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Abstract

Background: To evaluate if plasma levels of midregional pro-adrenomedullin (MR-proADM) improve prediction of
functional outcome in ischemic stroke.

Methods: In 168 consecutive ischemic stroke patients, plasma levels of MR-proADM were measured within 24 hours from
symptom onset. Functional outcome was assessed by the modified Rankin Scale (mRS) at 90 days following stroke. Logistic
regression, receiver operating characteristics (ROC) curve analysis, net reclassification improvement (NRI), and Kaplan-Meier
survival analysis were applied.

Results: Plasma MR-proADM levels were found significantly higher in patients with unfavourable (mRS 3–6) compared to
favourable (mRS 0–2) outcomes. MR-proADM levels were entered into a predictive model including the patients’ age,
National Institutes of Health Stroke Scale (NIHSS), and the use of recanalization therapy. The area under the ROC curve did
not increase significantly. However, category-free NRI of 0.577 (p,0.001) indicated a significant improvement in
reclassification of patients. Furthermore, MR-proADM levels significantly improved reclassification of patients in the
prediction of outcome by the Stroke Prognostication using Age and NIHSS-100 (SPAN-100; NRI = 0.175; p = 0.04). Kaplan-
Meier survival analysis showed a rising risk of death with increasing MR-proADM quintiles.

Conclusions: Plasma MR-proADM levels improve prediction of functional outcome in ischemic stroke when added to the
patients’ age, NIHSS on admission, and the use of recanalization therapy. Levels of MR-proADM in peripheral blood improve
reclassification of patients when the SPAN-100 is used to predict the patients’ functional outcome.
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Introduction

Ischemic stroke is among the leading causes of death and

disability and utilises a huge amount of health care expenses.

Clinical criteria which predict worse functional outcome include

increased age and higher National Institutes of Health Stroke

Scale (NIHSS) on admission. [1] Early pharmacological recana-

lization improves outcome compared to placebo treatment. [2] A

potential biomarker should provide predictive information in

addition to established prognostic criteria. [3] Several proteins in

peripheral blood which are related to an acute stress response have

recently been shown to improve outcome prediction in ischemic

stroke. [4–7] As derived from observations in patients with

myocardial infarction and congestive heart failure (CHF), plasma

midregional pro-adrenomedullin (MR-proADM) is an indepen-

dent predictor of death. [8,9] We hypothesized that MR-proADM

would also reflect the acute stress response in ischemic stroke and

could therefore be used to predict functional outcome. MR-

proADM is a non-functional precursor of adrenomedullin. [10]

This protein has been originally isolated from pheochromocytoma

and is found in different organs and tissues including vascular

smooth muscle cells and endothelium. [11–13] Thereby, it exerts

vasodilating, vasoprotective and angiogenic effects. [14] Adreno-

medullin is difficult to measure in peripheral blood because of

complex formation and rapid clearance from the circulation.

[15,16] The more stable MR-proADM is secreted in equimolar

amounts to adrenomedullin and can be reliably detected in human

plasma. [17,18].
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Methods

Ethics statement
The study was approved by institutional review boards of the

Medical University of Graz and Konventhospital Barmherzige

Brueder Linz. Written informed consent was obtained from all

participants. For patients with impaired consciousness or aphasia,

written informed consent was obtained when these patients

regained the ability to communicate.

Patients
Consecutive patients admitted between September 2010 and

June 2012 to stroke units of the Departments of Neurology,

Medical University of Graz and Konventhospital Barmherzige

Brueder Linz, were considered for participation in this study.

Patients with acute hemispheric, cerebellar or brainstem ischemia

according to clinical examination and brain imaging (computer-

ized tomography or magnetic resonance imaging) were eligible

when they had a NIHSS [19] of more than 3 on admission and a

modified Rankin Scale (mRS) [20] of 0 or 1 before symptom onset.

Blood sampling for this study had to be performed within 24 h

from symptom onset and before initiation of recanalization

therapy (intravenous or intraarterial thrombolysis, endovascular

thrombectomy). Subjects with minor stroke (NIHSS ,3), transi-

tory ischemic attack (TIA) or evidence for infectious disease on

admission were not included. Patients were not eligible when they

had major surgery or transfusion of blood components within one

month prior to their stroke. Further exclusion criteria were applied

as follows: acute renal failure, acute myocardial infarction, chronic

hemodialysis, CHF New York Heart Association (NYHA) classes

III and IV, active malignancy, immunosuppressive therapy.

Clinical variables and laboratory procedure
The NIHSS was obtained on admission by board certified

neurologists. The mRS at day 90 following stroke was obtained

during a routine follow-up visit or by telephone interviews with

patients or their caregivers. [21] The Stroke Prognostication using

Age and NIHSS (SPAN) was obtained by combining the patients’

age in years and NIHSS on admission. [22] Individuals with

SPAN .100 were considered SPAN-100 positive, and those with

SPAN ,100 were SPAN-100 negative. In a recent analysis,

SPAN-100 positivity was associated with a significant lower odds

of a composite favourable outcome (mRS ,1, NIHSS ,1, Barthel

index .95, Glasgow Outcome Scale score 1) at three months

following stroke after adjusting for thrombolytic treatment. [22]

Stroke was classified according to the Oxfordshire Community

Stroke Project (OCSP) [23] and the Causative Classification of

Stroke System (CCS). [24] Cerebrovascular risk factors were

identified as defined by preadmission history or the need for

medication at discharge: hypertension, hypercholesterolaemia,

and diabetes mellitus. Atrial fibrillation was diagnosed either by

history, an electrocardiogram (ECG) on admission, or Holter-

ECG during the hospital stay. Clinical care was performed

according to guidelines of the European Stroke Organisation.

Blood was drawn by venipuncture and collected into EDTA-

coated tubes. Plasma was stored at 270uC for further analysis.

Plasma MR-proADM was measured by a commercial chemolu-

minescence assay on a KRYPTORH system (Thermo Scientific

B.R.A.H.M.S, Hennigsdorf, Germany). [18] Measurements were

performed blinded to all clinical data.

Statistical analysis
Student’s t-test, Mann-Whitney’s U-test, the Chi-square test or

Fisher’s exact test, and Spearman’s rank order correlation were

applied for two-group comparisons. Backwards elimination logistic

regression was performed to generate predictive models for

functional outcome at day 90 following stroke. Patients were

dichotomized into favourable (mRS 0–2) and unfavourable (mRS

3–6) outcomes. From a previous small exploratory study, a sample

size of 146 patients was derived to obtain significantly different

MR-proADM levels between these patient groups with a= 0.05

and 80% power. To evaluate the added predictive ability of MR-

proADM, discrimination of models was assessed by comparing

areas under receiver operating characteristics (ROC) curves

(AUC) [25] and category-free net reclassification improvement

(NRI) [26] was applied. NRI offers incremental information over

the comparison of AUCs of ROC curves. [27] Category-free NRI

is not influenced by correct scaling of the model and offers the

widest and most standardized application in quantification of

improvement. [26] Based on outcome prediction by the use of the

SPAN-100, categorial NRI was obtained by reclassification of

patients according to their plasma MR-proADM quintiles. SPAN-

100 negative patients in the upper three quintiles were reclassified

upwards. SPAN-100 positive patients in the lower two quintiles

were reclassified downwards. Z-statistics were calculated as

described previously, [27] and p-value was obtained by GraphPad

software. Comparison of ROC curves and Kaplan-Meier analysis

were done with MedCalc 11.6.1. and sample size calculation with

G*Power 3.1. [28] Other analyses were performed by IBM SPSS

Statistics version 20 and R version 2.15.1.

Results

168 patients were included in the study, 85 men and 83 women

at a mean age of 72.9 years (median 74; range 18–97), all of them

Caucasians. Blood samples were collected within 12 hours in 138

(82.1%) and between 12 and 24 hours in 30 (17.9%) patients. 90

(53.6%) patients received revascularization therapy. Patients had a

median NIHSS of 9 (range 4–25) on admission. No significant

differences in the NIHSS were found between patients who

received recanalization therapy and them who didn’t. No

significant differences in the NIHSS were found between men

Figure 1. Plasma midregional pro-adrenomedullin (MR-
proADM) levels in patients on admission. Patients were dichot-
omized into favourable (mRS 0–2) and unfavourable (mRS 3–6)
outcomes at day 90 after stroke. Plots display the median, interquartile
range (box), 10th and 90th percentiles (whiskers). Abbreviation: mRS =
modified Rankin Scale; MR-proADM = midregional pro-adrenomedul-
lin.
doi:10.1371/journal.pone.0068768.g001
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and women, and whether patients had blood sampling within

12 hours from symptom onset or afterwards. Stroke was classified

according to the OCSP as follows: 19.6% total anterior circulation

syndrome (TACS), 60.2% partial anterior circulation syndrome

(PACS), 13.1% posterior circulation syndrome (POCS) and 7.1%

lacunar syndrome (LACS). Causes of stroke according to the CCS

were found as follows: 33.9% supra-aortic atherosclerosis, 43.5%

cardio-aortic embolism, 7.1% small artery occlusion, 15.5%

uncommon/undetermined causes. Cerebrovascular risk factors

were found as follows: hypertension in 130 (77.4%), hypercholes-

terolemia in 86 (51.2%), diabetes mellitus in 40 (23.8%), and atrial

fibrillation in 68 (40.5%) patients. Correlations of plasma MR-

proADM were found with the patients’ age (rS = 0.34; p,0.001),

NIHSS on admission (rS = 0.18; p = 0.023) and mRS at day 90

(rS = 0.33; p,0.001). MR-proADM levels did not significantly

differ between men and women, between patients with diabetes

mellitus or without, and between patients with hypercholesterol-

emia or without. Higher median MR-proADM levels were found

in patients with hypertension (0.77 vs. 0.64 nmol/l; p = 0.005),

atrial fibrillation (0.85 vs. 0.70 nmol/l; p,0.001) and coronary

heart disease (0.82 vs. 0.74 nmol/l; p = 0.041).

Patients had a median mRS of 3 at day 90. Patients with

unfavourable outcome were significantly older, had a higher

median NIHSS, a higher proportion of TACS and a higher

prevalence of atrial fibrillation and cardio-aortic embolism as the

cause of stroke (table 1). Plasma MR-proADM was found

significantly higher in patients with unfavourable compared to

favourable outcomes (median 0.84 vs. 0.68 nmol/l; p,0.001;

figure 1). Predictive models were generated to assess the value of

adding MR-proADM plasma levels to the patients’ age, NIHSS on

admission, and the use of recanalization therapy (table 2). The

AUC of generated ROC curves did not increase significantly when

plasma MR-proADM levels were added (0.803 and 0.819 for

models 1 and 2, respectively; p = 0.204). Category-free NRI of

0.577 (p,0.001) indicated a significant improvement in reclassi-

fication of patients by adding MR-proADM levels to predict

functional outcome.

Table 1. Demographic data and baseline clinical characteristics of patients.

all patients RS 0–2 mRS 3–6 p

n 168 79 89 –

median age (range) 74 years (18–97) 71 years (18–97) 79 years (60–89) ,0.001

male : female 85 : 83 43 : 36 42 : 47 0.434

median NIHSS on admission 9 (range 4–25) 6 12 ,0.001

recanalization therapy 90 (53.6%) 46 (58.2%) 44 (49.4%) 0.325

hypertension 130 (77.4%) 59 (74.7%) 71 (79.8%) 0.547

hypercholesterolemia 86 (51.2%) 50 (63.3%) 36 (40.4%) 0.005

diabetes mellitus 40 (23.8%) 19 (24.1%) 21 (23.6%) 0.911

atrial fibrillation 68 (40.5%) 18 (22.8%) 50 (56.2%) ,0.001

coronary heart disease 30 (17.9%) 11 (13.9%) 19 (21.3%) 0.293

angiotensin convertingenzyme inhibitors 42 (25.0%) 16 (20.3%) 26 (29.2%) 0.246

angiotensinreceptor antagonists 21 (12.5%) 8 (10.1%) 13 (14.6%) 0.520

TACS 33 (19.6%) 5 (6.3%) 28 (31.5%) ,0.001

PACS 101 (60.2%) 55 (69.6%) 46 (51.7%) 0.044

POCS 22 (13.1%) 10 (12.7%) 12 (13.5%) 0.943

LACS 12 (7.1%) 8 (10.1%) 4 (4.5%) 0.265

supra–aortic atherosclerosis 57 (33.9%) 24 (30.4%) 33 (37.1%) 0.452

cardio-aortic embolism 73 (43.5%) 26 (32.9%) 47 (52.8%) 0.025

small artery occlusion 12 (7.1%) 9 (11.4%) 3 (3.4%) 0.086

uncommon/undetermined causes of stroke 26 (15.5%) 17 (21.5%) 9 (10.1%) 0.068

Patients were dichotomized into favourable (mRS 0–2) and unfavourable (mRS 3–6) outcomes at day 90 after stroke. P-values for median age and median NIHSS on
admission were obtained by Mann-Whitney’s U-test. Other p-values were obtained by the Chi-square test or Fisher’s exact test.
doi:10.1371/journal.pone.0068768.t001

Table 2. Predictive models for an unfavourable functional
outcome (modified Rankin Scale 3–6) at day 90 following
stroke.

variables OR (95% CI) p

model 1 a age 1.097 (1.057–1.139) ,0.001

NIHSS 1.193 (1.108–1.284) ,0.001

recanalization therapy 0.587 (0.277–1.245) 0.160

model 2 a age 1.090 (1.049–1.132) ,0.001

NIHSS 1.187 (1.100–1.280) ,0.001

recanalization therapy 0.732 (0.332–1.615) 0.439

plasma MR-proADM 4.062 (1.109–14.87) 0.028

Abbreviations: NIHSS = National Institutes of Health Stroke Scale; OR = Odd’s
ratio; CI = confidence interval.
aAreas under receiver operating characteristics (ROC) curves (AUC) 0.803 and
0.819 for models 1 and 2, respectively (p = 0.204); category-free net
reclassification improvement (NRI) 0.577 (p,0.001).
Abbreviations: mRS = modified Rankin Scale; NIHSS = National Institutes of
Health Stroke Scale; TACS = total anterior circulation syndrome; PACS = partial
anterior circulation syndrome; POCS = posterior circulation syndrome; LACS –
lacunar syndrome.
doi:10.1371/journal.pone.0068768.t002
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With plasma MR-proADM levels in the upper three quintiles,

100%, 83.3% and 75.5% of patients had an unfavourable

functional outcome, respectively, as compared to 36.4% and

47.4% of patients in the lower two quintiles. When using the

SPAN-100 for outcome prediction (table 3), in 36 patients with

unfavourable outcome reclassification improved by MR-proADM,

and in 8 patients it became worse, with a net gain in

reclassification proportion of 0.31 (p,0.001). Eleven individuals

with favourable outcome were falsely reclassified by MR-proADM

quintiles (p,0.01). Overall NRI was 0.175 (p = 0.04) indicating an

improvement in reclassification of patients by adding plasma MR-

proADM to their SPAN-100 status.

Patients who died within 90 days following stroke (n = 30) had a

higher median NIHSS (15 vs. 7; p,0.001) and higher MR-

proADM levels (median 0.92 nmol/l vs. 0.73 nmol/l; p,0.001).

The difference in age compared to patients who survived did not

reach statistical significance (median 79.0 vs. 73.0 years;

p = 0.058). In models to predict the patients’ death within 90 days

following stroke, the AUC of generated ROC curves did not

increase significantly when plasma MR-proADM levels were

added to the patients’ age, NIHSS and the use of recanalisation

therapy (data not shown). Category-free NRI of 0.127 (p = 0.523)

showed no improvement in reclassification of patients by adding

MR-proADM levels to predict patients’ death. Kaplan-Meier

survival analysis showed a rising risk of death with increasing MR-

proADM quintiles (p = 0.011; figure 2).

Discussion

Plasma MR-proADM improves prediction of functional out-

come in ischemic stroke when added to the patients’ age, NIHSS

on admission, and the use of recanalization therapy. Levels of

MR-proADM in peripheral blood improve reclassification of

patients when the SPAN-100 is used in the prediction of functional

outcome. Currently, there are no commonly accepted models to

predict functional outcome in ischemic stroke. The SPAN-100 has

a great advantage in its ease of use in clinical routine and

emergency settings. [29] The mRS at three months is the most

prevalent outcome assessment and the preferred outcome measure

for treatment trials in acute stroke. [30,31] As opposed to other

stroke biomarker studies, [4–6,32,33] we have excluded patients

with minor stroke or transitory ischemic attack which results in a

higher median NIHSS in our study. This contributes to the higher

percentage of patients in this study who underwent recanalization

therapy as compared to average rates in Austrian stroke units in

recent years. [34] We could not approach all eligible patients in

the given timeframe for participation in the study. However, we

included patients consecutively according to the aforementioned

criteria irrespective of any clinical prediction of their prognosis and

did not include patients with preexisting disability.

Adrenomedullin has been identified as a tumor survival factor

[35] and exerts antimicrobial properties. [36] We have excluded

patients with a known malignancy or with signs of infection. In

patients with myocardial infarction or CHF, plasma MR-proADM

is an independent predictor of death. [8,9] In our study, Kaplan-

Meier survival analysis showed a rising risk of death with

increasing plasma level quintiles. MR-proADM levels have

previously shown to increase with higher NYHA classes. [9] In

that study, MR-proADM appeared to decrease with the intake of

angiotensin-converting enzyme (ACE) inhibitors or angiotensin

receptor antagonists. [9] In our cohort, we have excluded patients

with NYHA classes III and IV. The proportions of patients who

were on ACE inhibitor or angiotensin receptor antagonist therapy

Table 3. Reclassification table for prediction of functional outcome at day 90 following stroke.

SPAN-100+ MR-proADM, predicted outcome

mRS 0–2 mRS 3–6 total

SPAN-100, predicted
outcome

events (observed outcome mRS 3–6)

mRS 0–2 33 36 69

mRS 3–6 8 12 20

total 41 48 89

non-events (observed outcome mRS 0–2)

mRS 0–2 66 11 77

mRS 3–6 0 2 2

total 66 13 79

Reclassification was performed using the SPAN-100 alone or in combination with MR-proADM quintiles.
Abbreviations: SPAN = Stroke Prognostication using Age and NIHSS; MR-proADM = midregional pro-adrenomedullin; mRS = modified Rankin Scale.
doi:10.1371/journal.pone.0068768.t003

Figure 2. Kaplan-Meier survival curves. Time to death related to
plasma MR-proADM quintiles (1st: 0.04–0.45 nmol/l; 2nd: 0.46–
0.86 nmol/l; 3rd: 0.87–1.27 nmol/l; 4th: 1.28–1.68 nmol/l; 5th: 1.69–
2.10 nmol/l).
doi:10.1371/journal.pone.0068768.g002
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in our study did not differ in patients with favourable (mRS 0–2)

and unfavourable (mRS 3–6) outcomes (table 1). Patients who took

either an ACE inhibitor or an angiotensin receptor antagonist on

admission had a higher median mRS at day 90 (4 vs. 2; p = 0.015)

and higher median MR-proADM levels (0.82 vs. 0.70 nmol/l;

p,0.001).

Adrenomedullin is supposed to counter vasoconstricting and

sodium-retaining hormones in patients with CHF. [37] The

counter-regulation of vasoconstriction as part of a systemic stress

response may also apply to patients with acute ischemic stroke.

Data from animal models hint to a role of adrenomedullin in

neuroprotection, [38–40] an issue to be addressed in future clinical

trials. The findings from our exploratory study show that the

determination of MR-proADM levels in peripheral blood

improves prediction of functional outcome in ischemic stroke

patients. This should be reassessed in a larger trial to evaluate its

applicability in routine clinical procedures.
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