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Abstract
Recently, Artificial Intelligence (AI) and Machine Learning (ML) have been successfully applied to many domains of inter-
est including medical diagnosis. Due to the availability of a large quantity of data, it is possible to build reliable AI systems 
that assist humans in making decisions. The recent Covid-19 pandemic quickly spread over the world causing serious 
health problems and severe economic and social damage. Computer scientists are actively working together with doctors 
on different ML models to diagnose Covid-19 patients using Computed Tomography (CT) scans and clinical data. In this 
work, we propose a neural-symbolic system that predicts if a Covid-19 patient arriving at the hospital will end in a critical 
condition. The proposed system relies on Deep 3D Convolutional Neural Networks (3D-CNNs) for analyzing lung CT scans 
of Covid-19 patients, Decision Trees (DTs) for predicting if a Covid-19 patient will eventually pass away by analyzing its 
clinical data, and a neural system that integrates the previous ones using Hierarchical Probabilistic Logic Programs (HPLPs). 
Predicting if a Covid-19 patient will end in a critical condition is useful for managing the limited number of intensive care 
at the hospital. Moreover, knowing early that a Covid-19 patient could end in serious conditions allows doctors to gain early 
knowledge on patients and provide special treatment to those predicted to finish in critical conditions. The proposed system, 
entitled Neural HPLP, obtains good performance in terms of area under the receiver operating characteristic and precision 
curves with values of about 0.96 for both metrics. Therefore, with Neural HPLP, it is possible not only to efficiently predict 
if Covid-19 patients will end in severe conditions but also possible to provide an explanation of the prediction. This makes 
Neural HPLP explainable, interpretable, and reliable.
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1  Introduction

The global emergency caused by the spread of Covid-19 
has highlighted the necessity for early-stage identifica-
tion of complications and risk status of patients caused by 
the Covid-19 infection. This is because early diagnosis is 
vital for Covid-19 positive patients [1]. Thanks to the huge 
amount of data and much research on healthcare (Medicine 
4.0), Artificial Intelligence (AI) technologies are increas-
ingly applied to medical field [2–4]. Predicting complica-
tions of a certain disease by analyzing medical records of 
patients is hindered by many problems such as difficulty in 
finding patterns in structured clinical data, missing values, 
and a lack of annotation. For these reasons, predicting the 
risk of developing complications in the medical field is a 
relevant challenge. Currently, the analytical capability of 
Deep Learning (DL) algorithms has proven to be extremely 
accurate but not interpretable, understandable and therefore 
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often not reliable. It is therefore necessary to build systems 
that are able to provide clear explanations of their decisions 
[5, 6] particularly in sensitive areas such as medicine. More 
importantly, it is necessary to motivate medical diagnoses 
or decisions with detailed reasoning and explanations. Due 
to the current historical period and thanks to the wide avail-
ability of data, applying ML and DL to Covid-19 data is 
an active and ongoing area of research [7, 8]. In this paper, 
neural and symbolic approaches to AI are investigated. Neu-
ral models, that belongs to DL family, are used to analyze 
unstructured data like Computed Tomography (CT) scans 
and symbolic models are used to analyze structured clini-
cal data. The aim of this work is to design and implement a 
neural-symbolic model that is able to predict the severity of 
Covid-19 patients from clinical data and lung CT scans and 
enable the model to provide an explanation of its prediction. 
The idea is to extract relevant patterns from heterogeneous 
data collected from patients to produce a more comprehen-
sive analysis.

The rest of the paper is organized as follows: Section 2 
describes the adopted method and presents the different 
medical data used in the present work. Experiments on 
Decision Trees (DTs), 3D Convolutional Neural Networks 
(3D-CNNs), and Neural Hierarchical Probabilistic Logic 
Programs (Neural HPLPs) are presented in Section  3.  
Section 4 presents the obtained results. Section 5 discusses 
the proposed approach with some related work and finally, 
Section 6 concludes the paper.

2 � Methods

In order to predict the health state of Covid-19 patients 
arriving at the hospital, we propose a novel Neural-Symbolic 
method shown in Fig. 1, which integrates both symbolic, 
Probabilistic programs [9–11] and neural systems [12–14]. 

The neural-symbolic block is based on Hierarchical Proba-
bilistic Logic Programming (Hierarchical PLP) [15], which 
is an ML model that is able to build scalable, reliable and 
explainable AI systems. HPLP receives as input the integra-
tion of the outputs of a DT system that predicts the severity 
state of Covid-19 patients from clinical data and a 3D-CNN 
that predicts the patients’ lungs state using lung CT scans. 
Then, HPLP learns a set of probabilistic rules that predicts, 
at an early stage, if a Covid-19 patient arriving at the hos-
pital will end in a critical condition. Therefore, we trained 
a 3D-CNN for predicting the severity of lung lesions and 
a DT to predict the probability of a patient’s death during 
hospitalization. The output of these two systems is combined 
to generate the dataset for the final part of the system which 
integrates the neural and the symbolic approaches through 
HPLP.

2.1 � Dataset

The dataset is composed of two sub-datasets: clinical data 
and lung CT scans. The clinical dataset was provided by a 
hospital in Ferrara, Italy. It contains records of 502 Covid-19 
positive patients collected during spring 2020 from which 
126 died during hospitalization. Thus, the dead patients cor-
respond to about 25% of the whole dataset. Each patient in 
the dataset has 59 clinical attributes. Additionally, 96 of the 
patients also had an associated CT scan. The 96 patients 
were kept as the test set. Of these 96 patients, 30 passed 
away during the hospitalization period. Table  3 in the 
Appendix shows the clinical attributes of each patient with 
the corresponding acronyms.

The CT scans dataset is described in MosMedData [16]. 
It contains human lung CT scans with Covid-19-related find-
ings, as well as without such findings. The CT scans were 
collected in 2020 and provided by the municipal hospital 
in Moscow, Russia. The dataset contains CT scans divided 

Fig. 1   Neural-Symbolic Integra-
tion system: DT and 3D-CNN 
are integrated using HPLP

NEURAL-SYMBOLIC 
INTEGRATION

NEURAL
BLOCK

SYMBOLIC
BLOCK

CLINICAL 
DATA

CT 
SCANS

DECISION TREE

3D CNN

HIERARCHICAL
PLP

3462 Medical & Biological Engineering & Computing (2022) 60:3461–3474



1 3

by the severity of lung tissue abnormalities with Covid-19. 
There are five classes: without injuries, with mild, moder-
ate, severe and critical injuries respectively. The dataset is 
distributed as follows: CT-0, CT-1, CT-2, CT-3 and CT-4 
contain 254, 684, 125, 45 and 2 patients respectively. It 
can be observed that the dataset is unbalanced towards the 
CT-1 class, and the mild injuries class. Due to the reduced 
numbers of the last three classes, they were merged into 
one class obtaining the following distribution: CT-0 with 
254 (22.8%), CT-1 with 684 (61.6%) and CT-234 with 172 
(15.6%) patients respectively. Figure 2 shows an example of 
an image for each class. These classes correspond to three 
different levels of severity of lung injuries that are as fol-
lows: healthy, minor and serious. We used as test set the 
CT scans of the 96 patients named previously. All images 
in this dataset are in Digital Imaging and COmmunications 
in Medicine (DICOM) format. So, a CT scan in DICOM 
format can be seen as a set of consecutive images that form 
a 3D image. For this reason, we used a convolutional neural 
network with 3D filters.

3 � Experiments

3.1 � Experiments on clinical data

In this experiment, done on the clinical dataset, see  
Section 2.1, a ML model that predicts the probability of 
a patient’s death during the hospitalization period is built. 
To balance the data, the Synthetic Minority Oversampling 
Technique (SMOTE) [17, 18] was applied. SMOTE selects 
a minority class instance and picks its n nearest neigh-
bors belonging to the same class. The generated synthetic 
instance is then created by choosing one of the n nearest 
neighbors and connecting them with the chosen real instance 

to form a line segment in the feature space. Then, SMOTE 
is used to oversample the class of dead patients since it cor-
responds to 25% of the dataset. The ML models used for 
these experiments were DTs [19] and Random Forests (RFs) 
[20, 21]. The experiment is divided into two steps: the first 
step uses a RF to extract the most relevant clinical features 
that determine the patient’s death during hospitalization and 
the second step trains a DT using only the relevant features 
previously extracted. In fact, a new version of the dataset 
was created with the same number of patients but with only 
10 clinical parameters. This new dataset was used to train 
a DT whose accuracy was similar to the one provided by 
the RF. A DT was used because it is possible to extract the 
entire decision path (in the form of a rule, see Rule 1) which 
provides an initial explanation of the prediction.

The most relevant clinical attributes extracted by the RF, 
with an accuracy of ∼ 80% , are as follows: Age, Sex, Glo-
merular Filtration Rate (GFR), C-reactive Protein (CRP), 
Troponin, Creatinine, Lactate Dehydrogenase (LDH), Brain 
Natriuretic Peptide (BNP), Procalcitonin (PCT), White 
Blood Cells (WBC), Charlson Index. This result is in line 
with the work done by Yan li et al. [22] which states that 
LDH, lymphocytes and CRP are crucial predictive biomark-
ers of disease mortality with an accuracy of 90%.

After training a DT with the clinical attributes listed 
above, we achieved about 70% accuracy on the test set (i.e., 
on the 96 patients described at the beginning of this section).

3.2 � Experiment on lung CT scans

The second experiment was performed on patient’s lung 
CT scans dataset, see Section 2.1. A deep neural network 

(1)
�� condition1 ∧ condition2 ∧ ... ∧ conditionn���� outcome

Fig. 2   Example of images of a slide of a DICOM voxel for the three classes. From left to right images belonging to class CT-0, CT-1 and 
CT-234 respectively
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that predicts the gravity of lung injuries from patients’ CT 
scans is implemented. Before training the model, the CT 
scans were pre-processed using a segmentation that creates 
a lung’s binary mask followed by an application of a mask 
to eliminate unnecessary parts of the images, see Fig. 3. The 
segmentation was done using the Hounsfield (HU) scale. The 
HU scale is a quantitative scale for describing radiodensity 
in medical CT. On HU scale, air is represented by a value 
of − 1000 and bone between + 700 to + 3000. As bones are 
much denser than the other soft tissues, they show up much 
better in CT scans. Using this information, it was possible to 
identify which part of the image contains lungs and create a 
binary mask, lungs are represented by a value between − 700 
to − 600 in the HU scale. After the segmentation and the 
application of the binary mask, the images were normalized 
between 0 and 1. It should be noted that the use of a fixed 
threshold for the segmentation of lungs, might be affected 
by different scanners and acquisition conditions [23]. This 
problem can be addressed via techniques based on unsuper-
vised Fuzzy C-Means (FCM) clustering called spatial FCM 
(sFCM) [24]. Fundamentally, the FCM method [25] is a par-
titional clustering technique that minimizes the intra-cluster 
variance, as well as maximizes the inter-cluster variance, in 
terms of a distance metric between the feature vectors [26]. 
The FCM clustering does not take into account any spatial 
relationship among pixels since all the samples are used as 
dispersed and independent points. The sFCM [27] enables 
the retention of the same formulation and objective function 
as the classic FCM algorithm, just by modifying the update 
rules with the local spatial content in the image.

When working on 3D scans, in addition to the spatial 
characteristics of the images, the volumetric aspect of the 
CT scans has to be learned. The network trained in this work 
is a 3D-CNN composed as follows: two blocks with two 3D 
convolutional layers with 5 × 5 × 5 kernel and ReLU -like 
activation function followed by a max pooling layer with 98 
and 160 neurons respectively. These two blocks are followed 
by two fully connected layers. The first with 110 neurons and 

the second is the output layer with 3 neurons corresponding 
to the three classes: CT-0, CT-1, CT-234.

The 3D-CNN was trained and validated on the MosMed-
Data dataset achieving ∼ 70% accuracy on the validation 
set. It was also tested on the CT scans of the 96 patients 
described in Section 3.1 achieving ∼ 54% accuracy. This 
result is heavily conditioned by the low amount of CT scans 
in the dataset.

3.3 � Neural hierarchical probabilistic logic program 
(Neural HPLP)

In this section, a neural-symbolic system that allows  easy 
integration of both symbolic and sub-symbolic models is 
proposed. It allows to build an efficient, interpretable and 
explainable system for early-stage prediction of the critical 
state of Covid-19 patients. The proposed system relies on 
HPLP [10, 15, 28–30], an extension of Liftable PLP [31], 
which is a recent AI approach for integrating symbolic (e.g., 
PLP) and sub-symbolic (e.g., neural networks) approaches 
of AI. The proposed system, named Neural HPLP, learns a 
predicate, also called target predicate using a set of exam-
ples called interpretations. Each interpretation is associated 
with each patient and is composed of the outputs of the DT 
and the 3D-CNN described in Sections 3.1 and 3.2 respec-
tively. How to generate the interpretations is described in 
Section 3.3.1. The target predicate is, for a Covid-19 patient, 
that being in a critical state.

Now, suppose we want to compute the probability of 
atoms1 for a target predicate r using a PLP. In particular, 
we want to compute the probability of a ground atom r(⃗t)2, 
where t⃗  is a vector of terms3. We consider a specific form of 

Fig. 3   Segmentation of CT scans. The odd images represent an original slice of the DICOM voxel that depict the lungs of the patient. The even 
images represent the binary masks obtained after the pre-processing

1  An atom is a predicate, p, applied to some terms
2  An expression (atom, literal, term or formula) is ground if it does 
not contain any variable
3  A term is a variable, a constant, or a functor, f, applied to terms, 
f (t1, t2,… , tn).
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PLP that defines r in terms of input predicates (their defini-
tion is given as input and is certain) and hidden predicates, 
defined by clauses of the program. Discrimination is done 
between input predicates, which encapsulate the input data 
and the background knowledge, and the target predicate, 
which is the predicate we are interested in predicting, i.e., 
in our case Covid-19 patient in a critical state. We intro-
duce the notion of hidden predicates which are disjoint from 
input and target predicates. Each clause in the program has 
a single head atom annotated with a probability. Further-
more, the program is hierarchically defined so that it can 
be divided into layers. Each layer defines a set of hidden 
predicates in terms of predicates of the layer immediately 
below or in terms of input predicates. A generic clause C 
is of the form

 where 𝜙(X⃗, Y⃗) is a conjunction of literals4 for the input 
predicates. The vector X⃗ represents variables appearing in 
the head of C and Y⃗  represents the variables introduced by 
input predicates. bi(X⃗, Y⃗) for i = 1,…,m is a literal built on a 
hidden predicate. Variables in Y⃗  are existentially quantified 
with scope of the body. Only literals for input predicates 
can introduce new variables into the clause. Moreover, all 
literals for hidden predicates must use the whole set of vari-
ables of the predicate in the head X⃗ and of input predicates 
Y⃗  . Moreover, we require that the predicate of each bi(X⃗, Y⃗) 
does not appear elsewhere in the body of C or in the body of 
any other clause, i.e., each hidden predicate literal is unique 
in the program. We call Hierarchical PLP the language that 
admits only programs of this form [15]. A generic hierarchi-
cal program is defined as follows:

C = p(X⃗) ∶ 𝜋 ∶ −𝜙(X⃗, Y⃗), b1(X⃗, Y⃗),… , bm(X⃗, Y⃗)

where r is the target predicate and r1_1…_n is the predicate 
of b1_1…_n , e.g., r1_1 and rn_1 are the predicates of b1_1 and 
bn_1 respectively. The bodies of the lowest layer of clauses 
are composed only of input predicates and do not contain 
hidden predicates. Note that here the variables were omitted 
except for rule heads.

A generic program can be represented by a tree, see Fig. 4 
with a node for each clause and literal for hidden predicates. 
Each clause (literal) node is indicated with Cp⃗ ( bp⃗ ) where p⃗ 
is a sequence of integers encoding the path from the root to 
the node. The predicate of literal bp⃗ is rp⃗ which is different 
for every value of p⃗.

Given the target predicate to learn, i.e., a Covid-19 patient 
in a critical state, Neural HPLP learns from data a HPLP 
which consists of a set of logical clauses annotated with 
probabilities. The learned program is able not only to predict 
whether a patient arriving at the hospital will end in a criti-
cal state but it is also able to give a useful explanation of its 
prediction. To learn a HPLP, an algorithm entitled Structure 
LEArning of Hierarchical Probabilistic logic programming 
(SLEAHP) generates a set of clauses called bottom clauses 
from examples called interpretations. An interpretation is a 
whole description of a particular example. In our case it con-
tains all clinical information concerning a patient, see Exam-
ple 1. Then, an initially large HPLP is randomly generated 

C1 = r(X⃗) ∶ 𝜋1 ∶ − 𝜙1, b1_1,… , b1_m1

…

Cn = r(X⃗) ∶ 𝜋n ∶ − 𝜙n, bn_1,… , bn_mn

C1_1_1 = r1_1(X⃗) ∶ 𝜋1_1_1 ∶ − 𝜙1_1_1, b1_1_1_1,… , b1_1_1_m111

…

C1_1_n11
= r1_1(X⃗) ∶ 𝜋1_1_n11 ∶ − 𝜙1_1_n11

, b1_1_n11_1,… , b1_1_n11_m11n11

…

Cn_1_1 = rn_1(X⃗) ∶ 𝜋n_1_1 ∶ − 𝜙n_1_1, bn_1_1_1,… , bn_1_1_mn11

…

Cn_1_nn1
= rn_1(X⃗) ∶ 𝜋n_1_nn1 ∶ − 𝜙n_1_nn1

, bn_1_nn1_1,… , bn_1_nn1_mn1nn1

…

Fig. 4   Generic Hierarchical Probabilistic Logic Program

4  A literal is an atom or its negation
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from the bottom clauses. This large HPLP is converted 
into a deep neural network and algorithms such as Gradi-
ent Descent/Back-propagation, see [32], and Expectation 
Maximization, see [29], are applied to learn the probabilities 
associated with the clauses. Finally, clauses with very small 
values of probabilities are removed. For a detailed descrip-
tion of HPLP, see [15, 28]5. The following section described 
how to generate examples used to train the neural-symbolic 
block. Experiments predicting the critical state of a Covid-
19 patient are described in Section 3.3.2

3.3.1 � Data generation

Since Neural HPLP takes as input a set of interpretations 
that consists of the whole description of information regard-
ing a single Covid-19 patient, we generated as many inter-
pretations as the number of available patients by applying 
the following criteria: each interpretation is annotated with a 
predicate that defines the critical state of the corresponding 
patient: a patient is in a critical state if the DT classifies him/
her as subject to death soon (dead) or if the 3D-CNN classi-
fied its lung as in serious condition. Two more predicates are 
added in the interpretation which correspond to the output 
of the DT (dead or alive) and the 3D-CNN (state of its lung, 
serious, minor or healthy) respectively. In order to enrich 
each interpretation, we also added in each the decision path, 
i.e., the set of predicates applied by the DT to take its deci-
sion, see Example 1.

Example 1  Consider the following interpretation that 
describes a Covid-19 patient with id 98:

where the first three predicates indicate that the patient 
was labelled as in critical conditional, the DT classifies him/
her as dead and the 3D-CNN classifies his/her lung as in 
mild state. The other predicates are those included in the 
body of the decision path applied by the DT to predict the 
vital state of the patient, vital_state(98,dead).

critic(98).

vital_state(98, dead).

lung_injury(98,minor).

age(98, 94).

pcring(98, 13.59).

ldhing(98, 71.89).

troponina(98, 0.0).

pcting(98, 403.0).

3.3.2 � Main experiments on neural HPLP

After training the DT and the 3D-CNN, the inference was 
performed on the corresponding test sets (96 patients) as 
described in Section 2.1. Classifications on the test set for 
both DT and 3D-CNN were compared with those given by 
an expert in the domain, a radiologist in particular. Accord-
ing to the expert, 51 were correctly classified. We then built 
51 interpretations using the procedure described in the pre-
vious section. Among the interpretations, 20 were labelled 
as in a critical state and 31 as in a non-critical state. Given 
the reduced amount of data, the training procedure was done 
using cross-validation, i.e., the dataset is split into three folds 
with 17 interpretations in each fold. Every fold is balanced 
in terms of patients criticality. Interpretations in two folds 
are used for training and the remaining for testing. The pro-
cedure is repeated for the three crossed-combinations. Two 
versions of SLEAHP are applied: SLEAHP_DEEP which 
uses Gradient Descent/Back-propagation (specifically with 
Adam optimizer) for learning the parameters and SLE-
AHP_EM that uses Expectation Maximization as parameter 
learning. Both versions were trained with L_2 regularization 
[33–37] as described in [15], e.g., after learning, clauses 
annotated with probabilities less than a certain threshold are 
dropped. We used 10− 5 as threshold. Both algorithms were 
trained for 1000 iterations with early stop. The default Adam 
hyper-parameter was used in SLEAHP_DEEP.

3.4 � Additional experiments on neural HPLP

Before presenting the result of the present experiments in 
Section 4.1, an additional experiment was performed on 
a dataset similar to the one presented previously but this 
additional experiment was performed to assess Neural 
HPLP both on a limited and a consolidated dataset. The 
dataset used for the additional experiment was provided 
by Huazhong University of Science and Technology [38], 
Wuhan, China, and consists of 1521 patients of which 1126 
from Union Hospital (HUST-UH) and 395 from Liyuan 
Hospital (HUST-LH). The dataset includes 894 Covid-19 
positive patients (COVID+) and 627 non-Covid-19 patients 
(COVID−). All patients had 120 clinical attributes, and 
1342 subjects had both CT and clinical data. To perform 
the experiments, patients with normal CT (class Normal) 
and with lung lesions (class Pneumonia) are considered. 
More precisely, 1006 patients with pneumonia and 336 
patients with normal lungs. All examples in the dataset are 
in DICOM format. In the experiment, for each image, indi-
vidual slices were extracted and processed. More precisely, 
only part of the images containing the lungs was considered. 
Table 4 in Appendix list all clinical attributes. A total of 
47260 2D images were obtained and used for the training of 
a CNN. The dataset, grouped by the patient, was divided into 

5  An online version of the system is available at https://​cplint.​eu/e/​
phil/​phil_​examp​les.​swinb. The manual is also available at https://​
arnau​dfadja.​github.​io/​phil
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training (75%), validation (10%), and testing (15%). There-
fore, the test set includes 203 patients.

The trained CNN is composed of the following parts: 
four blocks composed of one convolutional layer with ker-
nels of shape 3 × 3 and ReLU as activation function fol-
lowed by a batch normalization layers with 64, 64, 128 and 
256 neurons respectively. These blocks are followed by 
a global average pooling layer, one fully connected layer 
with 512 neurons and one dropout layer. The output layer 
consists of 2 neurons associated with the two classes: Nor-
mal, Pneumonia lung.

Regarding clinical data, a similar approach applied in the 
previous experiment, described in Section 3.1, is adopted. 
The only difference is that the RF and DT were used to pre-
dict COVID+ or COVID− instead of the death of a patient 
during hospitalization.

4 � Results

This section presents the results on both the main and the 
additional experiments.

4.1 � Results on the main experiment

This section presents the results of Neural HPLP. Since 
data used are unbalanced in both categories, we draw, 
for each test fold, the Receiver Operating Characteris-
tics (ROC) and the Precision-Recall (PR) curves and 
compute the area under each curve (AUCROC and 
AUCPR) as described in [39]. The values of the areas, 
the final loss values and the associated average over the 
folds, highlighted in bold, for both SLEAHP_DEEP and 
SLEAHP_EM are shown in Tables 1 and 2 respectively. 
While these systems provide high performance both in 

terms of AUCROC and AUCPR, it is worth noting that 
SLEAHP_EM performs better than SLEAHP_DEEP. The 
perfect result obtained in Fold 3 was due to the fact that 
the combination of data included in folds 1 and 2 used for 
training was informative enough and enable the algorithm 
to learn a better theory. It could also be observed that 
the value of the loss function associated with Fold 3 is 
better than the ones associated with Fold 1 and 2. It also 
is worth noting that SLEAHP_EM converges faster than 
SLEAHP_DEEP as observed in Figs. 5 and 6.

An example of learned rules is shown in Example 2. 
From the example, it can be clearly highlighted the fact 
that the feature pcting is one of the most relevant clinical 
attributes useful to predict if a patient will end in a criti-
cal state. The first clause states that a Covid-19 patient is 
very likely to end in a critical state if his/her lungs are 
in a serious condition. This explanation is a clear conse-
quence of the criteria for labelling interpretations defined 
in Section 3.3.1. Another interesting explanation can be 
observed using the combination of rules highlighted in 
bold: these rules state that if the troponina value of the 
Covid-19 patient is greater than 14.5, then the patient is 
very likely to end in a critical state. Similar explanations 
can be observed for the other clinical attributes. Based on 
the present work, doctors could pay more attention to these 
clinical values of a Covid-19 patient arriving at the hospital 
and improve their diagnosis and decision relying on the 
learned explanation.

Table 1   Areas under the curves and loss for SLEAHP_DEEP

AUCROC AUCPR Loss

Fold 1 0.67347 0.80148 -10.80451
Fold 2 0.83333 0.90110 -8.99724
Fold 3 1.00000 1.00000 -5.57603
Average 0.83560 0.90086 -8.45926

Table 2   Areas under the curves and loss for SLEAHP_EM

AUCROC AUCPR Loss

Fold 1 0.95918 0.95876 -4.64181
Fold 2 0.93750 0.94097 -5.45861
Fold 3 1.00000 1.00000 -4.17694
Average 0.96556 0.9665766667 -4.75912

Fig. 5   SLEAHP_DEEP loss function: training using the first two 
folds
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Example 2  Learned rules for predicting the critical state 
of a Covid-19 patient critic:0.9983201826613162:-lung_
injury(serious). critic:0.07404512050456119:-troponina(B). 
critic:0.0031878498774003394:-bnp(C),hidden_3(C). 
critic:0.009686597460037139:-age(D). critic:0.01723 
3160198335595:-pcr ing(E). cr itic:0.9999999999 
999978:-pcting(F). critic:0.009842737641589272:-
gender_f_2(G),hidden_8(G). critic:0.31365106628607303:- 
age(H),hidden_9(H). critic: 0.9441254441618012:- 
troponina(I),hidden_10(I). critic:0.0037801053824951802:-
ldhing(J),hidden_12(J).  cr i t ic:0.0037629815686 
6 8 6 1 0 8 : - c h a r l s o n i n d e x ( K ) , h i d d e n _ 1 3 ( K ) . 
cr itic:0.00843829776843874:-age(L),hidden14(L). 
critic:0.003175373172965623:-pcring(M),hidden_15(M). 
critic:0.025554356497234587:-ldhing(N),hidden_16(N). 
critic:0.009720608547637732:-gender_f_2(O),hidden_17(O). 
critic:0.20913363931689946:-age(P),hidden_18(P). 
c r i t i c : 0 . 0 0 0 2 3 6 3 1 6 5 5 1 6 1 6 8 7 7 4 8 : - p c r i n g ( Q ) , 
hidden_19(Q). critic:0.05738042137315996:-ldhing(R). 
critic:0.010041915381422406:-gender_f_2(S),hidden_21(S). 
hidden_3(C):0.00323811617948383:-greater_than(C,393.0). 
hidden_8(G):0.009921403222347414:-greater_than(G,2.0). 
hidden_9(H):0.31230871757212836:-greater_than(H,70.0). 
hidden_10(I) :0.9441254441618012:- greater_ 
than(I,14.5). hidden_12(J):0.0037799297021227085:-greater_
than(J,101.87). hidden_13(K):0.0037630849919179643:- 
g r ea t e r_ t han (K ,21 .0 ) .  h idd e n _ 1 4 ( L ) : 0 . 0 1 0 8 9
7 3 4 6 8 8 3 7 5 9 1 5 1 : g r e a t e r _ t h a n ( L , 7 8 . 0 ) .  h i d d e

n _ 1 5 ( M ) : 0 . 0 0 3 1 3 4 7 2 9 5 7 2 4 0 0 0 7 4 5 : - g r e a t e r _
than(M,22.79). hidden_16(N):2.911186251403075e-5:- 
greater_than(N,54.37). hidden_17(O):0.0084854038369232:-
greater_than(O,2.0). hidden_18(P):0.20917254607034547:-
g r e a t e r _ t h a n ( P, 8 5 . 0 ) .  h i d d e n _ 1 9 ( Q ) : 0 . 0 4 3 
254912362177045:-greater_than(Q,7.82). hidden_2
1(S):0.009506938720927838:-greater_than(S,2.0).

4.2 � Results on the additional experiment 

This section presents the results of Neural HPLP applied to 
a more consolidated dataset described in Section 3.4. This 
further experiment serves to confirm the reusability, validity 
and more importantly the efficiency of Neural HPLP. As men-
tioned in Section 3.4, the target is to identify patients positive 
to Covid-19. First, we trained a RF on all clinical data clas-
sifying if the patients are positive or negative to the Covid-19. 
As results, we obtained an accuracy of 93.9%, an AUCROC of 
0.93 and an AUPRC of 0.86. Then, using the trained RF, the 
first 10 (most important) clinical attributes are extracted and 
are the following: Temperature, Coefficient variation of red 
cell volume distribution width, Standard deviation of red cell 
volume distribution width, Age, Lymphocyte count, Eosinophil 
percent, Eosinophil count, Neutrophil percent, Hemoglobin 
and Lymphocyte percent. Considering only these features, a 
new dataset for training a DT is generated. After training the 
DT, the following metrics on the set are obtained: an accu-
racy of 90.14%, an AUCROC of 0.9045 and an AUCPR of 
0.9208. Experiments on the trained CNN achieved the follow-
ing results on the test set: an accuracy of 81.77%, an AUCROC 
of 0.823 and an AUCPR of 0.8709.

The last part of the experiment is performed using SLE-
AHP_EM and SLEAHP_DEEP. From the outcome of the DT 
and CNN, a dataset consisting of 203 interpretations (one for 
each patient in the test set) is generated for training SLE-
AHP systems. From the experiment, the following results are 
obtained: SLEAHP_DEEP achieved an AUCROC of 0.8188 
and an AUCPR of 0.7210 while SLEAHP_EM achieved better 
results with an AUCROC of 0.8956 and an AUCPR of 0.8144.

In summary, this additional experiment on a consolidated 
dataset confirms the accuracy and more importantly the 
effectiveness of Neural HPLP.

5 � Discussion

Different studies demonstrate that early diagnosing of Covid-19 
considerably decreases its mortality rate [1]. Our work introduces 
an explainable AI system, Neural HPLP, that predicts if a Covid-
19 will end in a severe condition and therefore will need intensive 
care or more intensive treatment. Predicting if a Covid-19 patient 
will end in a critical condition is useful in managing the pandemic 
and saving human lives. In the peak of the crisis with numerous 

Fig. 6   SLEAHP_EM loss function: training using the first two folds
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Covid-19 patients in severe conditions, managing the limited 
number of intensive care in any hospital becomes vital. Knowing 
early that a Covid-19 patient could end in serious conditions has 
many advantages: it allows doctors to gain early knowledge on 
patients and provide special treatment to those predicted to finish 
in severe conditions. Moreover, it allows doctors to predict the 
future number of patients in intensive care and therefore enable 
an optimal distribution of those places with respect to other criti-
cal diseases. Finally, by providing a rules-based explanation of its 
prediction, e.g., the clinical attributes relevant to detect the severity 
condition as in Example 2, Neural HPLP not only guides doctors 
to provide special treatments to those patients, but appears to be a 
more interpretable and reliable predictive model.

Based on the format of the medical data such as structured 
clinical data, CT, radiographs, and ECG, it is possible to find 
in the literature different approaches and applications of ML 
and DL algorithms that analyze and create predictive models 
on Covid-19 positive patients. Regarding clinical data, Chansik 
An et al. [40] used different ML models to diagnose Covid-19 
patients based on socio-demographic information and medical 
status, for the nationwide cohort of South Korea. Dan Assaf 
et al. [41] used DL, RF and DTs to improve the management 
of the pandemic through the optimization of both medical 
resources allocation and triage procedures. An Italian study 
conducted by Augusto Di Castelnuovo et al. [42] used ML algo-
rithms to analyze clinical data of about 3000 Covid-19 patients. 
The work aim at identifying the underlying characteristics 
affecting Covid-19 patients who died during hospitalization. 
Another study conducted by Yan Li et al. [22] uses eXtreme 
Gradient Boosting (XGBoost) and DTs to find some decision 
rules to detect patients with the highest risk of mortality.

Concerning work on CT scans and/or chest X-Ray, Arda-
kani et al. built a ML system that evaluates radiological fea-
tures of CT images collected from patients with Covid-19 
and non-Covid-19 disease. They used different ML algo-
rithms to find the computer-aided diagnosis system with the 
best performance in distinguishing Covid-19 patients from 
non-Covid-19 pneumonia. Alsharman et al. [43] used a CNN 
to detect Covid-19 on CT scans in the early stage of disease 
course. Albahli [44] highlighted the high performance of 
DNNs in detecting Covid-19 patients. His model reached 
89% of accuracy on synthetic data produced by GAN-based 
model. Parnian Afshar et al. [45] try an alternative frame-
work based on Capsule Networks [46] called COVID-CAPS 
that is capable of handling small datasets. COVID-CAPS 
achieved an accuracy of 95.7%, sensitivity of 90%, speci-
ficity of 95.8%, and Area Under the Curve (AUC) of 0.97. 
In [47], the authors propose an interesting approach, simi-
lar to Neural HPLP, that works on both clinical and image 
data for predicting Covid-19 severity. The paper developed 
a ML model to predict Covid-19 severities and a model to 
predict progression to critical disorder. These models were 
trained on radiomics features and clinical variables. The 

work accurately predicts Covid-19 severity and progression 
to critical illness from radiomics features joined with clini-
cal attributes. Differently from Neural HPLP, the proposed 
models do not provide a clear explanation of its prediction.

Other work addressing Covid-19 themes is being done. For 
example, based on the intensive care unit (ICU), the work of 
Cheng, Fu-Yuan et al. [48] exploits ML to create a risk prior-
itization tool that predicts the ICU transfer within 24 hours. 
Another interesting work done by Montomoli et al. [49] exploits 
Extreme Gradient Boosting (XGBoost) algorithm to predict 
the increase or decrease in patients’ Sequential Organ Failure 
Assessment (SOFA) score on day 5 after ICU admission.

The novelty of Neural HPLP mainly lies in the possibility 
of obtaining an explanation from the whole system thanks 
to the HPLP. In systems that exploit a different form of data, 
when using neural networks, it is almost difficult to provide an 
explainable interpretation of the results due to their black box 
nature. This differentiates Neural HPLP from the other works.

6 � Conclusions

In this paper, we propose Neural HPLP a neural-symbolic 
system for early-stage prediction of critical states of Covid-
19 patients. Neural HPLP integrates two ML models to build 
an efficient, interpretable, and explainable system for predict-
ing the risk of developing complications in patients affected 
by Covid-19 infection. The system is made up of a symbolic 
part (DT) that predicts a patient’s death during hospitalization, 
a neural part (CNN) for predicting the severity of the patient’s 
lung lesions, and a probabilistic logic model that relies on the 
previous models to predict if a Covid-19 patient will end in a 
critical state and therefore will potentially need intensive care. 
The application of Neural HPLP to a similar and consolidated 
dataset confirmed its efficiency. The obtained results confirmed 
not only the reliability of Neural HPLP but also its interpretabil-
ity. By the synergy of three ML approaches, Neural HPLP pro-
vides an accurate, understandable and reliable predictive model.

As future directions of work, we plan to integrate a 
method of automatic segmentation of CT scans to avoid 
using a fixed threshold on the HU scale when extracting the 
lungs from the images. Moreover, we plan to build an end-
to-end training process of Neural HPLP based on a custom-
ized optimization function. In this way, the training process 
will propagate the HPLP loss back to the other system com-
ponents and will enable a more efficient training process. To 
better improve the accuracy and efficiency of Neural HPLP, 
we also plan to integrate multiple other machine learning 
algorithms such as support vector machines using Hierar-
chical Probabilistic Logic Programming. Finally, we plan 
to investigate the scalability of Neural HPLP by applying it 
to a very large amount of clinical data.
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Appendix. : Clinical data

Table 3 represent the list of the clinical data of the first data-
set described in the paper. Tables 4 represent the list of clini-
cal data of the second dataset for the additional experiment 
described in the paper.

Table 3   Clinical data for the main experiment

Clinical attribute Acronym

Age -
Gender -
Organization Cost Centre CdcoUO
Intensification of care -
Pneumology department -
Anesthesia and resuscitation department -
Clinical onset with fever -
Hospitalization day -
Discharge day -
In-hospital days -
Symptoms cardiopulmonary onset -
Gastrointestinal onset symptoms -
Systolic Blood Pressure at the entrance SBP
Diastolic Blood Pressure at the entrance DBP
Heart rate -
Breath frequency -
Body temperature -
Modified Early Warning Score MEWS
Partial pressure of oxygen in a gaseous environment pO2
PO2 / FiO2 ratio PF
High Resolution TC HRTC​
High Resolution TC per ground glass HRTCper-

grpound-
glass

White blood cells WBC
Lymphocytes -
C-reactive Protein CRP
Procalcitonin PCT
Creatinine -
Glomerular Filtration Rate GFR
Lactate Dehydrogenase LDH
Brain Natriuretic Peptide BNP
Fibrinogen -
D-Dimero -
Isoamylase -
Alanine Aminotransferase ALT
Creatine Phosphokinase CPK
Ferritin -
Troponin -
Smoking habit -
Hypertension -
Ischemic heart disease -
Heart failure -

Table 3   (continued)

Clinical attribute Acronym

IRCIIIIVV -
ICTUSoTIA -
Chronic Peripheral Obliterative Arteriopathy AOCP
Chronic Obstructive Pulmonary Disease COPD
Mild liver disease -
Moderate liver disease -
Peptic ulcer -
AIDS -
Hemiplegia -
Localized or hematological neoplasm -
Metastasis -
Dementia -
Charlson index -
Microcythemia -
Inflammatory Bowel Disease IBD
Diabetes -
Diabetes without organ damage -
Diabetes with organ damage -
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Table 4   Clinical data for the 
additional experiment

Clinical attribute Clinical attribute

Age Alkaline phosphatase
Sex Alanine aminotransferase
Temperature Aspartate aminotransferase
malattie pregresse Urea nitrogen
covid Calcium
CT Chlorine
Morbidity Total carbon dioxide
Mortality Creatinine
Erythrocyte sedimentation rate Latitude-glutamyltransferase
C-reactive protein Globulin
Procalcitonin Potassium
Mean corpuscular hemoglobin concentration Magnesium
Mean corpuscular hemoglobin Sodium
Mean corpuscular volume Phosphorus
Hematocrit Total bilirubin
Hemoglobin Serum total protein
Red blood cell Uric acid
Platelet distribution width Total cholesterol
Plateletcrit Creatine kinase
Mean platelet volume High density lipoprotein cholesterol
Platelet count Lactate dehydrogenase
Basophil count Triglyceride
Eosinophil count Anion gap
Monocyte count Direct bilirubin
Lymphocyte count Glucose
Neutrophil count Low density lipoprotein cholesterol
Basophil percent Osmotic pressure
Eosinophil percent Prealbumin
Monocyte percent Total bile acids
Lymphocyte percent Pseudo-hydroxybutyrate dehydrogenase
Neutrophil percent Cystatin C
White blood cell Leucine aminopeptidase
Platelet larger cell ratio 5’nucleotidase
Standard deviation of red cell volume distribution width Homocysteine
Coefficient variation of red cell volume distribution width Serum amyloid protein A
D-Dimer Small density low density lipoprotein
Thrombin time CD3+ T cell
Fibrinogen CD4+ T cell
Activated partial thromboplastin time CD8+ T cell
International normalization ratio B lymphocyte
Prothrombin time Natural killer cell
Albumin/Globulin ratio CD4/CD8 ratio
Albumin Interleukin-2
Interleukin-4 White blood cell count
Interleukin-6 Squamous epithelial cell
Interleukin-10 Viscose rayon
TNF-pseudo Unclassified crystal
IFN-latitude Specific gravity
Fibrin/fibrinogen degradation products Complement C1q
Antithrombin III Hyaline cast
B-type brain natriuretic peptide precursor Pathological cast
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