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Abstract

The S. cerevisiae proteasome comprises a 19-subunit regulatory particle (RP) and 28-subunit core 

particle (CP). To be degraded, substrates must cross the CP-RP interface, a site of complex 

conformational changes and regulatory events. This interface includes two aligned heteromeric 

rings: the six ATPase (Rpt) subunits of the RP and the seven α subunits of the CP. Rpt C-termini 

bind intersubunit cavities of the α ring, thus directing CP gating and proteasome assembly. We 

used crosslinking to map the Rpt C-termini to the α subunit pockets. This reveals an unexpected 

asymmetry: one side of the ring shows 1:1 contacts of Rpt2–α4, Rpt6–α3, and Rpt3–α2, whereas, 

on the opposite side, the Rpt1, Rpt4, and Rpt5 tails each crosslink to multiple α pockets. Rpt-CP 

crosslinks are all sensitive to nucleotide, implying that ATP hydrolysis drives dynamic alterations 

at the CP-RP interface.
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INTRODUCTION

The proteasome plays a central role in ubiquitin-dependent protein degradation. Its 

substrates likely number in the hundreds and, given that they are involved in diverse 

pathways such as cell cycle control, DNA repair, transcription, and inflammation, the 
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proteasome functions as an integral component of many cellular regulatory mechanisms. 

Accordingly, its activity is under intricate control1–3.

The proteasome core particle (CP, or the 20S proteasome) is a barrel-like complex of four 

stacked heptameric rings of subunits, with the proteolytic active sites facing the interior 

space4. Substrates gain entry to the CP’s interior via a gated axial channel5–12. Disruption of 

the gate enhances ubiquitin-dependent protein degradation in yeast13. The channel is formed 

by the outermost subunits of the CP, which constitute the α rings, while the proteolytic sites 

are found in the central β rings. The eukaryotic proteasome is thought to have evolved from 

a simpler complex, which may have resembled the present-day PAN (proteasome-activating 

nucleotidase) protease complex of archaea14–17. The CP of both the PAN protease complex 

and the eukaryotic proteasome have an α7β7β7α7 structure, but in the former the rings are 

homomeric, whereas in the latter they are heteromeric.

The proteasome regulatory particle (RP, also known as the 19S particle and PA700) pairs 

with the CP to form the proteasome holoenzyme (the 26S complex). The RP can be divided 

into a CP-proximal ten-subunit base assembly and a distal nine-subunit lid assembly1,18. 

Like the CP, the RP contains subunits that are related to the PAN complex. However, PAN 

is a homohexameric ATPase ring complex, whereas the RP includes a heterohexameric 

ATPase ring as a part of the base. In yeast, this “Rpt ring” is formed by Rpt1–Rpt6. Other 

RP components are poorly understood, but several appear to mediate the recognition and 

disassembly of ubiquitin chains1. ATP hydrolysis by the Rpt ring drives unfolding of protein 

substrates2,19–21. In the majority of PAN complexes only two ATP molecules are bound per 

ring, with two subunits being bound to ADP and two unoccupied14. The Rpt ring is thought 

to pull substrates into its central pore with sufficient force to promote unfolding of substrate 

structural domains that are too large to traverse the pore22,23. Continued translocation directs 

the unfolded substrate from the RP channel into the CP, where it is degraded.

Recent studies of the archaeal PAN complex and the related actinobacterial protease ARC 

have provided major structural insights15,16. PAN was found to be a trimer of dimers, at 

least within its CP-distal oligonucleotide-oligosaccharide binding (OB) and coiled-coil (CC) 

domains. Accordingly, the eukaryotic Rpt ring assembles via dimeric precursors (Rpt1 and 

Rpt2, Rpt 4 and Rpt5, and Rpt 3 and Rpt6)24–26.

The C-terminal segments, or tails, of the Rpt proteins are conserved in evolution 

(Supplementary Fig. 1a) and critical for proteasome function. They extend from the body of 

the Rpt ring towards the CP and insert into pockets formed at α–α subunit interfaces9. For 

some tails, insertion results in opening of the CP channel5–8,27. The tails also regulate RP 

assembly in yeast28,29, and the RP–CP interaction30,31, most likely via insertion of the tails 

into the α pockets of the CP32. There are six Rpt tails and seven α pockets, a symmetry 

mismatch indicating that not all α pockets can be simultaneously occupied in this manner. 

Despite the critical roles played by the RP–CP interface, its organization has remained 

unknown.

In this study, we use mutagenesis and cysteine-specific crosslinking to probe contacts 

between the Rpt proteins and the CP α subunits. The results define the relative arrangement 
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of the 13 subunits that make up the stacked ring assemblies of the RP-CP interface, and 

reveal that this interface is unexpectedly asymmetric. Three neighboring Rpt proteins insert 

into specific α pockets, whereas, on the opposite side of the Rpt ring, each Rpt tail can be 

found crosslinked to more than one α pocket. These results suggest the existence of several 

interconvertable populations of proteasomes, which differ in the positioning of the 

unoccupied α pocket. Our findings may explain specific characteristics of the structure of 

the proteasome as observed by electron microscopy17,33–35. Nucleotide affects crosslinking 

efficiency for every α–Rpt pair, suggesting that the engagement between α and Rpt subunits 

is dynamically regulated by ATP hydrolytic cycles, with the principal stabilizing contacts 

alternating from subunit to subunit as ATP is bound and hydrolyzed asynchronously.

RESULTS

The RP-CP Interface

Chemical crosslinking was used to investigate the interaction between the Rpt and α 

subunits. We first substituted Cys in place of the C-terminal residue of each Rpt protein, 

which is a critical residue for both the assembly and gating functions of the Rpt tails8,9,29 

(see Supplementary Fig. 1a for sequence alignments of Rpt C-termini). Its key feature is 

thought to be the main chain carboxylate, rather than the side chain5,6,8,9. Each carboxylate 

is proposed to form a salt bridge to the ε-amino group of a specific α subunit lysine residue9, 

a residue that, for six of the seven α subunits, aligns withK66 in the α subunit of the PAN 

complex (the “pocket lysine”). Accordingly, deletion of the C-terminal residue has 

substantial phenotypic effects for most Rpts29. Substitution mutations, which likely preserve 

the salt bridge to the pocket lysine, are for the most part well tolerated, though under 

conditions of proteolytic stress, such as high temperature, hypomorphic function can be 

observed (Supplementary Fig. 2 and data not shown). Analysis of purified proteasomes from 

these mutants indicated that the RP–CP interaction is, depending on context, either not 

detectably perturbed or minimally perturbed (Supplementary Fig. 2).

The introduction of cysteines into the α-ring was guided by the structure of a complex 

between PA26 and the yeast CP9. PA26 is a homoheptameric activator of the CP. Although 

unrelated to the RP, PA26 also binds the CP via C-terminal tail insertion into the α pockets, 

and has served as a model for RP–CP interactions6,9. In particular, PA26 C-termini form salt 

bridges with the pocket lysines. Thus, a residue in the α pocket that is proximal to the C-

terminus of PA26 was substituted. This residue is directly adjacent to the beginning of the 

α2 helix in each α subunit, and is surface-exposed on the interior of the pocket(Fig. 1; for an 

alignment of α subunits in this region, see Supplementary Fig. 1b). Cysteines were 

individually introduced into each α subunit. These α subunit mutants were then crossed to 

the rpt mutants to create a 6×7 array of double Cys substitution mutants. All double mutant 

combinations were viable (Supplementary Fig. 2 and data not shown).

Identification of two α–Rpt subunit pairs

Crosslinking was carried out using the divalent cysteine crosslinker Bis-maleimidoethane 

(BMOE), whose spacer arm is 8-Å when extended36,37. To ensure that BMOE will only 

generate crosslinks to Rpt tails that insert into a given α pocket, we modeled the space that 
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could be searched by a BMOE molecule anchored at the introduced Cys residue, using the 

crystal structure of the yeast CP. The results indicated that the Rpt tails must gain access to 

the pocket to achieve crosslink formation.

An initial scan for crosslinked products in whole-cell lysates allowed mapping of α–Rpt 

subunit pairings α1-Rpt4 and α5-Rpt1 (Fig. 2a and 2b). For example, a crosslink product 

was found to form in Rpt4-L437C α1-I87C double mutant proteasomes, but not in double 

mutants between α1-I87C and Cys substitutions of other Rpt proteins (Fig. 2a). The 

crosslink product was visualized via 6xHA epitopes appended to the α subunits at their C-

termini, which are surface-exposed (Supplementary Fig. 3). The apparent molecular mass of 

the crosslinked products, approximately 80kD, is consistent with an adduct between Rpt4 

(49kDa) and α1 (28kDa) (Fig. 2a).

To understand the crosslinking data, it is important to recognize that each α pocket is 

formed at the interface of two α subunits. Within any αX–αY pocket, the penultimate 

residue of the Rpt is expected to displace the Pro17 turn of αX, which promotes 

repositioning of the α subunit N-termini to form an open gate conformation5–7, while the 

Rpt C-terminal carboxylate is expected to form a salt bridge with the pocket lysine residue 

of subunit Y5,6,9 (Fig. 1). The cysteine substitution is placed in subunit αY(α5 in Fig. 1), 

with which the C-terminal three residues of PA26, and presumably Rpt subunits, form main 

chain hydrogen bonding interactions. Thus, in the case of Rpt1for example, crosslinking to 

α5 indicates that Rpt1 might affect the state of the Pro17 turn and N-termini of α4. 

Consequently, we use the names of both subunits when referring to an α pocket. The 

pockets are α1–α2, α2–α3, α3–α4, α4–α5, α5–α6, α6–α7, and α7–α1.

The finding that the Rpt4 C-terminus inserts into the α7–α1 pocket was unexpected, given 

the sequence characteristics of this pocket. Because there are six Rpt proteins apposed to 

seven α subunits, one of the α pockets must be unoccupied at a given time, or at least not 

occupied by an Rpt C-terminus. The α7–α1 pocket was previously hypothesized to be the 

“empty” pocket of the α ring because it lacks a pocket lysine9 (Supplementary Fig. 1b).

To test whether the α1–Rpt4 and α5–Rpt1 crosslinks were generated in mature, fully-

assembled proteasomes, we repeated the crosslinking with affinity-purified proteasomes. 

Proteasomes were purified from wild-type cells, α1-I87C mutants, Rpt4-L437C mutants, 

and the corresponding double mutants. The pattern of crosslinking was similar to that seen 

in whole cell extracts, and in addition we observed that crosslinking was strictly dependent 

on the presence of both α1-I87C and Rpt4-L437C substitutions (Fig. 2c). When these 

reactions were probed with antibodies to Rpt4, the specificity of the crosslink for the 

mutated form of α1 was also apparent (Fig. 2e). Similar experiments confirmed insertion of 

Rpt1 into the α4–α5pocket (Fig. 2d and 2f).

Identification of an α4–Rpt2 pair

A third crosslink observed in whole-cell lysates was between α4 and Rpt2 (Fig. 3a). We 

purified proteasomes from the α4–Rpt2 double mutant and the corresponding single 

mutants, and repeated the crosslinking. Although crosslink formation was fully dependent 

on Rpt2-L437C, it proved to be only partially dependent on the α4-N79C substitution (Fig. 
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3b and 3c). This result suggested that a native Cys residue in α4 might be capable of 

crosslinking to Rpt2. We therefore examined the structure of the α3–α4 pocket, modeling its 

interaction with Rpt tail elements on the PA26–yeast CP co-crystal structure. As suspected, 

two native cysteines (Cys32 and Cys46) in α4 were potentially accessible to the C-terminal 

tail in its modeled position, with Cys46 being the more surface-exposed of the two (Fig. 3d). 

If some structural flexibility of the Rpt2 tail within the pocket is assumed, Cys46 should not 

be too distant from the tail to be crosslinked.

To test whether Cys32 or Cys46 might account for the unidentified crosslinks, we tested 

HA-tagged but otherwise wild-type α4 for crosslinking to the standard panel of Rpt Cys 

mutants. In whole-cell extracts we again observed specific crosslinking to Rpt2, supporting 

the involvement of native Cys residues in crosslink formation (Fig. 3e). Cys32 and Cys46 

were therefore jointly substituted with alanine. Under these conditions, α4–Rpt2 

crosslinking was fully dependent on the α4-N79C substitution (Fig. 3f and g). Thus, 

cysteine residues at multiple positions within the α3–α4 pocket can apparently crosslink to 

Rpt2.

α3–Rpt6 and α2–Rpt3 pairs

The data above, together with the known subunit arrangement of the Rpt ring38 

(Supplementary Fig. 4), constrain the possible assignments of the remaining three α–Rpt 

pairs. For example, because α3 abuts α4 and Rpt6 abuts Rpt2, the α4–Rpt2 pair should be 

flanked by an α3–Rpt6 pair; that is, the Rpt6 tail is expected to insert into the α2–α3 pocket. 

However, when crosslinking was carried out in whole-cell extracts from early stationary 

phase cells, we reproducibly observed contacts between α3 and Rpt2 and Rpt3, in addition 

to Rpt6 (Fig. 4a). In contrast, whole-cell extracts from exponential phase cells yielded only 

the expected α3–Rpt6 crosslink (Fig. 4b). Purified proteasomes from stationary phase cells 

exhibited crosslinking only between α3 and Rpt6, and these crosslinks required both α3-

T81C and Rpt6-K405C substitutions (Fig. 4c–e). In summary, our data indicate that the α2–

α3 pocket is the receptor for the Rpt6 tail, and also provide an initial indication that under 

some physiological conditions Rpt–α pocket mispairing or ambiguity might occur. The 

mispaired Rpt C-termini, Rpt2 and Rpt3, flank Rpt6 on either side. An interesting possibility 

is that ambiguous alignment of the Rpt6 tail is characteristic of certain proteasome assembly 

intermediates.

Assignment of the α3–Rpt6 pair implies that an α2–Rpt3 pair should be formed in the next 

position, working clockwise around the ring. In crosslinking studies with crude extracts, we 

could not visualize this putative species (Supplementary Fig. 5a). However, in purified 

proteasomes, the predicted crosslinked species could be observed at the correct size (arrow), 

the formation of which requires the α2-A79C substitution (Fig. 4f). These data support 

assignment of Rpt3 as a ligand of the α1–α2 pocket. However, the Rpt3-K428C substitution 

leads to some crosslinking in the absence of α2-A79C, resulting in unidentified background 

bands that may reduce the intensity of the signal for the α2–Rpt3 pair (Fig. 4g).
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The α5–α6 and α6–α7 pockets

The two remaining unassigned α pockets, α5–α6 and α6–α7, showed background crosslink 

formation to endogenous cysteines (Supplementary Figs. 5b, 5c). The responsible Cys 

residues were identified and mutated to Ala (Fig. 5a,g). In this genetic background we 

observed specific crosslinking of the α6–α7 pocket to both Rpt4 and Rpt5, in extracts and 

with purified proteasomes(Fig. 5b–f). The α5–α6 pocket did not form detectable crosslinks 

in extracts but crosslinked specifically to Rpt1 and Rpt5in purified proteasomes (Fig. 5h–l).

The results above indicate that several Rpt proteins can crosslink to multiple α pockets. 

Rpt5, for example, is capable of crosslinking to both α5–α6 and α6–α7 pockets (Fig. 5). 

Moreover, Rpt4 crosslinks to not only α6–α7 (Fig. 5b–d), but also, as described above, α7–

α1 (Fig. 2). Finally, Rpt1 crosslinks to both α5–α6 (Fig. 5i,j) and, as shown in Fig. 2, α4–

α5. Thus, the register of tail–pocket insertion is apparently not strictly fixed over four 

neighboring α pockets, in striking contrast to the remaining three pockets (α1–α2, α2–α3, 

and α3–α4). Additionally, we found no evidence for a defined unoccupied α pocket, the 

existence of which has generally been assumed, based on the excess number of α pockets 

over Rpt tails. Our working model of the RP–CP interface is shown in Fig. 6a–c.

The RP–CP interface is dynamic

ATP hydrolysis by the proteasome is essential for its ability to degrade proteins, and 

provides the driving force for translocation of the substrate protein through the RP-CP 

interface. Based on studies of related ATP-dependent proteases, nucleotide hydrolysis 

presumably drives substrate translocation, at least in part, by guiding movement of the 

pore-1 loop within the axial substrate translocation channel21,39,40. However, far from the 

pore-1 loop, ATP hydrolysis may also be expected to direct movement of the C-domains, 

from which the Rpt tails emerge40,41. We therefore tested whether the engagement of Rpt 

tails within their cognate α pockets is regulated by ATP.

Proteasomes were purified in the presence of 0.1 mM ATP and subjected to crosslinking 

after the addition of ADP, ATP, or ATPγS to 1 mM. We found that all of the α-Rpt contacts 

behaved similarly in that crosslinking was enhanced by ATP in comparison to ADP (Fig. 7). 

A trivial explanation for the suppression of crosslinking by ADP would be that ADP drives 

dissociation of the CP and RP. Previous work has shown that for yeast proteasomes this is 

not the case42, and we confirmed under our conditions that little or no dissociation of CP 

and RP occurs. (Supplementary Fig. 6).

ATPγS, a nonhydrolyzable ATP analog, stimulated α-Rpt crosslinking, in comparison to 

ATP, for some crosslinking pairs but not others (Fig. 7). These effects were modest in 

comparison to those seen when comparing ATP to ADP. The α2–α3α3–α4, and α4–α5 

pockets, all showing enhanced crosslink formation with ATPγS, form a continuous block of 

subunits on one side of the Rpt ring – interestingly, the side characterized by fixed Rpt–α 

crosslinks. Pockets on the opposite face of the ring showed either no stimulation or a slight 

suppression in the presence of ATPγS. Consistent with these trends, Rpt1 crosslinking to 

α4–α5 was stimulated by ATPγS but crosslinking to α5–α6 was not. These data suggest that 
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α–Rpt crosslink formation may serve as a sensitive probe to differentiate subtly different 

functional states of the mature proteasome holoenzyme.

DISCUSSION

The dynamic nature of the RP–CP interface was first apparent when the substrate 

translocation channel of the CP was identified and found to assume open and closed states in 

a regulated manner11,12. The organization of this extensive interface has remained unknown, 

despite fragmentary data from many studies based on either the two-hybrid method, 

crosslinking, or other approaches27,30,33,43–48. In general, these studies can be only partially 

reconciled with each other and with our current understanding of the topologies of the Rpt 

and α rings. In contrast to all previous work, we have used mutagenesis to focus exclusively 

on the contacts between Rpt tails and the α pockets in intact proteasomes. Thus, we have 

mapped those contacts that are thought to provide the key connections between the RP and 

the CP. The final map is complete, self-consistent, and compatible with constraints that 

derive from the known subunit orders of the two rings.

The RP–CP contact points exhibit several unanticipated features. Most importantly, there is 

a general asymmetry in the mapping, such that on one side of the Rpt ring we observe fixed 

contacts, whereas on the other side of the ring the C-terminus of an Rpt exhibits flexible 

contacts, with the capacity to insert into more than one α pocket. The possibility that the 

flexibility of crosslink formation is in general a peculiarity of BMOE-induced crosslinking 

was excluded through using other crosslinking methods, including CuCl2-mediated 

crosslinking32, in which no linker arm is present (data not shown). As a consequence of the 

flexibility of Rpt insertion, we did not identify any unoccupied α pocket, although the 

existence of such a pocket was anticipated based on the Rpt–α subunit symmetry mismatch. 

Our data suggest a model in which a proteasome sample is composed of distinct sub-

populations, each with a different unoccupied pocket. Such subpopulations are likely to 

interconvert. Thus, an unoccupied pocket, though not fixed or identifiable by crosslinking, 

may underlie the flexibility in register of Rpt1, Rpt5, and Rpt4. Moreover, the symmetry 

mismatch between the Rpt and α rings also dictates that the Rpt tail and the α pockets 

cannot be aligned in such a way that each tail is proximal to a unique pocket (Fig. 6b), since 

the interpocket angle in the α ring is 51° and the tail-tail angle is on average 60°. This 

problem could be minimized if only two tails are engaged at a given time14 (i.e., those tails 

associated with ATP-bound subunit), but with the engagement of four tails, some tails would 

be required to straddle two α pockets.

Interestingly, the asymmetrical character of the RP–CP interface is consistent with existing 

genetic data in that strong phenotypes tend to cluster towards the fixed half of the ring. 

Among Rpt tail mutants, the strongest phenotype is that of Rpt6, which is fixed to the α2–α3 

pocket, whereas the weakest phenotype belongs to Rpt1, which shows flexibility in its 

pocket insertion(ref. 29 and S.P., unpublished data). Likewise, among the α subunits the α3 

mutants show a far more pronounced phenotype than α7 (ref. 12,13). All of the fixed tails – 

Rpt2, Rpt6, and Rpt3 show strong phenotypes, whether in proteasome assembly or 

gating8,29.
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The asymmetric character of the RP–CP interface described here may help to explain the 

misalignment in the axes of the Rpt and α rings observed in electron microscopic analyses 

of the proteasome. Fig. 6d provides one example17,33–35. Most likely the RP axis fluctuates 

substantially with respect to the CP49, the misaligned orientation described by Bohn et al33 

being an average of many species. Based on our mapping, the asymmetry arising from this 

misalignment is well correlated with that of crosslinking; it was concluded that the center of 

the Rpt ring is displaced in the direction of the α2–α3 pocket33, which is in the center of the 

region characterized by fixed crosslinks. Indeed, it is possible that the asymmetry of the CP-

RP interface described in this study may also underlie the tilted and misaligned RP-CP 

orientation in the PAN holoenzyme17, despite the homomeric nature of PAN and its 

corresponding α ring.

Although our findings define important parameters, especially regarding the fixed contact 

points, further aspects of RP–CP interaction require more study. Do Rpt tails that insert into 

two α pockets have a preferred pocket? Does the choice of pocket influence the functional 

consequences of tail engagement, such as in the assembly, gating and stability of the 

proteasome? Does the shift of a tail from one pocket to another occur primarily as a 

consequence of ATP hydrolysis? Is it true that any one of four distinct pockets can be 

unoccupied in a given proteasome (α4–α5, α5–α6, α6–α7, and α7–α1) or, for example, if 

α6–α7 is not occupied by Rpt4 is it always occupied by Rpt5?

The crosslinking approach requires the use of α pocket and Rpt tail mutants, which could 

affect the specificity of insertion. However, the only phenotypes we found were mild. 

Another caveat to the crosslinking approach is that it monitors the entry of Rpt tails into the 

α pocket, but not every instance of tail entry is necessarily a functional engagement. An 

important goal for future work is to determine the functional significance of asymmetry at 

the interface and whether this a property of the Rpt tails or some other element of the 

interface. It will be interesting to find mutants in which the symmetry of the interface is 

altered.

Proposed role of Rpt–CP contacts in Rpt ring assembly

Mapping of the Rpt–CP contacts also provides new information on assembly of the Rpt ring. 

Previous studies have suggested that Rpt ring assembly in yeast is guided, in part, by pre-

existing α rings28,29,32. Of particular importance to this model is that both α subunit mutants 

and Rpt mutants show the accumulation of Rpt ring assembly intermediates. The Rpt 

mutants were single amino acid deletions at the C-termini of Rpt4 and Rpt6, the latter 

displaying a stronger phenotype. To date, only one CP subunit, α3, has been implicated in 

Rpt ring assembly32. This subunit might thus be predicted to directly contact one of the 

Rpt’s that promote assembly, and indeed the tail of Rpt6 crosslinks specifically to α3. This 

observation provides further support for the idea that the CP promotes Rpt ring assembly in 

yeast and provides a foundation for more precise studies of this complex assembly pathway.

The asymmetry of the RP–CP interface may also underlie distinct functional differences 

among the RP chaperones, which bind near the C-termini of four of the Rpt proteins to assist 

in assembly of the Rpt ring. Rpn14 and Nas6 have been grouped functionally by genetic 

criteria, and are found on the fixed side of the Rpt ring. Rpn14 and Nas6 can be 
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distinguished genetically from Hsm3 and Nas2, which lie on the flexible side of the 

ring24,26,38. For Rpn14 and Nas6, prior studies suggest that the chaperone–Rpt interaction is 

competitive with RP–CP binding28,29. The suggested mechanism involves steric hindrance: 

insertion of the C-terminal tails of the Rpt proteins may be disfavored by the presence of the 

chaperones, due to the proximity of the chaperones to the CP when they are bound to Rpt 

proteins28,29. A still unidentified release mechanism may obtain for Hsm3 and Nas2 (ref. 

25,38,50 and S.P., unpub. data). Thus, insertion of Rpt tails into α pockets of the CP on the 

flexible side of the ring may be poorly suited to displace the chaperones.

RptC-termini and α subunit N-termini may coevolve

Our data raise the possibility that the C-terminal tails of the Rpt subunits have co-evolved 

with the N-terminal tails of the α subunits, though they are not in contact with one another. 

For example, Rpt2 has strong gate-opening ability whereas Rpt4 has not been seen to 

promote gate opening8,10,29. This may be attributed to the HbYX motif of Rpt2 and the 

absence of one in Rpt4 (ref. 8). But this distinction between Rpt2 and Rpt4 may also result 

from the nature of the N-terminal tails of the α subunits whose movements they direct. Our 

crosslinking data indicate that the C-terminal tail of Rpt2, in docking at the α3–α4 pocket, 

would displace the α3 N-terminal tail from its central position in the closed form of the CP 

gate (Fig. 8). On the other hand, engagement of the Rpt4 C-terminal tail would potentially 

lead to displacement of the N-terminal tail of α7. However, deletion of the α7 tail does not 

open the CP gate, whereas that of α3 does12. This difference is consistent with the 

positioning of these tails within the gate, with α3’s tail being the most centrally located of 

any α subunit and α7’s tail being peripheral (Fig. 8). Rpt4 might also influence the α1 N-

terminus, which is similarly peripheral (Fig. 8). More generally, it is striking that the N-

termini of the α subunits that show flexible crosslinking all point outwards from the CP in 

the closed state of the complex, whereas those showing fixed crosslink formation all follow 

an inward or lateral path (see Fig. 8b).

Coupling of gating to nucleotide hydrolysis

The proteasome undergoes cycles of ATP hydrolysis in both the presence and absence of 

substrate. Thus, the sensitivity of Rpt-α pocket crosslinking to nucleotide suggests that the 

tail–pocket interaction is dynamic, a conclusion that appears to apply to each Rpt protein. 

The low crosslinking efficiencies seen in the presence of ADP do not necessarily indicate 

complete dissociation of the Rpt tail from α pockets or a complete lack of involvement of 

ADP-bound Rpt proteins in gating. Indeed, ADP is effective in stabilizing RP-CP 

association, at least for yeast proteasomes42,51, although whether this effect is related to the 

engagement of Rpt tails with the CP is not known. The nucleotide-free form of the ATPase 

might show the most radical changes in orientation of the C-domain, but we cannot as yet 

probe that state, because wild-type proteasomes dissociate under such conditions.

In accordance with our finding that Rpt tails engage less strongly with the CP in the 

presence of ADP rather than ATP or ATPγS, we postulate that, as ATP is hydrolyzed by 

successive subunits in the Rpt ring, the contacts between the RP and CP undergo a cycle of 

motions in response. Structural studies of related hexameric ATPases suggest that nucleotide 

is hydrolyzed in a rotary mechanism52,53, in which one of the highly populated species 
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contains two ATP molecules and two ADP molecules, with two ATPase subunits not 

interacting with nucleotide. We favor an analogous model for the proteasome14. Our finding 

that ATP and ADP have distinct effects on the strength of interaction between the Rpt C-

termini and the α pockets therefore suggests that strong engagement of only a subset of tails, 

possibility as few as two, is needed for opening of the CP gate. The Rpt tails that strongly 

activate the gate – Rpt2, Rpt3, and Rpt5 – alternate around the ring. Consequently, the gate 

would remain open through cycles of ATP hydrolysis that proceed around the ring, even if 

ADP and unbound Rpt subunits adopt conformations that do not promote engagement of 

their C-termini.

METHODS

Yeast strains and media

Procedures for the genetic manipulation of yeast, including transformation and tetrad 

analysis, were as described55. Yeast strains are listed in Supplementary Tables 1 and 2. All 

strains used in this study are congenic with strain DF5 (MATa/MATα lys2-801/lys2-801 

leu2-3, 2-112/leu2-3, 2-112 ura3-52/ura3-52 his3-Δ200/his3-Δ200 trp1-1/trp1-1)56. 

Transformation cassettes57 were used for protein tagging. Standard synthetic defined media, 

consisting of 0.7% (w/v) Difco Yeast Nitrogen Base supplemented with amino acids, 

adenine, uracil, and 2% (w/v) dextrose, were used for growth of cells at 30°C unless 

specified otherwise. Spotting assays were performed as described58.

Antibodies

The anti-HA antibody was from AbCam (12CA5). Anti-Rpt4 and anti-α4 were from W. 

Tansey. Anti-Rpt1 and anti-Rpt6 were from C. Mann. Anti-Rpt2, Rpt3, and Rpt5 were from 

Biomol (PW8260, PW8250, and PW8245, respectively).

Preparation of total cell lysates and crosslinking in total cell lysates

Yeast cells were collected from 5-ml overnight cultures in YPD media and resuspended in 

0.5 ml PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4 [pH 

7.4]) supplemented with 5mM MgCl2 and 1 mM ATP. 75 μl of glass beads (0.5 mm soda 

lime, BioSpec, Bartlesville, OK) were added to the solution, and the cells were disrupted by 

sonication (cycles of 15 s of sonication followed by 15 s on ice over 3 min; S-450 digital 

sonifier, Branson, Danbury, CT). In one experiment (Fig. 4b), lysis was performed in liquid 

nitrogen as described29. The samples were then centrifuged (1.6×104 x g for 5 min at 4°C) 

and the supernatant collected and clarified. The protein concentration was estimated with the 

Coomassie Plus (Bradford) Protein Assay kit (Thermo Scientific, Rockford, IL) following 

the manufacturer’s instructions, and adjusted to 1 mg ml−1. Crosslinking was achieved by 

adding 0.1mM BMOE (Bis-Maleimidoethane: Thermo Scientific, Rockford, IL), followed 

by incubation on ice for one hour36. Crosslinking was quenched by addition of 1 mM DTT. 

The strains used for screening whole-cell lysates by crosslinking are listed in Supplementary 

Table 2.
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Purification and chemical crosslinking of proteasomes

All strains used for proteasome purification have a TEV-protein A tag appended to the C-

terminus of Rpn11 (ref. 51). Proteasome purifications were carried out using IgG-Sepharose 

(MP Biochemical, Solon, OH), with TEV protease (Invitrogen, Carlsbad, CA) used for 

elution (25mM Tris-HCl [pH7.5], 5mM MgCl2, 1mM ATP; details as described59 except 

that MgCl2 was used in all buffers that contained ATP). The crosslinking procedure for 

purified proteasomes was similar to that for total cell lysates except that the protein 

concentration was 0.1 mg ml−1. For crosslinking, purified proteasomes (in concentrated 

stocks in TEV elution buffer) were diluted into PBS supplemented with 5mM MgCl2 and 

1mM ATP.

Native PAGE of total cell lysate

Total cell lysates were prepared as described above, and 30 μg of total protein were resolved 

by 3.5% (w/v) native PAGE, followed by LLVY-AMC overlay assay60.

Nucleotide-dependence of crosslinking

Proteasomes were purified as described above except that the IgG column elution buffer 

contained 0.1 mM ATP instead of 1 mM ATP. Proteasomes were pre-incubated with 1 mM 

ADP, 1 mM ATP or 1 mM ATPγS at room temperature for 30 min before proceeding with 

same crosslinking protocol as given above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structural basis for the crosslinking strategy. Detail of a representative α pocket (α4–α5), 

showing residues used for crosslinking. A surface representation of the α5 subunit is shown 

along with cartoon representation of the last 12 residues of a PA26 subunit inserted in the 

α4–α5 pocket9. α5 is in purple, α4 in blue. A partial backbone of the α5 subunit is presented 

in cartoon mode with the side chain of T82 (the residue substituted with Cys and used for 

crosslinking) and K66 of α5 subunit as well as the C-terminal carbonyl group of PA26 

presented in stick mode. The distance between the C-terminus of PA26 and the pocket lysine 

K66, as well as that between the C-terminus and T82, are labeled (PDB: 1FNT11).
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Figure 2. 
Identification of two α–Rpt subunit pairs by cysteine crosslinking. (a,b) Whole cell lysates 

of yeast were subjected to crosslinking and SDS-PAGE-immunoblot analysis. In each panel, 

strains bear one α and one Rpt subunit with introduced cysteines. Panels a and b represent 

α1-I87C and α5-T82C mutants, respectively. Each panel contains a complete set of Rpt C-

terminal mutants, as indicated (Rpt1-N467C, Rpt2-L437C, Rpt3-K428C, Rpt4-L437C, 

Rpt5-A434C, and Rpt6-K405C). A 6xHA tag is present at the C-terminus of each α subunit. 

BMOE (0.1 mM) is a cysteine-cysteine crosslinker; crosslinking proceeded for 1 hr at 4°C. 

Crosslinked products are marked by an arrow. The antibody used to probe each panel is 

indicated at bottom. The electrophoretic mobility and molecular mass (in kDa) of protein 

standards are indicated at left. (c–f) Purified proteasomes from wild type yeast or mutant 

yeasts with either a single cysteine substitution or a double cysteine substitution within the 

two α–Rpt pairs identified in panels a and b were subjected to crosslinking and SDS-PAGE-

immunoblot analysis. Panels c and e for α1–Rpt4; panel d and f for α5–Rpt1. Here, as 

below, proteasomes were purified via a Protein A tag appended to Rpn11(ref. 51).
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Figure 3. 
Identification of the α4–Rpt2 pair. (a) Whole cell lysates from α4-N79C RptX double 

mutants were subjected to crosslinking and SDS-PAGE-immunoblot analysis. See legend to 

panel 2a for details. The crosslinked product is marked by an arrow. The antibody used to 

probe each panel is indicated at bottom. (b,c) Crosslinking of α4 to Rpt2 does not strictly 

require an introduced cysteine in α4. Purified proteasomes from wild type or mutant yeast 

with either single or double cysteine substitutions of the Rpt2–α4 pair were crosslinked and 

subjected to SDS-PAGE-immunoblot analysis. A set of strains in which the α4 subunit was 

not HA-tagged was used here and the blot was probed with α4-specific antibody. (d) Model 

of the α3–α4 pocket, showing proximity of endogenous Cys residues (C32 and C46) to the 

pocket. The surface of α4 is in gray. Cartoon representation of partial backbone of α4 and 

the C-terminal tail of PA26 are presented in red and green respectively, whereas the pocket 

surface is highlighted in blue. C32 and C46, along with N79 and C-terminus of PA26, are 

represented in stick mode and the distances between their β-carbons are labeled (PDB: 

1FNT11). (e) Whole cell lysates from cells expressing HA-tagged wild type α4 and Cys-
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substituted Rpt proteins were subjected to crosslinking, followed by SDS-PAGE-

immunoblot analysis. See legend to panel 3a for details. (f,g) Purified proteasomes from a 

set of C32A C46A strains were subjected to crosslinking followed by SDS-PAGE-

immunoblot analysis. In lanes marked α4, N79 was substituted with Cys. Those marked 

Rpt2 are from Rpt2-L437C mutants.
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Figure 4. 
Identification of the α3–Rpt6 and α2–Rpt3 pairs. (a) Whole cell lysates from stationary-

phase yeast strains carrying double Cys substitutions as indicated were subjected to 

crosslinking and SDS-PAGE-immunoblot analysis. All strains expressed α3-T81C. For the 

Rpt mutant set, see legend to Fig. 2a. Antibody to HA was used to probe for crosslinked 

products. (b) Whole cell lysates from yeast strains carrying the three identified Rpt–α3 pairs 

of panel a and in exponential growth (O.D.600=1) were subjected to crosslinking and SDS-

PAGE-immunoblot analysis. (c) Purified proteasomes from wild type yeast or mutant yeasts 

with either a single cysteine substitution or a double cysteine substitution within the α3–

Rpt6 pair identified in panels a and b were subjected to crosslinking and SDS-PAGE-

immunoblot analysis. (d,e) Purified proteasomes were subjected to crosslinking and SDS-

PAGE-immunoblot analysis. Mutant samples were α3-T81C, Rpt6-K405C, and α3-T81C 

Rpt6-K405C. The blots were probed with antibodies to either HA (to detect α3) or Rpt6. 

(f,g) Purified proteasomes were subjected to crosslinking and SDS-PAGE-immunoblot 

analysis. Mutant proteins were α2-A79C, Rpt3-K428C, and α2-A79C Rpt3-K428C. Blots 

were probed with antibodies to either HA or Rpt3. (g) Similar to Fig. 2a but with purified 

proteasomes from a set of strains bearing α2-A79C with Rpt C-terminal mutants. The blot 

was probed for possible crosslinked product using antibodies to Rpt3.
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Figure 5. 
Identification of crosslinks for α5–α6 and α6–α7 pockets. (a) Model of the α6–α7 pocket 

showing proximity of endogenous residue C113 of α6 to the introduced cysteine (A78C). 

The two α subunits were painted in magenta and cyan respectively and the C-terminus of 

PA26 in green. Partial backbones of the α subunits are in cartoon mode. Side chains of the 

three residues, either with native cysteine or the introduced cysteine, are in stick mode and 

the distances between their β-carbons are labeled. (b) Whole cell lysates from yeast strains 

carrying double Cys substitutions as indicated were subjected to crosslinking and SDS-

PAGE-immunoblot analysis. All strains expressed α7-I81C with C113 of α6 mutated to 

alanine. For the Rpt mutants, see legend to Fig.2a. (c,d) Purified proteasomes were subjected 

to crosslinking and SDS-PAGE-immunoblot analysis. Mutant samples were α7-I81C, Rpt1-

N467C, and α7-I81C Rpt1-N467C, all of which are purified from strains with C113 of α6 

substituted with alanine. (e,f) As in c and d, except for confirmation of α7-I81C and Rpt5-

A434C crosslinking. (g) Similar to a, model of α5–α6 pocket to show proximity of native 

cysteine C117 in α5 to the position where a cysteine was introduced in α6. α5 was painted 
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in magenta while the others are in the color scheme of a. (h) As in b, crosslinking of whole 

cell lysates of a set of strain bearing the α6-A78C and α5-C117A mutations. For Rpt 

mutants, see legend to Fig. 2a. (i–l) Similar as c–f, except that crosslinking was carried out 

with α6-A78C and Rpt4-L437A or Rpt5-A434C mutants.
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Figure 6. 
Model of the base–CP complex. (a) Proposed model mapping the six Rpt tails to the seven 

α-pockets of the CP. α subunits are in tan with white inter-subunit pockets. Rpt subunits are 

in yellow with blue C-terminal tails. Solid arrows from an Rpt’s C-terminal tail represent 

unique crosslinking between Rpt and specific α pocket. Dashed arrows from the C-terminal 

tail indicate crosslinking of Rpt to multiple α pockets. (b) Proposed model for the mapping 

the six Rpt tails into the seven α-pockets of the CP. The α-ring is represented as a molecular 

surface mode with each subunit in a different color. The pockets formed between subunits 

are colored black. The six Rpt C-termini are given as white spheres, the positions of which 

are modeled from the C-termini of the D2 domain of CDC48 (PDB: 3CF1 ref. 54). (c) Ball 

model of base–CP complex. The C2-fold symmetry axis of the CP lies at the interface 

between β1 and β1′ as shown. (d) CP-RP misalignment of the proteasome holoenzyme as 

revealed by cryo-electron microscopy. Averaged images of negatively stained Drosophila 

melanogaster proteasomes. The density assigned to the Rpt ring is given in orange, the 

remainder of the proteasome in tan. Adapted with permission from Nickell et al34.
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Figure 7. 
Effect of nucleotides on crosslinking between α and Rpt subunits. Proteasomes with 

introduced cysteines on the nine identified α–Rpt pairs were purified in the presence of 0.1 

mM ATP, then incubated at room temperature for 30 min with various nucleotides as 

indicated at 1 mM, followed by crosslinking at 4°C. Immunoblots of these samples were 

probed with antibody to HA.

Tian et al. Page 23

Nat Struct Mol Biol. Author manuscript; available in PMC 2012 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
α-subunit N-terminal tails and the Rpt proteins proposed to direct their movements. Top 

panel as viewed from the RP–CP interface. The closed form of the CP channel is shown4. 

The N-terminal tails (residues 10–18 of α1, 1–11 of α2, 2–12 of α3, 3–10 of α4, 9–14 of α5, 

2–12 of α6, and 4–13 of α7) are shown in cartoon mode and painted in different colors. The 

remaining residues are in surface representation, colored in grey. The α carbon of the last 

residue of each N-terminal tail is in sphere mode. The bottom panel is a side view of the α-

ring gate with the same color scheme as at top. Note that Rpt4 and Rpt6 are positioned to 

disrupt the N-terminal tails of α7 and α2, but do not open the gate29, consistent with their 

lack of a HbYX motif8 and the minor role in gating played by the peripheral α7 N-

terminus12.
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