6-point decrease or 

death; 5) combined assessment of function and survival (CAFS); and 6) test based on joint model-

ing framework. For each analytical strategy, we calculated the empirical power and sample size.

Results: Both Cox and LME models have increased false-negative rates when treatment 

exclusively affects either function or survival. The joint model has superior power compared 

to other strategies. The composite end point increases false-negative rates among all treatment 

scenarios. To detect a 15% reduction in ALSFRS-R decline and 34% decline in hazard with 

80% power after 18 months, the Cox model requires 524 patients, the LME model 794 patients, 

the omnibus test 526 patients, the composite end point 1,274 patients, the CAFS 576 patients 

and the joint model 464 patients.

Conclusion: Joint models have superior statistical power to analyze simultaneous effects on 

survival and function and may circumvent pitfalls encountered by other end points. Optimizing 

trial end points is essential, as selecting suboptimal outcomes may disguise important treat-

ment clues.
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Introduction
Amyotrophic lateral sclerosis (ALS) is an incurable, rapidly progressive, neurode-

generative disease. As ALS significantly reduces the patient’s life expectancy, evalu-

ating the efficacy of experimental treatments in terms of a benefit to survival is the 

ultimate goal of any ALS clinical trial.1 However, survival time may be influenced by 

life-extending interventions (such as gastrostomy or tracheostomy) and provides little 

information about the patient’s functioning and disability during life.2–7 Moreover, 

measuring survival time requires lengthy and large clinical trials, which may not be 

suitable during either early or late phases of drug development, especially when one 

considers the relatively low incidence of ALS.2–6,8
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In order to reduce both the sample size and the duration of 

ALS clinical trials, functional outcome measures, such as the 

revised amyotrophic lateral sclerosis functional rating scale 

(ALSFRS-R), are often used as a primary end point.9 The ALS-

FRS-R is a clinically relevant, easily obtained, well-validated 

measurement, which is highly predictive of overall survival.2–4,6 

However, results from earlier development programs, with 

positive Phase II results on functional measures, have until 

now translated poorly into Phase III survival end points.2,4 

Furthermore, it remains a matter of debate how one should 

manage missing data from functional scores due to death.1,9,10

Although both the functional and survival end points have 

their own strengths and weaknesses, treatments for ALS may, 

nevertheless, affect both survival and function simultane-

ously. Therefore, any trial based on a single end point might 

only partially capture the full treatment effect and potentially 

falsely discard the tested agent as futile.1,10 Several solutions 

have been suggested and used in past ALS clinical trials to 

circumvent this issue, with most notably the combined assess-

ment of function and survival (CAFS).11,12 The CAFS has 

been shown by simulation to increase statistical power when 

there is a treatment effect on both the functional and survival 

end points.1,10 However, an important limitation of the CAFS 

is that it becomes underpowered when there is an exclusive 

survival benefit without functional gain, a scenario seen, for 

example, in the riluzole trials, which could potentially lead 

to false-negative conclusions.1,10,13

Joint models (or shared parameter models) are another 

well-known method to simultaneously analyze functional 

decline and mortality.14 In contrast to the CAFS, joint models 

can assess treatment effects on both end points individually 

and may thus potentially overcome the limitations of the 

CAFS. However, up to now, joint models have only been 

used to correct for informative censoring in functional scores 

in ALS and there is no evidence for their capacity to detect 

treatment effects.1,14,15 Other methods to combine function 

and mortality (for instance, time to reach a certain disease 

state or death)16 have never been formally validated, and their 

statistical properties remain unknown. In this simulation 

study, therefore, we compared multiple strategies for the 

simultaneous assessment of functional decline and mortal-

ity in ALS clinical trials that aimed to show efficacy of new 

therapeutic interventions.

Methods
Patient data
In this study, the Pooled Resource Open-Access ALS Clinical 

Trials (PRO-ACT) database (version December 2015, available 

at https://nctu.partners.org/ProACT) was used to obtain real-

istic estimates for our simulations.17 It contains data from 23 

trials performed over the past 20 years, is institutional review 

board approved and uses solely anonymized data. Subjects 

consented to participate during the individual trials. Only par-

ticipants randomized in the placebo arm were used in this study. 

Participants without ALSFRS-R data were excluded from 

the analysis. For each individual, we matched demographic, 

ALSFRS-R and survival data; if no survival data were avail-

able, subjects were censored after their last known follow-up 

visit. To make the PRO-ACT patient population comparable to 

common Phase III trial populations, we excluded patients with 

a symptom duration, defined as the time between symptom 

onset and trial enrollment, longer than 36 months; predicted 

vital capacity <60% or being older than 80 years.

Disease model
Figure 1 provides a systematic overview of the assumed 

model underlying the relationship between treatment, func-

tional loss (measured with the ALSFRS-R) and mortality. 

In this framework, which is a graphical representation of 

a joint model, treatment can improve overall survival by 

directly affecting the patient’s hazard (g) or indirectly by 

reducing ALSFRS-R function loss (b) and improving overall 

survival through the ALSFRS-R (a). Classically, survival 

models evaluate g (expressed as hazard ratio [HR]), while b 

(expressing the reduction in rate of decline) is estimated using 

linear mixed effects (LME) models. Thus, both methods, if 

used in isolation, underestimate the full treatment effect by 

ignoring the effect in either g or b. Joint models circumvent 

this problem by incorporating the ALSFRS-R submodel 

Figure 1 Overview of the relationships between ALSFRS-R, mortality and 
treatment.
Notes: In this diagram, treatment can have either a direct effect on mortality 
by g or an indirect effect on mortality by modifying the ALSFRS-R through b and 
subsequently affecting mortality by a. Classically, longitudinal (e.g., linear mixed) 
and survival (e.g., Cox) models analyze either g or b. Joint models incorporate all 
relationships and simultaneously model g, b and a.
Abbreviation: ALSFRS-R, revised amyotrophic lateral sclerosis functional rating 
scale.
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as a covariate within the survival model and specifically 

model the relationship between functional loss and mortality 

through a.14 Joint models can, therefore, accommodate both 

the indirect (b * a) and direct (g) treatment effects and form 

the foundation of our data-generating mechanism.

Simulation description
A joint model with a Weibull baseline hazard was fitted 

to the PRO-ACT database; due to selection of ALS trial 

participants, based on the likelihood they would survive 

follow-up, death rates accelerated over time and a constant 

(exponential) death rate could not be assumed (Figure S1). 

The LME incorporated quadratic random effects for time as 

this considerably improved the fit to the ALSFRS-R data, c2 

(3) = 1908; the fixed effect of time was modeled linearly as a 

more complicated model minimally improved the fit, c2 (1) = 

7. Based on the parameter estimates from the PRO-ACT joint 

model (Table S1), we generated longitudinal ALSFRS-R mea-

surements and conditional survival data based on a Weibull 

distribution. A detailed description of the simulation can be 

found in the “Methods” section of the Supplementary materi-

als. Additionally, we assumed that ~10% of the participants 

would be lost to follow-up, irrespective of their survival time 

or functional decline. Based on 50,000 simulations, these set-

tings resulted in a 12- and 18-month survival in the placebo 

group of 86.5% (95% confidence interval [CI]: 86.1%–86.9%) 

and 64.2% (95% CI: 63.6%–64.8%), respectively.

Treatment scenarios
We simulated nine different combinations of treatment 

effects, based on commonly expected effect sizes in previous 

ALS clinical trials,1,11–13 where treatment was expected to 

result in a hazard reduction of 0%, 34% or 50% (HR of 1, 0.66 

or 0.5, respectively) and/or an ALSFRS-R slope reduction of 

0%, 15% or 30%. All nine scenarios were evaluated when the 

maximum follow-up duration was either 12 or 18 months, 

with monthly follow-up visits and a fixed sample size of 150 

individuals per treatment arm. For each scenario, we consid-

ered the following analytical strategies, which are discussed 

later: 1) CAFS; 2) Cox model based on the composite end 

point time-to-6 point decrease on ALSFRS-R or death; 3) 

omnibus test based on the joint model and 4) omnibus test 

based on the Cox model and LME model.

Analytical strategies
All analytical strategies shared the common objective to 

identify a treatment effect, which resulted in either a ben-

eficial increase in survival or slowing of functional decline. 

The CAFS ranks each patient according to his or her time to 

death or functional loss, resulting in one summarized p-value 

for the full treatment effect.10 The composite end point time-

to-6 point ALSFRS-R decrease or death, an end point used in 

a recent trial,16 is a similar approach and likewise results in 

one p-value for the overall treatment effect. To make a direct 

comparison with the CAFS and the composite end point, we 

developed an omnibus test using the joint model framework 

(Figure 1). The omnibus test was based on two joint models. 

The first model (JM1) incorporated an LME model without 

the treatment–time interaction and a Cox model with only 

an intercept and thus only models a. The second joint model 

(JM2) incorporated an LME model with the treatment–time 

interaction (b) and a Cox model with the treatment indicator 

as a covariate (g). We used a likelihood ratio test with two 

degrees of freedom to compare JM1 and JM2 to obtain one 

p-value for the overall treatment effect. A second omnibus 

test was developed based on the individual LME and Cox 

models. The treatment effects within both models were tested 

against a corrected p-value to control type 1 error according 

to the Hommel correction for multiple testing.18 Treatment 

was considered effective when either one of the models was 

below the threshold. Table 1 provides an overview of the null 

and alternative hypothesis tested by each of the analytical 

strategies. Our primary focus was on empirical power, defined 

as the proportion of simulation samples in which the null 

hypothesis of no effect was rejected. To improve understand-

ing of our results, we translated empirical power to sample 

size using the formula provided by Healy and Schoenfeld.1 

For the CAFS, the composite end point and the joint model 

test, we used a two-sided alpha of 0.05. In order to complete 

the comparison, we also provided empirical power for the 

separate Cox and LME models.

Results
PRO-ACT database
In total, we selected 1,469 patients with 15,506 ALSFRS-R 

measurements and a total follow-up time of 1,524 person-

years, during which 285 deaths were recorded. Baseline 

characteristics of the PRO-ACT cohort are given in Table 2 

and are comparable with other large trial populations.11,12 

On average, the longitudinal ALSFRS-R rate of decline was 

1.06 points (95% CI: 1.01–1.10 points) per month. There is a 

strong longitudinal relationship between the ALSFRS-R and 

the risk of death (HR 0.88 [95% CI: 0.87–0.89]; p < 0.001), 

indicating that a one-point increase in ALSFRS-R score 

reduces the risk of death during follow-up by 12% (Table S1). 

This relationship underscores the importance of a (Figure 1). 
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Figure 2 shows the observed PRO-ACT data and a simulated 

trial (n = 50,000) with a hypothetical treatment affecting both 

function and mortality. The simulated placebo group has 

similar functional and mortality rates as the 1,469 selected 

PRO-ACT patients (Figure 2A and B). Figure 2C and D visu-

alizes the role of a and the extent of survival heterogeneity in 

our simulations: the baseline ALSFRS-R score (Figure 2C) 

and the rate of ALSFRS-R decline (Figure 2D) both affect 

the survival probability during follow-up.

False-positive rates and classical analyses
Empirical power values of each analytical strategy are given 

in Tables 3 and S2; the first row represents the scenario when 

there is neither a survival (HR = 1) nor a functional (rate 

of decline reduction = 0%) benefit to treatment. The false-

positive rate (type I error) is approximately 5% for all tests, 

indicating that all analytical strategies are statistically valid. 

As expected from Figure 1, both the separate LME and Cox 

models have increased false-negative rates (type II error = 1 

- power) when treatment exclusively affects either functional 

decline or survival. For instance, power of the LME model 

remains ~5%, while there is a clear survival benefit in the 

treatment arm (rows 2 and 3; Table 3). Vice-versa, the Cox 

model exhibits an increase in the false-negative rate when 

there is a clear functional benefit (rows 4 and 7; Table 3).

Comparison of combined analytical 
strategies
Figure 3 visualizes the numerical results from Tables 3 and 

S2 for the four simultaneous analyses of survival and func-

tion. The joint model analysis is the most consistent strategy 

across all scenarios and superior in power compared to other 

methods. The composite end point time-to-6 point decrease 

or death fails to detect effects on survival; due to the large 

Table 1 Null and alternative hypothesis of each analytical strategy to evaluate the combined treatment effect on survival and functional 
loss

Analytical 
strategy

Null hypothesis (H0) Alternative hypothesis (H1)

CAFS H P X X0 0 5: ( ) .treatment placebo> = The probability that a patient 
on treatment has a better 
outcome X (either survival 
or functional status) than a 
patient on placebo is 0.5

H P X X1 0 5: ( ) .treatment placebo> ≠ The probability that a patient 
on treatment has a better 
outcome X (either survival or 
functional status) than a patient 
on placebo is higher or less 
than 0.5

Death or 
6-point loss

H0 0: gcombined = There is no difference 
between treatment arms in 
the probability of an event 
(death or 6-point loss) at any 
time point during follow-up

H1 0: gcombined ≠ There is a difference between 
treatment arms in the 
probability of an event (death 
or 6-point loss) at any time 
point during follow-up

Joint model H0 0 0: g badjusted adjusted= ∩ = There is no difference 
between treatment arms in 
the probability of an event 
(death) at any time point, 
adjusted for functional status, 
and there is no difference 
between treatment arms in 
functional decline, adjusted for 
survival

H1 0 0: g badjusted adjusted≠ ∪ ≠ There is a difference between 
treatment arms in the 
probability of an event (death) 
at any time point, adjusted 
for functional status, and/or 
there is a difference between 
treatment arms in functional 
decline, adjusted for survival

Cox or LME 
test

H0 0 0: g bcrude crude= ∩ = There is no difference 
between treatment arms in 
the probability of an event 
(death) at any time point, and 
there is no difference between 
treatment arms in functional 
decline

H1 0 0: g bcrude crude≠ ∪ ≠ There is a difference between 
treatment arms in the 
probability of an event (death) 
at any time point, and/or 
there is a difference between 
treatment arms in functional 
decline

Notes: Taking the exponent of g will provide the HR (treatment vs control). The mean difference between treatment arms in rates of decline in ALSFRS-R is given by b. 
Note that the joint model incorporates the relationship between survival and function and thus adjusts the treatment effect, whereas in the Cox or LME test, this adjustment 
does not take place.
Abbreviations: CAFS, combined assessment of function and survival; LME, linear mixed effects; HR, hazard ratio; ALSFRS-R, revised amyotrophic lateral sclerosis functional 
rating scale.
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number of events generated by the ALSFRS-R (80%–90% 

had an event after 18 months), the relatively small increase 

in number of deaths minimally impacts the model and thus 

fails to affect empirical power. The composite end point also 

exhibits less power for detecting exclusive functional effects 

and increases false-negative rates in all treatment scenarios. 

The CAFS is underperforming in comparison with both the 

joint model and Cox or LME test, especially when there is 

only a treatment effect on survival (Figure 3A, right panel). In 

the scenarios where there is a simultaneous effect on survival 

and function (Figure 3A, left panel), differences between the 

three strategies are less extensive. Nevertheless, in a scenario 

with a 15% reduction in ALSFRS-R decline and 34% decline 

in hazard (HR = 0.66), the CAFS would require 576 patients 

for an 18-month trial, whereas the joint model would require 

464 patients (a reduction of 19%) to detect the same treatment 

effect with 80% power.

Paradoxical effect of follow-up time in 
CAFS
Interestingly, in the scenarios where there is an exclusive 

functional benefit, the CAFS is the only strategy that exhibits 

more power at 12 months than at 18 months (Figure 3B, left 

Table 2 Baseline characteristics of the PRO-ACT database’s 
placebo patients

Patient characteristics PRO-ACT  
database (N = 1,469)

Age, years 57 (11)
Sex, female 544 (37%)
Onset, bulbar 311 (21%)
Symptom duration at enrollment

Mean, months 17 (7)
Distribution, n (%)

<12 months 414 (28%)
12–24 months 815 (56%)
>24 months 240 (16%)

Diagnostic delay
Mean, months 10 (6)
Distribution, n (%)

<6 months 435 (30%)
6–12 months 597 (41%)
>12 months 434 (29%)

FVC, % predicted 91 (14)
ALSFRS-R total score 38 (5)
ΔFRS at baseline, points per month –0.68 (0.5)
BMI, kg/m2 26 (4)
Plasma creatinine, μmol/L 70 (15)

Notes: Data are in mean (SD) or n (%). ΔFRS,
 

ALSFRS R

Disease duration
baseline− − 48 .

Abbreviations: FVC, forced vital capacity; ALSFRS-R, revised amyotrophic lateral 
sclerosis functional rating scale; BMI, body mass index; PRO-ACT, Pooled Resource 
Open-Access ALS Clinical Trials.

Figure 2 Rates of functional decline and mortality in the PRO-ACT database with a simulated treatment scenario.
Notes: (A and B) Observed rates of functional decline and death in the 1,469 selected PRO-ACT patients (Table 2). Our simulation (n = 50,000) shows a good fit with 
the observed dataset and exhibits a similar pattern over time. As illustration, a hypothetical treatment effect was induced, which reduced the rate of decline by 15% and the 
hazard by 34%. To illustrate the interaction (a) between the ALSFRS-R and survival, we divided subjects into ten equally sized groups according to their ALSFRS-R baseline 
score (C) or observed rate of decline during follow-up (D). Green represents the patients with the highest baseline score or the slowest rate of decline.
Abbreviations: ALSFRS-R, revised amyotrophic lateral sclerosis functional rating scale; PRO-ACT, Pooled Resource Open-Access ALS Clinical Trials.
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Table 3 Empirical power of each strategy for trials with a maximum follow-up duration of 18 months

Survival (HR,  
treatment vs placebo)

ALSFRS-R  
(slope reduction)

Cox 
model

LME 
model

Cox or LME model 
(omnibus test)

Joint model 
(omnibus test)

CAFS Death or 
6 pt.

1 0 0.050 0.052 0.046 0.051 0.047 0.048
0.66 0 0.273 0.058 0.214 0.404 0.118 0.050
0.5 0 0.586 0.053 0.495 0.804 0.212 0.050
1 15% 0.137 0.405 0.333 0.314 0.268 0.260
0.66 15% 0.566 0.406 0.563 0.616 0.526 0.274
0.5 15% 0.837 0.406 0.791 0.884 0.689 0.285
1 30% 0.378 0.921 0.888 0.871 0.755 0.729
0.66 30% 0.828 0.934 0.946 0.948 0.928 0.765
0.5 30% 0.958 0.931 0.976 0.987 0.966 0.772

Note: All simulations are based on a monthly follow-up scheme (SD = 0.16) with a maximum of 18 months of follow-up and 150 patients per treatment arm; each scenario 
was repeated 10,000 times (Figure S2).
Abbreviations: HR, hazard ratio; ALSFRS-R, revised amyotrophic lateral sclerosis functional rating scale; Cox, Cox proportional hazard; LME, linear mixed effects; CAFS, 
combined assessment of function and survival; pt., points decrease on ALSFRS-R from baseline.

Figure 3 Empirical power of the four analytical strategies for different treatment scenarios.
Notes: (A) Visual presentation of Table 3 of the empirical power after 18 months of follow-up. Panels from left to right show the effects of different treatments on functional 
decline (reduction in ALSFRS-R slope, b); on the x-axis are the treatment effects on survival (reduction in hazard rate, g). (B) Direct comparison between the CAFS and the 
joint model for 18 months (solid lines) and 12 months (dashed lines) of follow-up.
Abbreviations: ALSFRS-R, revised amyotrophic lateral sclerosis functional rating scale; CAFS, combined assessment of function and survival; HR, hazard ratio; LME, linear 
mixed effects; PH, proportional hazard.
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and middle panels). As the CAFS distinguishes between 

patients who die and survive, when a treatment exclusively 

affects functional decline, the surviving patients in the treat-

ment arm are primarily driving the measured effect in the 

CAFS ranking system (Figures S3 and S4). As the proportion 

of patients alive is greater at 12 months, the number of higher 

ranking patients becomes larger, which in turn increases the 

contrast between treatment arms and subsequently the power. 

Vice versa, when there is an exclusive survival benefit, the 

deceased patients primarily affect the CAFS. As this is a 

proportionally smaller group than the surviving group, the 

treatment effect is diluted, which decreases the power of 

the CAFS to detect exclusive survival benefits. In the joint 

model and the omnibus Cox or LME test, this proportional 

imbalance is absent and inference is based on both outcomes.

Discussion
In this simulation study, we have evaluated multiple strategies 

for the simultaneous analysis of function and mortality in 

confirmatory ALS clinical trials. The joint model analysis is 

the most consistent method across all treatment scenarios and 

can offer considerable improvements in statistical power or 

detect smaller treatment effects with identical sample sizes. In 

case of an exclusive survival benefit of treatment, incorporat-

ing the joint modeling framework could even enhance trial 

design over classical methods. Importantly, the joint model 

analysis performs similar to the CAFS in scenarios when 

there are large combined functional and survival benefits, 

but circumvents the shortcomings of the CAFS when there 

is an exclusive survival benefit.

In other fields, such as HIV or oncology, joint modeling 

has been extensively used to, for example, assess survival-

adjusted CD4 counts or to model longitudinal tumor volume 

and tumor-related mortality.10,14,19,20 For ALS clinical trials 

specifically, joint models are relatively uncommon and have 

previously only been applied to adjust for informative cen-

soring in longitudinal ALSFRS-R patterns.1,15 In the study 

by Healy and Schoenfeld,1 the joint model is compared 

with the CAFS for various treatment scenarios. However, 

they assessed the longitudinal arm of the joint model and 

ignored the survival component.1 Any direct comparison 

between the joint model and the CAFS to detect combined 

treatment effects is, therefore, lopsided. In our study, we 

balanced the comparison between the CAFS and the joint 

model by developing an omnibus test that summarizes the 

full treatment effect in a joint modeling framework. Not 

only is the joint model analysis the most powerful approach, 

it also removes the proportional imbalance between the 

survival and function end points seen in the CAFS analysis 

(Figures S3 and S4).

For trials designed on an exclusive mortality benefit of 

treatment, the joint model analysis may offer considerable 

improvements, even over classical analyses. For instance, 

redesigning the riluzole trial using the observed PRO-ACT 

survival probabilities,13 a Cox model requires ~1,282 patients, 

whereas the CAFS requires 3,922 patients and the joint model 

requires 800 patients, to detect an HR of 0.67 after 18 months 

with 80% power.1 For trials designed on an exclusive func-

tional benefit of treatment, our results indicate that the LME 

is the most powerful approach (Table 3). However, as the 

ALSFRS-R is limited by its questions, it may not capture 

other survival-related processes that could be simultaneously 

influenced by treatment (e.g., plasma creatinine).21 Solely 

assuming an exclusive functional treatment effect could thus 

under- or overestimate the full effect of treatment. Moreover, 

a priori, it is unknown how treatment will affect both out-

comes, and therefore, a joint modeling approach may offer the 

safest strategy. Literature on clinical trial design using joint 

models is sparse;14 however, direct sample size calculations 

can be conducted.22 A complicating factor is that the joint 

model analysis (and CAFS) requires two treatment expecta-

tions (on mortality and function). This may increase the risk 

of making erroneous a priori assumptions. Our estimate of 

a (HR 0.83) may help investigators to determine realistic 

expectations, for which empirical power and sample sizes 

could also be simulated with our data-generating mechanism.

There are several limitations of this study, and joint mod-

els in general, that should be considered. First, as the omnibus 

joint model test summarizes the functional and survival data 

into one test statistic, clinical interpretation of the treatment 

effect is not straightforward. However, in contrast to the 

CAFS, the joint model provides the individual effects on 

mortality and function directly, whereby the directional effect 

of treatment on each outcome could be assessed without the 

need for further testing.1,10,14 Second, the performance of the 

strategies may change when using a different data-generating 

mechanism (e.g., incorporating an average nonlinear rate 

of decline on ALSFRS-R).23 We addressed this issue by 

comparing our estimates of empirical power of the CAFS 

with the reported estimates by Healy and Schoenfield,1 who 

used a different data-generating mechanism. As our empiri-

cal power estimates differ by only 2%, it is unlikely that our 

results will change drastically under different data-generating 

mechanisms.

Our study does not evaluate all combinations of survival 

and function in ALS clinical trials. In the trials investigating 

www.dovepress.com
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acetyl-l-carnitine and recombinant interferon beta-1a,24,25 

self-sufficiency (based on individual ALSFRS-R items) or 

death was used as the primary outcome. As this outcome 

requires simulation of the separate ALSFRS-R items, includ-

ing their individual and mutual relationships with survival, 

this would significantly increase the simulations’ complexity 

and computational time. Nevertheless, our proposed joint 

modeling method could be extended and improved. First, as 

was shown previously, dividing the ALSFRS-R total score 

into subdomains could reduce between-patient variability.21 

Incorporating these subdomains separately in the joint mod-

eling framework may increase empirical power. Moreover, 

incorporating other secondary outcomes, such as muscle 

strength, respiratory measures and biomarkers, might provide 

additional information about the treatment effect and could 

further improve trial design. At last, the time-to-event end 

point could be extended to other events, such as the loss of 

self-sufficiency and respiratory failure. However, as was seen 

in the 6-point decrease or death analysis, increasing the num-

ber of events does not necessarily increase statistical power. 

This phenomenon was described earlier when combining 

tracheostomy or noninvasive ventilation (NIV) with death, 

which increased variability in the survival end point and 

inflated the sample size.7 Therefore, equalizing a particular 

disease state with death may negatively affect trial end points.

Conclusion
Our results show that joint models may offer considerable 

improvements for ALS clinical trials and may circumvent 

the pitfalls encountered by other end points. Optimizing trial 

end points is essential, as selecting suboptimal outcomes 

may disguise important treatment clues and further delay 

the development of effective drugs against this debilitating 

disease.
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