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Image Quality Assessment Using Convolutional
Neural Network in Clinical Skin Images

Hyeon Ki Jeong1, Christine Park2, Simon W. Jiang2, Matilda Nicholas3, Suephy Chen3,4, Ricardo Henao1

and Meenal Kheterpal3
The image quality received for clinical evaluation is often suboptimal. The goal is to develop an image quality
analysis tool to assess patient- and primary care physicianederived images using deep learning model. Dataset
included patient- and primary care physicianederived images from August 21, 2018 to June 30, 2022 with 4
unique quality labels. VGG16 model was fine tuned with input data, and optimal threshold was determined by
Youden’s index. Ordinal labels were transformed to binary labels using a majority vote because model dis-
tinguishes between 2 categories (good vs bad). At a threshold of 0.587, area under the curve for the test set was
0.885 (95% confidence interval ¼ 0.838e0.933); sensitivity, specificity, positive predictive value, and negative
predictive value were 0.829, 0.784, 0.906, and 0.645, respectively. Independent validation of 300 additional images
(from patients and primary care physicians) demonstrated area under the curve of 0.864 (95% confidence
interval ¼ 0.818e0.909) and area under the curve of 0.902 (95% confidence interval ¼ 0.85e0.95), respectively.
The sensitivity, specificity, positive predictive value, and negative predictive value for the 300 images were 0.827,
0.800, 0.959, and 0.450, respectively. We demonstrate a practical approach improving the image quality for
clinical workflow. Although users may have to capture additional images, this is offset by the improved
workload and efficiency for clinical teams.
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INTRODUCTION
Since the onset of the pandemic, the use of teledermatology
for patients has increased (Yeboah et al, 2021). These con-
sultations are typically conducted through mobile applica-
tions that require patients to capture images of their skin
lesions using mobile devices such as smartphones or tablets,
which are then sent to dermatologists for remote diagnosis.
However, the quality of the images received is often subop-
timal, with up to 50% of patients providing images that are
poorly lit, off center, or blurry (Vodrahalli et al, 2021). To
better ensure a level of care similar to that of in-person care,
high-quality images are essential (Haque et al, 2021; Landow
et al, 2014). Recently, healthcare systems are allowing un-
solicited patient-derived images to be sent with a clinical
concern, leading up to 44% increase in patient messages
(Borre and Nicholas, 2022). In addition to the challenges of
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managing this additional work load, low-quality images are a
disproportionate burden because it takes a longer time and
more effort to reconcile a plan on the basis of poor images,
thus leading to physician burn out and decreased opportunity
to generate revenue (Jiang et al, 2023). Hence, there is a need
to improve image quality from patient-derived images to
improve teledermatology and clinical workflows, improve
revenue, and reduce physician burn out.

Two approaches exist for improving low-quality images:
image denoising and image quality detection. Image
denoising is the process of removing noise or unwanted ar-
tifacts from an image to improve visual quality and clarity,
whereas image quality detection refers to the assessment of
the perceived visual quality of an image based on certain
criteria or metrics and determine whether an image is of high
or low quality on the basis of human perception. A major
limitation of the image denoising method is that it can
introduce new artifacts that can obfuscate components of the
images that are critical for diagnosis. A major advantage of
the image quality detection method is that it can provide real-
time feedback when detecting low-quality images directly on
the patient’s mobile device, in a manner that improves the
quality to an acceptable level for clinical decision making.
However, it is often challenging to determine a threshold of
acceptable image quality because there are several factors
that can affect the perceived quality of an image, such as the
resolution, color, depth, contrast, and noise. Using human
evaluation of image quality as a good standard can also be
subjective because each person has a different criterion for
good quality image.
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Figure 1. Overview of the IQA network architecture. The input images are partitioned into smaller regions and are processed through the neural network

architecture. The resulting outputs are aggregated, and a threshold criterion is applied to determine whether the image is accepted (good quality) or rejected

(bad quality). CNN, convolutional neural network; IQA, Image Quality Assessment; PCP, primary care physician.

1 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:14091556; 2014.
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In this study, we introduce a method using convolutional
neural network (CNN) to evaluate image quality of skin
photographs. Figure 1 illustrates the overview of the Image
Quality Assessment (IQA) process, which includes partition-
ing images into multiple patches, feeding them into a CNN,
and evaluating them against a threshold for the acceptance or
rejection of input images.

IQA

Various techniques for evaluating image quality have been
proposed. Kim and Lee (2017) introduced DeepIQ, a deep
neural network capable of identifying noisy regions within an
image and comparing the resulting noise maps with human
evaluations (Kim and Lee, 2017). Bianco et al (2018) pre-
sented DeepBIQ, a CNN that identifies low-quality images
and achieves near-human performance on smartphone
photos. Madhusudana et al (2022) developed CONTRIQUE,
a contrastive deep learning system for generating transferable
representations using unlabeled image quality datasets.
However, a common limitation of all these methods is the
absence of a reference standard label, which restricts both
their training and validation rigor. As a result, unsupervised
training approaches are often used, with validation primarily
relying on subjective evaluation. In the context of tele-
dermatology, Vodrahalli et al (2021) proposed a classical
machine learning image quality classifier. This approach
employs automated classical computer vision techniques to
identify blur, lighting, and zoom issues in an image and
provides patients with explanations for quality assessments.
Nonetheless, the method has several shortcomings: (i) it has
difficulties with cases in which the background is blurry or
has poor lighting; (ii) it cannot detect lesion framing issues;
(iii) and it cannot filter out skinless images. Jalaboi et al
(2023) also introduced ImageQX, a CNN for IQA with a
learning mechanism for identifying the most common poor
image quality explanations (eg, bad framing, bad lighting,
blur, low resolution, distance issues).

CNN and transfer learning

CNNs are well-suited for image-based tasks owing to their
ability to recognize and leverage the spatial and temporal
patterns in an image that are useful for making predictions.
JID Innovations (2024), Volume 4
The advantage of CNNs compared with other traditional
machine learning algorithms such as support vector ma-
chines, naive bayes, or decision trees is that CNNs are able to
automatically extract useful features from raw images without
the need for manual feature extraction, and it is robust to
small variations in images, making them well-suited for im-
age classification tasks. Building an efficient deep learning
model requires both high-quantity and high-quality datasets.
However, real-world datasets, especially in medical imaging
fields, are complex, making it challenging to process,
analyze, and extract meaningful features; may not be well-
structured or contain large amount of irrelevant informa-
tion; and may be time consuming to obtain because they
often require expert manual annotation and labeling, which
can be an expensive and labor-intensive process. One
approach to tackle this problem is through transfer learning,
which is a technique in machine learning where a model
trained on one task is used as a starting point for a different
task. Transfer learning is beneficial because it allows the
pretrained model to be fine tuned and reused for any tasks
without requiring large amount of labeled data or computa-
tional power. Most widely used pretrained models for image-
related tasks (eg, Visual Geometry Group [VGG] [Simonyan
and Zisserman, 20141], ResNet [He et al, 2016], Inception
[Szegedy et al., 2015], etc) have been trained on millions of
datasets such as from the ImageNet challenge (Russakovsky
et al, 2015). One key consideration when applying transfer
learning is the degree of similarity between the source task
and the target task and the available data of the target task.
Medical images are usually small, and they look different
from ImageNet data that are natural color images. Thus, some
layers of the pretrained model may be kept frozen, meaning
that their weights will not be updated during training. The
remaining layers, on the other hand, can be unfrozen,
allowing their weights to be adjusted on the basis of the input
data of the target task. Morid et al (2021) provides a review of
transfer learning in medical image analysis and explores
widely used model architecture that was used for each
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anatomical region. In dermatology, variety of pretrained
model has been used for skin lesion classification in early
melanoma detection, namely VGGNet (Lopez et al., 2017;
Yu et al, 2018), InceptionNet (Cui et al, 2019), ResNet
(Hosseinzadeh Kassani and Hosseinzadeh Kassani, 2019),
and AlexNet (Hosny et al, 2019).

Multiple instance learning

Advancements in deep learning in recent years have
emphasized the need for large amounts of data required to
solve complex problems such as image recognition, natural
language processing, and speech recognition and more that
require high-level understanding and decision making.
However, assigning labels or annotating these large datasets
is often time consuming and expensive, which may hinder
the use of deep learning algorithms in many fields. Multiple
instance learning is a type of a weakly supervised learning
algorithm where the datasets are arranged in collection of
instances (Maron and Lozano-Pérez, 1997), called bags, and
the labels are provided for each bag rather than the instances
themselves. This method allows to leverage weakly labeled
data, which is prominent diverse applications such as med-
ical imaging, document classification, and video/audio pro-
cessing. Multiple instance learning has been used for IQA in
previous studies (Largent et al, 2021; Liang et al, 2021) where
the authors have attempted to assess the quality of an image
by dividing the image into small instances and aggregating
the performance metrics from those regions. This could
provide a more comprehensive assessment of the image
quality by considering multiple regions of the image instead
of relying on a single region. Smaller image regions can
capture local image characteristics and variations that might
be missed when analyzing the entire image.

Ordinal regression

Ordinal regression is a type of regression analysis that is used
to predict an ordinal (ordered)-dependent variable on the
basis of 1 or more independent variables. Rank-consistent
ordinal regression (Cao et al, 2020) is a variation of ordinal
regression that learns to predict the ranking of the dependent
variable rather than its exact value. This is achieved by
minimizing the rank-consistency loss, which measures the
consistency between the predicted ranks of the dependent
variable and the true ranks. This ordinal regression approach
has a variety of practical applications in medical imaging,
especially for quality assessment. Defining quality in binary
terms can be challenging because it is inherently subjective.
Thus, ordinal label can be applied to mitigate potential biases
introduced by individual reviewers.
Table 1. Ordinal Quality Label Distribution

Quality Sum Ordinal Label Train Validation

0 (none agreed) [0,0,0,0] 133 19

1 [1,0,0,0] 107 14

2 [1,1,0,0] 133 24

3 [1,1,1,0] 222 18

4 (all agreed) [1,1,1,1] 305 45

Abbreviation: PCP, primary care physician.
RESULTS AND DISCUSSION
The distribution of the ordinal quality labels by training,
validation, and test set is shown in Table 1. The quality sum
represents the number of agreements of being a good quality
image.

The optimal threshold was determined on the basis of the
training set, and the model’s performance was evaluated on
the test dataset to ensure that the selected threshold gener-
alizes well to new and unseen data.

The area under the curve (AUC) of the model on the test set
is 0.885 with 95% confidence interval of 0.838 and 0.933
and as shown in Figure 2. The performance metrics of the
model on test dataset are shown in Table 1 for Youden’s index
of 0.587.

Further evaluation was performed on the independent
validation consisting of 300 images. A total of 150 images
taken by physicians are likely to include more high-quality
images because the images were taken in a clinical setting
by the physicians themselves. The AUC on this dataset is
0.864 (95% confidence interval ¼ 0.818e0.909) as shown in
Figure 2, and the metrics based on the Youden’s index are
shown in Table 2 for all 300 images.

One explanation for a low negative predictive value (NPV)
of 0.450 in the independent validation could be the differ-
ence in the distribution of positives and negatives in the
additional dataset compared with that in the preliminary test
set. The ratio of the bad-to-good quality images of the
additional 300 dataset is 0.15 to 0.85, whereas the ratio of
the training, validation, and test datasets is on average
0.27e0.73 with similar distributions across all 3 datasets.
The orange and green line in Figure 3 demonstrates that the
model is relatively well-calibrated (slopes 1.27 and 1.15,
respectively), whereas the blue line indicates that the pre-
dicted probabilities from the model are consistently higher
than the actual frequencies of the outcome in the data,
suggesting that the model is overconfident on this particular
dataset and is not well-calibrated. This implies that an
imbalanced dataset with higher number of positive classes
could lead to higher false negatives, resulting in lower NPV.
Thus, adjusting the distribution of positive and negative cases
in an external validation dataset to that of a train, validate,
and test dataset is important to ensure that the additional
study set is representative of the same population as the
training data. We sampled the dataset to match the distri-
bution of positive and negatives cases (Table 2) and showed
the improved NPV for the adjusted distribution. This allows
the external validation dataset to be representative of the
target population.
Test Total

Independent Set

Patient PCP Total

25 177 (14.8%) 4 14 18 (6%)

26 147 (12.3%) 19 8 27 (9%)

26 183 (15.2%) 40 14 54 (18%)

39 279 (23.2%) 34 23 57 (19%)

64 414 (34.5%) 53 91 144 (48%)
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Figure 2. ROC curve of the image quality assessment model on test set and independent set (150 images of patient and PCP images each). (a) Test set.

(b) Independent set. AUC, area under the curve; CI, confidence interval; PCP, primary care physician; ROC, receiver operating characteristic.
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The AUC of the model trained on the bounding box was
0.842 with 95% confidence interval of 0.785 and 0.899. The
positive predictive value (PPV), true predictive rate, NPV, and
true negative rate are 0.851, 0.845, 0.615, and 0.627,
respectively. The models using bounding boxed images and
the whole images were not statistically significant, suggesting
that the inclusion of bounding box definitions did not yield
improvements in the model’s ability to quantify image qual-
ity. Consequently, the additional effort associated with
drawing bounding boxes may be deemed unnecessary from a
user’s perspective.

In this work, we have demonstrated that skin image quality
can be assessed using deep learning approach. The model is
trained on a dataset of images with ordinal quality labels and
evaluated on a separate test dataset and an additional dataset
of 300 images. The results show that the model has an AUC
of 0.885 on the test set and 0.864 on the independent dataset.
The performance metrics of the model such as sensitivity,
specificity, PPV, and NPV are reported on the basis of the
Youden’s index, and the importance of adjusting the distri-
bution of positive and negative cases in external validation
Table 2. Model’s Performance on Test Set

Performance
Metrics

Test
Set

Additional 300
Images

Adjusted
Distribution

AUC 0.885 0.864 0.863 � 0.022

PPV 0.906 0.959 0.926 � 0.012

TPR (sensitivity) 0.829 0.827 0.818 � 0.031

NPV 0.645 0.450 0.627 � 0.041

TNR (specificity) 0.784 0.800 0.823 � 0.031

Abbreviations: AUC, area under the curve; NPV, negative predictive
value; PPV, positive predictive value; TNR, true negative rate; TPR, true
predictive rate.

JID Innovations (2024), Volume 4
datasets is highlighted to ensure that the additional study set
is representative of the same population as the training
dataset.

Current studies in developing IQA model for skin images
include TrueImage by Vodrahalli et al (2021) where they
achieved an AUC of 0.759 of defining good versus bad
quality image and ImageQX by Jalaboi et al (2023) where
they achieved sensitivity and specificity of 0.73 and 0.90.
Direct comparison of these works with our model is not
possible owing to the different datasets used and different
approaches. Our goal was to achieve a PPV of 0.9 to
Figure 3. Calibration plot from training set (green), test set (orange),

independent study set (blue), and adjusted independent study set (black).

IQA, Image Quality Assessment.
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optimize clinical workflow. Our model achieved AUC of
0.885 with sensitivity and specificity of 0.829 and 0.784 on
the test set and 0.793 and 0.8 on the additional study set,
respectively. A lower NPV would predict images that are of
good quality (true label) as bad quality (predicted label). This
may cause the user to take additional images, despite good
quality, which may be useful in the clinical decision making.
However, a high PPV will entail a low chance that a bad
quality image (true label) will pass as good quality (predicted
label), thereby improving clinical workflows and efficiency
by reducing workloads through automation of IQA during
image acquisition process.

Another important conclusion of our work is the lack of
additional useful information for IQA using the region of in-
terest identification, which did not statistically significantly
improve the model performance metrics. This entails that
good-quality images can be obtained and analyzed with a
deep learning approach without additional user effort to
highlight the area of interest for a dermatological concern.

Some of the limitations on this work is the number of an-
notators for the images. To better understand and define the
quality of an image, it may take hundreds or up to thousands
of reviewers to rate the image either as a binary or continuous
scale (Ghadiyaram and Bovik, 2016). Including more experts
for annotation can reduce the bias of raters and expertise;
however, these works focused mainly on natural images. This
may be impractical owing to sensitive nature of medical
images provided for dermatological evaluation, although
making datasets available for research purposes across in-
stitutions can assist with this issue that is faced by medical
artificial intelligence. Another limitation is the lack of diverse
disease types because we did not have diagnosis information
for all the images. We are unable to ensure that images for all
disease types will be accurately classified by the model.
However, we have images of both inflammatory skin disor-
ders as well as lesions of interest in various anatomical areas,
which should capture the majority of diseases. Furthermore,
skin color was not considered for the data curation as evi-
denced by an unbalanced dataset in Table 3. However, the
dataset was curated to our local patient population, which
serves a specific geographic and demographic area, and the
diversity of skin tones in our dataset aligns with the distri-
bution of this population. In this study, the distribution for the
training and validation are 76% for Fitz scale 1e3 and 24%
for Fitz 4e6. For test set, the distributions are 65% for Fitz
1e3 and 35% for Fitz 4e6. For external dataset, the distri-
butions are 72% for Fitz 1e3 and 28% for Fitz 4e6. The
patient demographics for our institute for fiscal year 2023 are
in the range of 57e64% for Fitz 1e3 and 28e35% for Fitz
4e6. Although additional images of diverse skin Fitzpatrick
Table 3. Fitz Scale

Fitz Train Validation Test

External Dataset

Patient PCP

Type IeIII 684 99 117 105 112

Type IVeVI 216 21 63 45 38

Abbreviation: PCP, primary care physician.
types can enhance this model to ensure that it can perform
well in all settings, it should be highlighted that the model
may still need additional validation studies if population was
different within an alternative clinical setting.

Future works will entail real-world validation of the per-
formance of this model within our healthcare system. Addi-
tional improvements to further improve the accuracy and
reliability of skin image analysis in teledermatology could
include additional data with additional annotations, stan-
dardizing lighting conditions (especially when tracking dis-
ease conditions within the same patient), adding dermoscopy
image datasets for quality analysis, and maximizing image
resolution metrics. A prospective study to evaluate the utility
of the model in our patient population would substantiate
real-world use of the model.

MATERIALS AND METHODS
Dataset

The dataset used for this study was acquired from patient images

submitted to the Department of Dermatology at Duke University

between August 21, 2018 and December 31, 2019, and the details

can be found in Jiang et al (2023). This dataset consists of 1200

clinical skin images that were taken by patients using their cell

phones or cameras. The images were uploaded to REDCap, and 6

dermatology faculty evaluated 400 images each, 2 dermatology

residents evaluated 400 images, and 2 dermatology residents eval-

uated 200 image quality measures. This assured that each image had

3 different evaluations. One dermatology faculty (MK) evaluated all

1200 images, resulting in 4 total evaluations per image. The dataset

images were divided into training, validation, and test sets as 75, 10,

and 15% of the dataset, respectively. The images were taken with

cell phones in RGB scale, with resolution being 75 pixels per inch

on average for both height and width and average pixel size of the

image with standard deviation being 2908 � 2700 � 1094 � 967

(1360 � 863 inch2).

When building a deep learning model in health care, it is often

important to have additional datasets beyond training, validation,

and test datasets for external validation of the IQA model. In this

regard, an external set of 300 images from Duke University Medical

Center were acquired, consisting of 150 images taken by the patients

themselves and 150 images taken by the primary care physicians,

and sent to dermatologists for clinical care decisions. These datasets

can assess the model’s performance in different contexts and its

ability to generalize to new and unseen data. The images were taken

with cell phones and iPads in RGB scale, with resolution being 76

pixels per inch on average for both height and width and average

pixel size of the image with standard deviation being 2840 � 2793

� 986 � 983 (1471 � 707 inch2). Thus, once the model has been

trained and validated, its performance was evaluated on the test

dataset to estimate overall generalization error as well as this

external dataset for additional validation. Fitz scale are shown in

Table 3 for both training, validation, test, and external dataset.

Model architecture

The proposed IQA model used in this study is the Visual Geometry

Group (Simonyan and Zisserman, 2014)2 as a base model, which

have been commonly used for skin analysis in other studies (Morid

et al, 2021). After assessing various Visual Geometry Group
2 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:14091556; 2014.
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architectures, VGG16 model, which consists of 13 convolutional

layers and 3 fully connected layers, was chosen because it out-

performed all other Visual Geometry Group models under consid-

eration. The preprocessing steps for training include dividing the

image into 5 regions with equal size (4 corners and the central crop);

random vertical and horizontal flip for data augmentation; and

resizing each region into 224 � 224 pixels, which is a common size

used for many pretrained models. The model was initialized from a

VGG16 model pretrained on ImageNet and then fine tuned by

freezing the first 5 convolutional layers and unfreezing the remaining

8 as well as the classification head (a single fully connected layer

with a sigmoid activation), allowing the model to learn and update

part of the weights on the basis of the input data. The model was

trained using stochastic gradient descent as the optimizer for 50

epochs with an early stopping on the validation set to prevent

overfitting. The ordinal labels were defined as the sum of the re-

viewer’s annotations for each image. The annotation would be 1 if

the reviewer agreed that the image was sufficient in quality to be

included in the patient chart on medical record where Duke uses

EPIC (Verona, WI) and 0 otherwise. These labels were converted into

a form of 1-hot encoding where the redefined labels would be a size

of N-1 where N represents the total number of classes. Thus, if

everyone agreed that the image is of good quality, the ordinal label

would be defined as 4, and the 1-hot encoding would be defined as

[1,1,1,1], and if everyone disagreed that the image is of bad quality,

the ordinal label would be 0, and the 1-hot encoding would be

defined as [0,0,0,0] as shown in Table 1.

Performance evaluation

The model’s performance was evaluated using AUC of the receiver

operating characteristic, which is a diagnostic metric used to eval-

uate the performance of a binary classification model on dis-

tinguishing between positive and negative classes and represents the

sensitivity of the model as a function (trade off) of the true positive

rate (sensitivity) or false positive rate (1 � specificity). Other metrics

are also reported such as PPV, NPV, and true negative rate. The

optimal threshold was determined by Youden’s index, which repre-

sents the best trade off between sensitivity and specificity and bal-

ance the number of false positives and false negatives in the

classification results (Schisterman et al, 2005). Once the model

predicts the rank, the ordinal labels are transformed to binary labels

using a majority vote because the goal of the model is to distinguish

between 2 distinct categories (good vs bad quality) and not predict

quality as a continuous variable. If more than half of the reviewers

agree that the image is of good quality, the overall image quality is

considered good; otherwise, the quality is considered bad. By

applying this transformation, we can evaluate the model’s perfor-

mance on determining whether the model should accept the image

as good quality or tell the user to retake the image owing to poor

quality.

Additional methodology was tested by defining a bounding box, a

box drawn around the region of interest for each image. This

methodology would reflect highlighting and isolating particular re-

gion of interest that is key for diagnosing and monitoring skin con-

ditions and serves as an attention for IQA model. This would ideally

allow the model to learn the features and characteristics related to

quality of the region of interest while neglecting other regions that

may influence the model’s capability to accurately assess quality.

Calibration plot depicts a graphical representation of the rela-

tionship between predicted probabilities from a model and the
JID Innovations (2024), Volume 4
proportion of true probabilities. A perfectly calibrated model would

have points that align along a 45-degree line, indicating that the

predicted probabilities match the proportion of true outcomes. If a

calibration plot shows that the predicted probabilities deviate from

the actual outcomes, this may indicate that the model is biased to-

ward 1 class (eg, model may underfit or overfit) or that the dataset is

skewed. For example, if the model overpredicts the positive class,

this may indicate that the dataset contains a disproportionate num-

ber of positive samples.
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