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A B S T R A C T   

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease, progressive nature characterizes by loss of both upper and 
lower motor neuron functions. One of the major challenge is to understand the mechanism of ALS multifactorial 
nature. We aimed to explore some key genes related to ALS through bioinformatics methods for its therapeutic 
intervention. Here, we applied a systems biology approach involving experimentally validated 148 ALS- 
associated proteins and construct ALS protein-protein interaction network (ALS-PPIN). The network was 
further statistically analysed and identified bottleneck-hubs. The network is also subjected to identify modules 
which could have similar functions. The interaction between the modules and bottleneck-hubs provides the 
functional regulatory role of the ALS mechanism. The ALS-PPIN demonstrated a hierarchical scale-free nature. 
We identified 17 bottleneck-hubs, in which CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes 
(hubs) in ALS-PPIN. CDC5L was found to control highly cluster modules and play a vital role in the stability of the 
overall network followed by SNW1, TP53, SOD1, and VCP. HSPA5 and HSPA8 acting as a common connector for 
CDC5L and TP53 bottleneck-hubs. The functional and disease association analysis showed ALS has a strong 
correlation with mRNA processing, protein deubiquitination, and neoplasms, nervous system, immune system 
disease classes. In the future, biochemical investigation of the observed bottleneck-hubs and their interacting 
partners could provide a further understanding of their role in the pathophysiology of ALS.   

1. Introduction 

Amyotrophic lateral sclerosis (ALS) is one of the fatal neurodegen
erative disease mainly occurs due to the loss of motor neuron and 
neuronal death (Martin et al., 2017). It leads to death by progressive 
paralysis and respiratory failure within 2–4 years(Chio et al., 2009). 
About 90–95% of ALS cases are sporadic (sALS) and 5–10% are inherited 
through family (fALS)(Van Rheenen et al., 2016). Many genetic factors 
have been identified, involving aggravations for RNA metabolism(Butti 
and Patten, 2018), weakened protein homeostasis(Cykowski et al., 
2019), damaged DNA repair (Brenner et al., 2016), disruption of 
nucleocytoplasmic transport (Kim and Taylor, 2017), excitotoxicity 
(Foerster et al., 2013), oxidative stress(Mitsumoto et al., 2008), and 
axonal transport disturbance(De Vos et al., 2007). Mutations observed in 

several genes related to ALS such as SOD1(Rosen et al., 1993), FUS 
(Kwiatkowski et al., 2009), C9ORF72 (DeJesus-Hernandez et al., 2011; 
Renton et al., 2011), ATXN2 (Elden et al., 2010), OPTN (Maruyama 
et al., 2010), VCP (Johnson et al., 2010), PFN1 (Wu et al., 2012), MATR3 
(Johnson et al., 2014), SETX (Hirano et al., 2011), UBQLN2 (Deng et al., 
2011). Initial discovery of a risk associated C9ORF72 locus in ALS 
(GWAS), a pathology associated risk hexanucleotide-repeat expansion 
(G4C2) updated the field of ALS genetics and biology (Laaksovirta et al., 
2010). Since 2015, others gene such as TBK1(Freischmidt et al., 2015), 
C21ORF2(Van Rheenen et al., 2016), NEK1 (Brenner et al., 2016), CCNF 
(Williams et al., 2016), MOBP,SCFD1(Van Rheenen et al., 2016), KIF5A 
(Nicolas et al., 2018), LGALSL (Gelfman et al., 2019), GLT8D1 (Coop
er-Knock et al., 2019), DNAJC7(Farhan et al., 2019), TUBA4A(Smith 
et al., 2014), ANXA11(Topp et al., 2017), UBQLN4 (Edens et al., 2017), 
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CHCHD10 (Woo et al., 2017) identified through GWAS, whole-genome 
and exome sequencing methods correlated with ALS. The genes like 
SOD1, C9ORF72, FUS and TDP-43 are highly mutated as compared to 
other ALS associated genes and mostly associated to ROS-associated 
oxidative stress, excitotoxicity, protein aggregation, altered RNA pro
cessing, axonal and vesicular trafficking dysregulation, and mitochon
drial dysfunction. Approximately, 180 genetic mutations of SOD1 have 
been identified in patients with ALS (Abel et al., 2012; Farhan et al., 
2018) and dominantly inherited mutations link to 15% of fALS cases 
(Rosen et al., 1993). The pathogenic mechanism is a result of toxic 
mutant SOD1 aggregates and oxidative damage observed due to 
gain-of-function. Mutations like A4V, L84V, H43R, G85R, N86S, G93A 
have short survival time (SST) and G93C, D90A, H46R have long sur
vival time (LST) for the patients; mutations C146R, A4V, I149T, V148G, 
D125H mainly induce functional and conformational changes of SOD1 
and others 6 mutations (H46R, H48Q, H48R, H80R, S134N, D125H) 
reported decreasing the enzymatic activity of the SOD1 protein.(Srini
vasan and Rajasekaran, 2020). C9ORF72 gene been identified in sALS 
patients that hexanucleotide (G4C2) repeat expansion is the common 
cause of ALS(Renton et al., 2011). RNA processing dysregulation 
appeared to be a key pathway affected in C9ORF72-ALS patients (Mej
zini et al., 2019). C9ORF72 mutations resulted in three main disease 
mechanisms: loss of function of C9ORF72 protein, a toxic gain of func
tion from sense and antisense C9ORF72 repeat RNA or DPRs (Balendra 
and Isaacs, 2018). In 2009, FUS was reported as an ALS-related gene that 
causes both fALS and sALS and is also considered a high-risk gene (Volk 
et al., 2018). In ALS patients more than 50 FUS variants are autosomal 
dominant. Mutations like R521C and P525L, R521G, R521H, R524W, 
and G507N have been proposed to give rise to early-onset, antagonistic 
way lower motor neuron(LMNs) disease with intense neuron damage in 
the spinal cord and anterior horn along with neuronal and glial cyto
plasmic inclusions (Deng et al., 2014). Q290X mutation, which segre
gates with disease in a large family affected and FUS mRNA degraded by 
nonsense-mediated decay, which results in loss of FUS functions (Deng 
et al., 2014). TDP-43 is mainly found in the nucleus and plays a crucial 
role in regulating the splicing mechanism of RNA, providing transcripts 
stability, biogenesis of miRNAs, cell division, apoptosis and also act as a 
scaffold for nuclear materials through its interaction with survival motor 
neuron proteins (SMNs) (Buratti, 2018). Missense mutation like (A315T, 
M337V, A382T, G348C, and Q343R) presented in C-terminus which is 
glycine-rich lead to loss of nuclear TDP-43 and G294V, A328T, S393L 
have been identified to increase TDP-43 intrinsic aggregation suscepti
bility and cause both fALS and sALS (Prasad et al., 2019). TDP-43 
interact with other proteins which disturb by mutations like A315T and 
M337V and leads to defect in RNA processing mechanisms (Prasad et al., 
2019). The mechanism and etiology of the disease are still poorly un
derstood. Omics techniques have provided ways to identify genes and 
their products related to disease but functional level understanding is 
still a major challenge. The majority of ALS data present that extensive 
range of molecular and cellular processes affected by ALS-associated 
mutations. ALS does not observe due to a single reason or one partic
ular genetic mutation. Based on the fact that in human genes expression 
and their interaction is under tight temporal. Thus, to gain an under
standing of molecular and systems-level network-based analysis of 
high-throughput data can help to identify diagnostic markers and key 
candidate genes. 

One theory is that some of the ALS-causing proteins are "essential 
proteins" that, if acted on wrongly by other ALS-causing mutations, 
would have serious consequences for motor neuron survival. Another 
possibility is that there are common downstream proteins that interact 
most effectively with the ALS-causing proteins, either directly or indi
rectly. The original concept of "essential proteins" was that they are 
required for survival and that their absence results in lethal phenotype. 
Traditional methods for finding critical proteins, such as gene knock-out 
or RNA interference, are frequently time-consuming and expensive. The 
viability of computational techniques to predict gene essentiality and 

morbidity has been demonstrated in several previous studies. Proteins 
rarely perform function individually; instead, they establish a complex 
network with other genes and proteins to carry out specific biological 
functions. Protein-protein interaction (PPI) networks are therefore vital 
for understanding protein functions (Barabasi and Oltvai, 2004), and 
related diseases (Vidal et al., 2011). Protein-protein interaction (PPI) 
topological features have been used to identify important proteins in a 
variety of species (Hahn and Kern, 2005). In a PPIN, nodes of higher 
degree known as hubs and are more important for biological function as 
others nodes in the network (Jeong et al., 2001). The key concept is the 
"centrality-lethality rule," which states that more centralised protein or 
systems are more lethal (Jeong et al., 2001; Mangangcha et al., 2020). In 
the PPI network, hubs or bottlenecks, and hubs-bottlenecks linked pro
teins are more important for survival. Several studies suggest a link 
between topological centrality (BC) (Pang et al., 2016) and protein es
sentiality, despite the fact that the centrality lethality rule is still 
disputed (Batada et al., 2006; Jeong et al., 2001). Systems biology is 
significantly contributing to biomedical research (Zanzoni et al., 2009). 
Recent studies have demonstrated drug development techniques for 
Charcot-Marie-Tooth disease type I (CMT1A) and breast cancer depict
ing the effectiveness of network pharmacological approaches in 
discovering medication combinations with high clinical efficacy and 
minimal side effects (Jaeger and Aloy, 2012). Such system biology ap
proaches are now been applied to Alzheimer’s disease for the identifi
cation of novel proteins that are involved in the disease (Soler-Lopez 
et al., 2012). 

A network theory approach to defining connections within complex 
systems and the generic organising principle of cellular networks are 
utilised in systems biology. It also aids in the understanding of the 
function of specific molecules in a variety of cellular processes. Dysre
gulation of numerous biological processes, cellular component path
ways, and molecular activity has a downstream effect such as motor 
neuron degeneration which has a significant risk associated with ALS 
(Saez-Atienzar et al., 2021). In our study, we identify, modules that 
controlled the network from dissortivity and also maintain the flow of 
information throughout the network of ALS. A set of ALS-associated 
genes/proteins were used to generate the Amyotrophic Lateral Scle
rosis Protein-Protein Interaction Network (ALS-PPIN). We also identi
fied the biological significance, the molecular activity of the modules, 
and their association with different disease classes. Our interest was to 
identify the Bn-H and their interaction which may provide an opportu
nity for a better understanding of ALS. 

2. Methods 

2.1. Construction of ALS protein-protein interaction network 

The genes associated with ALS disease were retrieved from the 
Amyotrophic Lateral Sclerosis online database (ALSoD) (Abel et al., 
2012) and literatures (Chia et al., 2018; Dervishi et al., 2018; Le Gall 
et al., 2020; Mejzini et al., 2019; Srinivasan and Rajasekaran, 2020). 
ALSoD database provides comprehensive information about genomic, 
proteomic, and bioinformatics in association with ALS (Wroe et al., 
2008). It also includes patient information like age, clinical data, family 
history, survival data, sex (Abel et al., 2012). The ALSoD was con
structed using genotype, phenotype, and geographical information with 
associated analysis tools and it transformed from a single gene storage 
facility recording mutations in the SOD1 gene to multigene ALS re
pository ALSoD database links with others databases like ALSgene pro
vides evidence of association to complement the genotype-phenotype 
association given in ALSoD. It is also used to perform multiple alignment 
and mutations on SOD1 gene using ClustalW and jalview to perform 
multiple sequence alignment in others species for selected genes 
(Waterhouse et al., 2009). Other links and databases integrated with 
ALSoD are GeneMANIA used to predict interaction of selected gene 
(Warde-Farley et al., 2010), a Google Earth API is used to visualise maps 
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of mutations, risk and exposure distributions, HGNC, Enterz Gene, UCSC 
browser, Protein Structure, OMIM, Genecards, ProtScale, KEGG, Uni
prot, iHOP, GeneTest, AmiGO, Ensemble, NCB1, Life Science DB, Gen
eWiki, WolframAlpha, and WikiGenes. The redundancy in selected 
genes was removed (duplicate names and aliases names used for the 
gene). A set of 148 genes were used to generate the Amyotrophic Lateral 
Sclerosis Protein-Protein Interaction Network (ALS-PPIN) (Fig. 1). These 
ALS associated genes were used to fetch PPI and to analyse a large 
number of interactions, we first retrieved the PPIN from five different 
source databases, namely STRING (von Mering et al., 2003), the General 
Repository of Interaction Datasets (BioGRID) (Stark et al., 2006), 
Database of Interacting Proteins (DIP) (Xenarios et al., 2001), IntAct 
(Hermjakob et al., 2004), Molecular Interactions Database (MINT) 
(Chatr-aryamontri et al., 2007). We selected those interactions 
commonly present in at least two of the databases to generate the 
ALS-PPIN. The constructed network shows a graph denoted by G (N, E), 
where, N represents sets of nodes with N = ; i = 1,2,., N and E the sets of 
edges with E = ; i, j = 1,2,3,4,…., N. 

2.2. Statistical analysis of the network 

To analyse the topological properties of ALS-PPIN we used various 
statistical parameters like degree distribution, clustering coefficient, 
neighborhood connectivity, and centrality parameters (betweenness, 
closeness, eigenvector) using Cytoscape plugins, Network Analyzer 
(Assenov et al., 2008), and CytoNCA (Tang et al., 2015). 

2.2.1. Degree(k) and probability of degree distribution (P(k)) 
Degree(k) is a basic characteristic that has an impact on a node’s 

centrality and is represented by the number of connections a node has to 
others in a network. The probability of degree distribution(P(k)) is 
represented by the given equation (Eq. 1). 

P(k) =
Nk

N
(1)  

Where Nk represents the total number of nodes with degree k and N 
represents node. The P(k) of random and small-world networks follows 
poison distribution against degree, but for scale-free network, it obeys 
power-law distribution P(k) ∼ k− γ where 4 ≥ γ ≤ 2. The value of γ 
represent many structural and organizing properties: (i) if γ 
is 2 ≥ γ ≤ 3, several smaller hubs are integrated with few large hub 
and a large number of separate nodes together, (ii) if γ ≤ 2, consist 
modules/clusters structure showed that roles of modules are more 
important, known as hierarchical network, (iii) if γ > 3 the hubs are 
unrelated, losing many scale-free characteristics (Ravasz and Barabasi, 
2003). 

2.2.2. Clustering coefficient C(k) 
It indicates the overall organization of formation of clusters in net

works and also characterizes the strength of internal connections be
tween the nodes neighborhood in the network. For any a particular 
node, it is calculated by C(ki) = 2mi/ki(ki − 1) where mi represent the 
total number of connections with its close neighbors. For scale-free and 
random networks, C(k) ~ constant (Barabasi and Oltvai, 2004) and in
dependent on k and for hierarchical network, C(k) ∼ k− α where α ∼

1 it follows power law-distribution (Borgatti and Everett, 2006). 

2.2.3. Neighborhood connectivity CN(k)
Is the number of neighbors connected with a node and it defines the 

correlation pattern of connectivity for the interacting nodes of the 
network. CN(k) can be calculated by (Eq. 2). 

CN (k) =
∑

q
qP (q|k) (2) 

Fig. 1. Schematic workflow implemented to study Amyotrophic Lateral Sclerosis protein-protein interaction network.  
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where P(q|k) is the conditional probability of creating a link from a node 
with a k degree to another node having a q degree(Traag et al., 2013). 
CN(k) ∼ constant for scale-free network while for hierarchical network 
structure CN(k) follows power law scaling against degree k i.e, 
CN(k) ∼ kβ, where, β ∼ 0.5. If CN(k) is an increasing function of k, the 
positive and negative value of exponent β showed assortivity or dis
sortivity nature of the network topology respectively(Virkar and Clau
set, 2014). 

2.2.4. Betweenness centrality (CB(v) )
It measures a node occurring several times to bridge along the 

shortest path between nodes i to j. It is calculated by (Eq. 3). 

CB(v) =
∑

i,j;i∕=j∕=k

dij(ν)
dij

(3)  

where dij(v) denotes the number of geodesic paths connecting node i to 
node j passing through node v. If a node in a network has a high 
betweenness centrality value, it indicates that the node lies on a path 
with many other nodes and have the significant ability to propagate 
information in the network(Borgatti and Everett, 2006). 

2.2.5. Closeness centrality (Cc)

It is recognised in terms of ‘shortest path lengths’ among the pair of 
nodes in a network. It can be calculated in terms of farness and is given 
by (Eq. 4). 

CC (k) =
N

∑

j
dij

(4)  

where, dij is the geodesic distance between pair of nodes i and j, and N is 
the nodes present in the network. The higher value of (Cc) for a node 
means more capability to propagate information in the entire network 
and the low value represents higher receiving capabilities of 
information. 

Eigenvector centrality (CE) is proportional to the total sum of the 
centrality of all neighborhood nodes. It describes the effect of a node on 
signal processing. It is calculated by (Eq. 5). 

CE (i) =
1
λ

∑

j=nn(i)

vj (5)  

Where nn(i) represents the nearest neighbor of i node in the network, 
with eigenvalue λ and eigenvector vi of eigenvalue equations, Avi =

λvi where A is the network adjacency matrix. CE the function of a node 
is a powerful indicator of information transmission and depends on the 
centralities of its neighbors, it varies across different networks(Bona
cich, 1987). 

2.3. Tracing of bottleneck-hubs in the network 

In a ALS-PPIN, the nodes with high degree, considered as hubs, are 
important nodes, because they might be related to disease-causing genes 
(Barabasi et al., 2011; Lim et al., 2006; Stelzl et al., 2005). The nodes 
with the high Betweeness Centrality (BC) were defined as bottlenecks. It 
is believed that these nodes will play an important role in information 
flow and controlling capability. In the protein-protein interaction 
network of ALS, we mainly focused to identify the hubs, bottlenecks and 
bottleneck-hubs (Bn-H) that were the central to the ALS-PPIN. We 
selected the top 1% highest degree(k) and BC nodes from the overall 
nodes (1949) present in a network. Further we identified the over
lapping of nodes between hubs and bottleneck, which were considered 
as Bn-H. We also characterise non-Bn-H, non-hub bottlenecks in 
ALS-PPIN. In order to validate the importance of Bn-H, we also carried 
out computational knockout experiments. Removal of Bn-H may led to 
perturbation in the network the phenomenon referred as 

centrality-lethality rule(Jeong et al., 2001). In our study, to access the 
network’s organisation, change in the absence of the most influential 
bottlenecks-hubs one at a time, then computed the topological param
eters of the modified/reorganized network to assess regulating capac
ities by evaluating the degree distribution and BC. 

2.4. Module construction and their interaction with bottleneck-hubs 

In the literature, several different types of clustering approaches 
have been suggested(Huang et al., 2013; Jeong et al., 2001; modeling, 
1999; Vidal et al., 2011; Wu et al., 2008). Many frequently used methods 
are described in terms of comparable data assumptions (e.g., k-means 
and k-medoids). The k-means (MacQueen, 1967) method has been 
frequently employed by researchers (Wu et al., 2008) in partitional 
techniques. The number of groups (k) and a distance measure are 
required input parameters for this approach. Each data point is first 
assigned to one of the k clusters based on its distance from the centroids 
(cluster centres) of each cluster. We constructed the modules/clusters, 
using the “Molecular Complex Detection” (MCODE) v2.0.0 (Bader and 
Hogue, 2003), a cytoscape plugin that identify the nodes that are highly 
interconnected in the form of clusters representing relatively stable, 
multi-protein complexes that function as a single entity in the network. 
Clusters in a protein-protein interaction network are commonly protein 
complexes and pathways, whereas clusters in a protein similarity 
network are protein families. To separate the dense areas according to 
provided parameters, the approach uses vertex weighting by local 
neighbourhood density and outward traversal from a locally dense seed 
protein. The algorithm has the advantage of having a directed mode, 
which permits fine-tuning of clusters of interest without considering the 
rest of the network and analysis of cluster interconnectivity, which is 
important in protein networks. A known high rate of false positives in 
data from high-throughput interaction methods has no effect on the 
algorithm (Bader and Hogue, 2003). The algorithm uses a three-stage 
process: (i) Weighting: the nodes with the most linked neighbors 
receive a higher score. (ii) Molecular complex prediction: recursively 
add nodes to the complex that are over a specified threshold, starting 
with the highest-weighted node (seed). (iii) Post-processing: filters are 
applied to increase cluster quality (haircut and fluff). We used defaults 
values of MCODE, node score cutoff (0.2), haircut, node density cutoff 
(0.1), K-score (2), maximum depth (100). We selected the top modules 
based on M-score having values greater than 4. The interaction between 
the Bn-H and the modules was identified using Cytoscape v3.8.2. which 
provided the opportunity for a more precise understanding of the bio
logical functions, providing valuable clues for biologists (Nafis et al., 
2015). 

2.5. Gene ontology enrichment and disease association of modules 

The five modules were functionally annotated using the gProfiler 
package(Reimand et al., 2016) to correlate the biological significance. 
We showed the Gene Ontology classifications like molecular activity, 
biological process, cellular components of modules using filtering 
domain size set to “only annotated”, default g:SCS method for multiple 
testing correction for p-values, maximum p-value set to 0.05, numeric 
IDs as prefix ENTERZGENE_ACC. Further, we identifying disease-gene 
correlations for each module because it helps in the understanding of 
disease mechanisms, which have several applications including disease 
diagnosis, therapy, and prevention (Luo et al., 2019). The gene-disease 
class association is identified by the versatile platform “disgenet2r” an R 
package (Pinero et al., 2020). We used gene2disease function (dis
genet2r package) to retrieve the Gene–Disease class association for a 
given list of genes of each module with search options source database 
“ALL”, DisGeNET score (0− 1). Higher the DisGeNET score shows a 
stronger correlation between the gene and disease and it showed the 
Gene-Disease class association in the terms of percentage. Diseases are 
grouped by their MeSH disease classes, and the Gene-disease association 
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is proportional to the percentage of diseases in each MeSH disease class. 
The Gene-Disease association score GDAs takes into account the number 
and type of sources (level of curation, organisms), and the number of 
publications supporting the association. 

3. Results 

3.1. Characterization and statistical analysis of network 

We extracted the PPINs commonly present in at-least two of inter
action databases out of the five. The ALS-PPIN consists of 1949 nodes 
and 13087 edges. The results of the topological analysis of degree and 
BC of all 1949 nodes in (Supplementary Table 1). We retrieved the nodes 
with top 1% highest degree and BC of total nodes (1949) (Table 1). 
These nodes considered as hubs and bottlenecks of the network 
respectively. Out of 19 hubs, 17 hubs were present in bottleneck 
considered as Bn-H. We also identified that within 17 Bn-H, CDC5L, 
SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in the 
ALS-PPIN (Fig. 2A). The Bn-H are the most influencing proteins which 
provide stability and control on the flow of information in the network. 
The topological analysis of the network depicted that our network fol
lowed a power-law distribution against degree. The (P(k)) obeys power- 
law distribution P(k) ∼ k− γ with a value of exponent γ =

0.13 ± 0.76(Fig. 2B), where the regression line fitted with the curve to 
the data point with P(k) ∼ k− 0.76 with correlation coefficient(r) 0.92 
fitted with data. The value γ(0.76) provides hierarchical scale-free 
behavior to the network including system-level organization consists 
modules and sparsely distributed Bn-H present in the network (Pas
tor-Satorras et al., 2001). The clustering coefficient C(k) also followed 
the power-law scale as a function of degree C(k) ∼ k− α with negative 
exponent value of(α = 0.35 ± 0.34) which represented that ALS-PPIN 
follows hierarchical nature. The straight line fitted curve with C(k) ∼
k− 0.34 results a correlation coefficient value (r = 0.83) to the data set 
(Fig. 2C). The Neighbourhood connectivity CN(k) showed negative 
exponent value (β= 72.87 ± 0.17) given by power law fitting model 
CN(k) ∼ kβ. The fitted curve line with CN(k) ∼ k− 0.17 gives correlation 
coefficient (r = 0.76) and well fitted to the data set points (Fig. 2D). The 
values represented that ALS-PPIN showed a hierarchical scale-free na
ture along in addition to fractal behaviour due to presence of motifs. All 
the datapoints of the topological properties fitted power law and verified 
following a statistical procedure (Clauset et al., 2009). For all the pa
rameters exponential values were calculated using power-law fittings. 
The network showed a disassortative nature due to the calculated 

negative value of β0 the exponent of connectivity parameter and reflects 
that the Bn-H are still a significant part in regulating the stability of the 
network. To recognize the importance of the Bn-H nodes strength in 
signal processing in a network, we used three topological centrality 
parameters like Closeness centrality(Cc), Betweenness centrality(CB) 
and Eigenvector(CE). In ALS-PPIN these parameters followed power law 
against degree(K) and showed positive exponents values indicate the 
strong regulating behaviour of the leading Bn-H. The calculated values 
of exponents and correlation coefficient(r) of CB(ε = 1.67, r = 0.92), 
Cc(η = 0.09, r = 0.87,CE(δ = 0.87, r = 0.93) are respectively. The cor
relation coefficient value for centrality measure are very high and good 
fitted with the data (Fig. 2E-G). The graph of betweenness against de
gree showed that high-connecting nodes have more controlling strength 
to outspread signal throughout the network (Fig. 2E). Additionally, the 
closeness centrality parameter showed that high degree nodes are 
quickly spread the information as compared to the lower degree nodes 
which considered as good receiver of propagated signal (Fig. 2F). Our 
network followed a hierarchical scale-free nature means network having 
modular structure and system level of organization. 

3.2. Tracing of bottleneck-hubs in the network 

In the protein-protein interaction network of ALS, we calculated the 
topological parameters of each node using Network anlayzer (Assenov 
et al., 2008), the plug-in of Cytoscope v3.8.2 (Tang et al., 2015). The first 
two parameters, Degree distribution and BC were used to filter the hubs 
and bottleneck in a network. We selected top 19 proteins (1% of total 
nodes) in each parameter with highest degree as hubs and BC as bot
tlenecks. Here, we found 17 nodes are common in both the parameter as 
Bn-H, 2 non-Bn-H (DLST & EP300), and 2 non-hub bottlenecks (PARK7 
& MAPT) (Fig. 3) (Table 1). Out of 17 bottleneck hubs, we identified the 
significant hubs, namely TP53, SOD1, CDC5L, SNW1, and VCP (Fig. 2), 
with the rationale of high degree nodes (Table 1) as the top five hubs in 
ALS-PPIN. The node TP53 had the highest degree (236) followed by 
SOD1 (211), CDC5L (186), SNW1 (173) and VCP (172). These Bn-H 
proteins represent as backbone of the network which has great influ
ence on information flow and more control over the network. 

In general, important genes may be identified by a series of inde
pendent gene knockout experiments. In order to validate the Bn-H, we 
also carried out computational knockout experiments. Removal of Bn-H 
may lead to perturbation in the network the phenomenon referred as 
centrality-lethality rule verified by various genomic investigations 
(Jeong et al., 2001). The removal of Bn-H does not cause network 
breakdown, the close interaction of these Bn-H can control network 
properties and regulatory mechanisms. The accumulation of mutations 
in any gene causes the dysfunction or removal of expression of a specific 
protein to become dysfunctional or absent in the cell. In general, this 
situation re-examining the network’s topological properties change may 
be shown by removing the corresponding hub/hubs (important gene/
genes that may have been altered) from the network and then (Peng 
et al., 2015). If the removal of hub/hubs results in a significant change in 
network properties, such as breakdown and change in information flow, 
the network is said to be controlled by the centrality-lethality rule 
(Jeong et al., 2001). In our study, to access the network’s organisation, 
change in the absence of the most influential Bn-H one at a time, then 
computed the topological parameter; Degree distribution and BC of the 
modified/reorganized network to assess the hubs’ regulating capacities. 
The hub removal analysis showed a significant magnitude of changes in 
network metrics in particular, such as degree and betweenness cen
trality. In betweenness centrality, all 17 bottleneck-hub were analysed 
by removing them from the network systematically. We found few Bn-H 
(AR, SOD1, TP53, CDC5L, VCP, EGFR and APP) that allowed significant 
changes in BC could enhance local and global signal propagation in 
regulating ALS (Supplementary Fig 1A). The removal of all Bn-H showed 
a significant control over the interactions of other nodes in the 
ALS-PPIN. The degree distribution showed mutual control over the 

Table 1 
Topological properties of selected 1% highest degree (hubs) and betweeness 
(bottlenecks) nodes out of total (1949) nodes in ALS-PPIN. The bold highlighted 
nodes are bottleneck-hubs.  

S.NO Name Degree (K) Name Betweeness (CB)  

1 TP53  236 VCP  0.06587026  
2 SOD1  211 TP53  0.06480069  
3 CDC5L  186 SOD1  0.0560067  
4 SNW1  173 AR  0.05264571  
5 VCP  172 DISC1  0.05158762  
6 AR  171 ATXN1  0.04441985  
7 DLD  155 SQSTM1  0.03839771  
8 DISC1  148 APP  0.03540357  
9 NEK4  138 CDC5L  0.03374739  
10 HSP90AA1  128 PSEN1  0.03306112  
11 EGFR  125 EGFR  0.03113805  
12 DLST  124 SNW1  0.02913541  
13 PDHA1  122 HSP90AA1  0.02680708  
14 ATXN1  119 HTT  0.02414826  
15 HTT  117 DLD  0.02369741  
16 SQSTM1  117 PDHA1  0.02203444  
17 APP  114 NEK4  0.02047508  
18 PSEN1  110 PARK7  0.02043984  
19 EP300  108 MAPT  0.01992754  
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Fig. 2. The protein-protein interaction network of ALS and its topological properties. (A) The ALS-PPIN is represented in terms of nodes(proteins) and edges 
(physical interaction). The total number of nodes (1949) and edges (13087) are filled circles (orange) and lines(gray), respectively. The top five significant 
bottleneck-hubs such as TP53(red), SOD1 (blue), CDC5L(green), SNW1(yellow), VCP (light pink) in the order of size according to a degree, respectively. (B-G) The 
topological and centrality properties of network represented with correlation coefficient values (r) (B) probability of degree distribution P(k), (C) average clustering 
coefficient C(k), (D) average neighborhood connectivity (CN(k)), (E) betweenness centrality (CB), closeness centrality (CC), eigenvector centrality (CE). All these 
properties follow the power law scale and show the scale-free hierarchical nature of the network. 
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regulation of the ALS-PPIN, particularly when we removed AR and 
SOD1, whereas the removal of other 15 Bn-H (TP53, CDC5L, VCP, DISC1, 
SNW1, NEK4, HSP90AA1, EGFR, DLD, PDHA1, ATXN1, PSEN1, APP, 
SQSTM1, HTT) showed a similar pattern of regulation (Supplementary 
Fig 1B). In a hierarchical network, hubs, which are not as essential as 
modules in terms of network control, nevertheless play significant roles 
in network regulation. Because of the hierarchical nature of the 
ALS-PPIN, the removal of Bn-H does not cause the network to break
down. The network’s crosstalk among these Bn-H proteins, as well as 
functional modules, is most likely attempting to maintain the network’s 
structural properties. 

3.3. Modules of network and their cross-talk with bottleneck-hubs 

We identified the 29 modules that are highly interconnected regions 
representing relatively stable, multi-protein complexes that function as a 
single entity in the network (Supplementary Table 2). We selected the 
top 5 modules based on the high M-score and the first module had 11 
nodes and 44 edges with scoring (8.8). The second, third, fourth, and 
fifth modules had 41 (5.15), 15 (4.85), 76 (4.69), and 65 (4.37) nodes, 
respectively, with the corresponding edges of 103, 34, 176, and 140. 
(Fig. 4) (Table 2). These modules have a system-level organization that 
was maintained by connecting with other nodes and provide overall 
functionality to the network (Dong and Horvath, 2007). Out of the five 
modules, module-4 (CDC5L) and module-5 (SNW1) consists of one Bn-H, 
which not only controls the internal regulation of modules respectively; 
but also affected other modules by interacting with different nodes. 
Whereas other Bn-H, SOD1, TP53, and VCP were not observed in any of 
the five modules suggested that these Bn-H indirectly connected with 
modular function (Fig. 4). Cross-talk between the modules may be 
possible due to interaction with common Bn-H and removal of such 
regulators can affect the functionality of modules and leads to dis
sortivity of the network. These modules were found to be linked via 
Bn-H, which have the possibility of cross-talk among the modules. 
Further we also analysed the interaction of 17 Bn-H with the five 
modules. Interestingly, we found CDC5L, SNW1 and TP53 showed 
highest strength of interaction with all five functional modules. CDC5L, 
had the largest number of connections with five modules followed by 
SNW1, TP53, SOD1, VCP indicating that these proteins were the key 
mediators of the modules (Table 3). CDC5L and SNW1 were found to be 
highly connected with module-4 (28, 26) whereas least with module-3 
(2,1) (Figs. 5 and 6). They also showed an interaction with each other 
in the ALS-PPIN. TP53, SOD1, and VCP showed the interactions with 
modules-1, 2, 4, and 5 with different strength and control the functions 
of the modules (Figs. 7–9). SNW1, SOD1 and TP53 had the largest 
number of connections with a module-5 followed by CDC5L and VCP. 
From the analysis of Bn-H and module interaction, we identified that 

CDC5L and SNW1 highly regulates one cluster of nodes (module-5, 2 & 
4) and TP53 regulates another cluster of nodes (module-5 & 4). SOD1 
interacted with VCP in ALS-PPIN and also showed an interaction with 
modules-1, 2, 4, and 5. We also identified that VCP highly interacted 
with the module-4 and equally interacted with module-1, 2, and 5. 
Interestingly we also found among all 17 Bn-H, only CDC5L, SNW1, 
PDHA1 and PSEN1showed an interaction with Module-3 (Table-3). 

3.4. Functional enrichment analysis of modules 

We performed the functional enrichment analysis for all five mod
ules. Module-1 was enriched with proteins having proteasome- 
activating activity, endopeptidase activity and are associated with bio
logical processes such as protein deubiquitination, protein modification, 
proteasome protein catabolic process. These proteins were found to be 
localized in proteasome complex, endopeptidase complex, peptidase 
complex (Fig. 10A). The Module-2 proteins were found to be enriched in 
RNA binding function and regulate mRNA processing, mRNA splicing 
via spliceosome, mRNA metabolic process. These proteins were found 
mainly in the ribonucleoprotein complex (Fig. 10B). The proteins of 
module-3 were present in the SNARE complex and are involved in Golgi 
vesical transport process by binding to the SNARE complex. These 
proteins were also involved in SNAP receptor activity (Fig. 10C). 
Module-4 showed the involvement of the protein in binding to various 
macromolecules such as an enzyme, nucleic acid, RNA, DNA that 
perform RNA splicing via transesterification, mRNA splicing via spli
ceosome, and are mainly found in nucleoplasm, membrane-bound 
lumen, intracellular organelle lumen (Fig. 10D). Proteins associated 
with module-5 are mainly present cytosol, protein-containing complex, 
nucleus, membrane enclosed lumen performing molecular functions 
such as enzyme binding, protein binding, kinase binding thus regulating 
the viral process, cell cycle, protein modification process (Fig. 10E). We 
also analysed that the CDC5L present in module-4, and from the result of 
functional enrichment it was related to mRNA metabolic process, sug
gesting that the influence of the CDC5L in mRNA metabolism using 
spliceosome and transesterification activities. Furthermore, the SNW1 
also present in module-5, which is functionally associated with enzyme 
binding as molecular function and also involved in viral process in the 
cytoplasm. 

3.5. Module-disease class associations 

The module-disease association is identified by DiSGenet tool of each 
module (module1–5). We found that the proteins of all five modules 
were associated with different disease classes like neoplasm, nervous 
system disorder, digestive, respiratory tract, cardiovascular, mental 
disorder, immune system, hemic and lymphatic, congenital, hereditary, 
neonatal, and others. Disease-associated with these modules depicts the 
majority of genes of module-1 showed association with neoplasm dis
ease (40%), immune system disease (30%), and nervous system disease 
(30%). PSMC4 gene present in module-1 showed high association with 
neoplasm (40%) as well as nervous system (30%) while it does not show 
association with immune system disease (Supplementary Fig. 2). In 
module-2 proteins are highly associated with neoplasm (50%), patho
logical conditions (40–50%), nervous system (30%), cardiovascular 
disease (40%), and digestive system disease (20%). SNRPD3 and U2AF2 
showed (50%) the highest association; DDX5, DDX17, and SNRPF in 
between (40–50%) with neoplasm class. SN3A2 the proteins showed 
50% association with the pathological condition and cardiovascular 
disease. ATXN1, ATXN2, FMR1, FXR2, NUFIP2, PRPF6, PRPF8, PSEN1 
were mostly associated with nervous system disorder (30–40%) (Sup
plementary Fig. 3). Module 3 proteins were highly associated with 
neoplasm disease (40–50%), nervous system disease (60%), congenital, 
hereditary, and neonatal disease and abnormalities (20–30%) while 
these proteins were least associated with chemically induced disorders 
(1%), otorhinolaryngologic disease (<10%) and male urogenital disease 

Fig. 3. Venn diagram of the number of hubs and bottlenecks.  
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Fig. 4. Structure of five modules in PPI network. All the top five modules are constructed and analysed using MCODE. (A) All the nodes in module 1 are the filled 
circle(green cyan) consist nodes(11) edges(44) with scoring value(8.8);(B) module 2 are the filled circle(pink) consist nodes(41) edges(103) with scoring value(5.15); 
(C) module 3 are the filled circle(green) consist nodes(15) edges(34) with scoring value(4.85);(D) module 4 are the filled circle(red) consist nodes(76) edges(176) 
with scoring value(4.69););(E) module 5 are the filled circle(voilet) consist nodes(65) edges(140) with scoring value(4.37) with the corresponding edges in lines 
(gray). One of the significant bottleneck-hub (CDC5L) present in module 4 as filled circle (dark green) and SNW1(yellow) in module 5. 
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(<10%). Among genes of module-3, NAPA showed the strongest asso
ciation (60%), SCFD1, and STX5(30–40%) suggesting their possible role 
in the etiology of nervous system diseases (Supplementary Fig. 4). 
Among all the modules, module-4 showed the highest association with 
different disease classes. The majority of proteins are associated with 
neoplasm disease, pathological conditions, nervous system diseases, 
digestive system disease. These proteins have a negligible association 
with occupational disease, chemically-induced disorders. HSPD1 and 
PSMB4 were observed to show strongly interrelated with neoplasm 
disease (80%) while GEMIN6 is highly interrelated with nervous system 
diseases (80%). SNRPG showed 50% association with a pathological 
condition, skin, and connective tissue disease class (Supplementary 
Fig. 5). Furthermore, the major group of proteins in module-5 were 
strongly linked to neoplasms (60%), nervous system disease (40%), 
pathological conditions (30%). Several proteins like CPSF7, EEF1G, 
RNF11, RPA3, RPL30, SH3GL3, SKP2, SNW1 were highly correlated with 
the neoplasm’s disease (50–60%). The nervous system disease class 
consists of proteins APP, DYNC1H1, DYNC1I2, HINT1, LSM2, RNF11, 
SNCA in between 30% and 40% association. One protein DYNLT1 
showed a major association with respiratory tract (60%), cardiovascular 
and male urogenital (30–40%) (Supplementary Fig. 6). 

4. Discussion 

In this study, we applied a computational systems biology approach 
to investigate the ALS-PPIN. To construct the ALS-PPIN, we used five 
different human databases STRING, BIOGRID, DIP, IntACT, and MINT. 
Finally, we constructed ALS-PPIN consist of 1949 nodes and 13087 
edges. It followed a hierarchical scale-free behaviour. The nodes with 
number of links that greatly exceeds the average value were considered 
as hubs (Chen et al., 2019; Pang et al., 2016). In the ALS-PPIN, we 
considered high-degree nodes as hubs. In order to filter the potential 
hub, we selected 19 highest degree nodes (1% of total nodes (1949)) 
which could regulate the ALS-PPIN. Further, we also selected 19 highest 
BC (1% of the total nodes) in the network, considered as bottleneck. 
They can characterize information flow and predict the most influencing 
candidate in the network. 

Among the 19 hubs, we found only 17 hubs were also present in 
selected 1% of BC nodes which were considered as Bn-H, could provides 
the stability and control the information flow in the network (Table 1). 
Further, out of 17 bottleneck hubs, we identified the significant hubs, 
namely TP53, SOD1, CDC5L, SNW1, and VCP with the rationale of high 
degree nodes in the ALS-PPIN (Fig. 2). CDC5L, TP53, SNW1, SOD1, VCP 
were five top hubs as well as Bn-H which were the dominant preservers 
of the topological properties of the network. Interestingly, we identified 
SOD1 as a Bn-H which is already reported as a high-risk gene in ALS 
(Rosen et al., 1993). CDC5L, TP53, SNW1, SOD1, and VCP have signif
icant roles because they interact with functional modules with high 
number of strengths as compared to other Bn-H. The correlation be
tween Bn-H and modules gave an idea that Bn-H also controlled the 
regulation of these modules. Based on Bn-H and module interaction we 
found CDC5L, had the largest number of connections with five modules 
followed by SNW1 and TP53; indicating that these proteins were the key 
mediators of the modules (Table 3). Bn-H could preserve the stability of 
the network, information was fast and molecules were quickly accessible 
by directly interacting with the nodes in the module (Nafis et al., 2015). 
Out of 17 significant Bn-H, only CDC5L was present in module 4 and 
SNW1 in module 5, which was the influencing node with strong 
cross-talking among the module that interacted with it. SOD1, TP53, and 
VCP were not present in any of the five modules, acted as mediators to 
cross-talk among the modules and also indirectly interfered with 
modular properties and activities. Because these Bn-H are strongly 
sensitive in preserving the topological properties of the network, their 
absence causes the breakdown of the network. Therefore, acting as the 
key mediator in the regulation of ALS-PPIN. Modules that perform sig
nificant functions in the network were constructed. In this study, the 
correlation between Bn-H and modules interaction gave an idea that 
Bn-H were also responsible in controlling the regulation of these 
modules. 

In module-1, CDC5L interacts with three proteins PSMC4, PSMD2, 
and PSMC5 mainly participate in protein homeostasis and cell processes 
like DNA damage, apoptosis, cell cycle progression. In module-2, five 
proteins (PSMD1, DDX5, PCBP1, ELAVL1, and HNRNPK) were inter
acting with both CDC5L and TP53 which are functionally enriched with 
mRNA splicing mechanism which is known to be highly affected in ALS 
(Butti and Patten, 2018). Interestingly in module-4, we found CDC5L 
connected with FUS protein, which is one of the high-risk proteins of 
both familial and sporadic type ALS (Volk et al., 2018), Dementia 
(Mompean and Laurents, 2017), and Parkinson’s disease (Yan et al., 
2010). TAF15 and FUS affect the turnover of their RNA targets in ALS 
(Kapeli et al., 2016). The interaction of CDC5L with module-5 proteins 
which were functionally associated with enzyme activity, neoplasm, and 
nervous system diseases. 

Table 2 
The number of nodes, edges, and M-code score of top 5 modules of ALS-PPIN.  

Modules M-Score Nodes Edges  

1  8.8  11  44  
2  5.15  41  103  
3  4.857  15  34  
4  4.693  76  176  
5  4.375  65  140  

Table 3 
The botteleneck-hub and their interaction strength with modules. The bold highlighted proteins selected as top bottleneck-hubs serve as the backbone of the ALS-PPIN.  

S.NO Name of bottleneck-hubs Module 1 Module 2 Module 3 Module 4 Module 5 Total  

1 CDC5L  3  14  2  28  13  60  
2 SNW1  3  13  1  26  14  57  
3 TP53  4  9  0  22  14  49  
4 NEK4  0  11  0  16  9  36  
5 HSP90AA1  1  3  0  10  15  29  
6 SOD1  5  4  0  5  14  28  
7 EGFR  1  5  0  6  13  25  
8 DLD  4  5  0  8  8  25  
9 VCP  5  5  0  8  5  23  
10 AR  0  4  0  6  12  22  
11 PDHA1  0  3  2  5  6  16  
12 ATXN1  1  4  0  2  7  14  
13 PSEN1  3  4  1  5  5  18  
14 DISC1  0  1  0  6  4  11  
15 APP  0  3  0  5  12  20  
16 SQSTM1  1  3  0  11  15  20  
17 HTT  4  5  0  10  13  32  
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Fig. 5. Cross-talk between the significant bottleneck-hub CDC5L and five modules in the network. The CDC5L bottleneck-hub showed at the centre (green) and its 
interacting nodes(yellow) of five modules. 
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Fig. 6. Cross-talk between the significant bottleneck-hub SNW1 and five modules in the network. The SNW1 bottleneck-hub showed at the centre (orange) and its 
interacting nodes(yellow) of five modules. 
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Fig. 7. Cross-talk between the significant bottleneck-hub TP53 and five modules in the network. The TP53 bottleneck-hub showed at the centre (red) and its 
interacting nodes(yellow) of five modules. 
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Fig. 8. Cross-talk between the significant bottleneck-hub SOD1 and five modules in the network. The SOD1 bottleneck-hub showed at the centre (blue) and its 
interacting nodes(yellow) of five modules. 
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Fig. 9. Cross-talk between the significant bottleneck-hub VCP and five modules in the network. The VCP bottleneck-hub showed at the centre (light pink) and its 
interacting nodes(yellow) of five modules. 
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Fig. 10. Manhattan plot that represents the enrichment analysis of five modules. The x-axis represented functional term’s Molecular function (GO: MF) is red; 
Biological process (GO: BP) is orange and Cellular component (GO: CC) is green. The sizes of the filled circle according to the term size, means larger terms have 
larger circles. The y-axis shows the adjusted enrichment p-values in the negative log10 scale. 
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In module-1, SNW1 showed interaction with three proteins (PSMC5, 
PSMC4, PSMD2) involved in protein metabolism and other cellular 
function like DNA damage, cell cycle progression. Thirteen proteins 
showed interaction with SNW1in module-2 (Fig. 6) which are func
tionally enriched with mRNA processing process. SNW1 also showed the 
interaction with NSF in module-3, which is functionally associated with 
SNARE binding. NSF protein functionally important for the delivery of 
cargo proteins to all compartment of the Golgi stack and highly associ
ated with neoplasm and nervous system diseases. In module-4, SNW1 
interacting with more than 25 proteins which are functionally enriched 
with mRNA processing. SNW1, have been associated with cell migration 
in glioblastoma (Ramos et al., 2019) and also reported in axonal trans
port implication during tau organization related to Alzheimer’s disease 
(Ivashko-Pachima and Gozes, 2019). Interestingly, SNW1 shown direct 
interaction with CDC5L (157–536 residue), it functions as a coactivator 
that may couple vitamin D receptor-mediated transcription and RNA 
splicing (Zhang et al., 2003). In module-5, SNW1 showed interaction 
with 14 proteins involved functionally in enzyme activity mostly 
observed in ALS disease progression (Srinivasan and Rajasekaran, 
2020). Two proteins of module-5, LSM2 (also known as snRNP) and 
HSPA8 both are reported as ALS causative proteins. Mutation in 
FUS/TLS protein reduced gems formation, altered snRNPs in patients’ 
fibroblasts and transgenic mice. Along these lines, it is also observed that 
FUS/TLS mutations reduce interaction with U1-snRNP (Sun et al., 2015; 
Yu et al., 2015). Post transcriptional inhibition of HSPA8 expression 
leads to synaptic vesicle cycling defects in multiple models of ALS 
(Coyne et al., 2017). 

TP53 showed interaction with (PSMD4, PSMD2, PSMC5, RAD23) of 
module-1 involved in the protein deubiquitination process. In modules- 
2, the interaction of TP53 with HDAC2, DDX5, PCBP1, PSME3, ELAVL1, 
DDX20, PSMD1, UBC, HNRNPK were enriched in mRNA splicing. The 
dysregulation or inhibition of protein deubiquitination (Cykowski et al., 
2019) and mRNA splicing (Butti and Patten, 2018) processes favor ALS. 
Phosphorylation of HNRNPK by cyclin-dependent kinase 2 controls the 
cytosolic accumulation of TDP-43 in ALS (Moujalled et al., 2015). 
Interestingly, HNRNPK and DDX5 proteins are transcriptional coac
tivators of TP53 and help to regulate the intrinsic apoptotic pathway in 
response to the DNA damage process observed in ALS (Pelisch et al., 
2012). DDX20 is associated with a neurogenerative disease SMA 
(Charroux et al., 1999). Functional loss of DDX20 was observed in ALS 
on disruption of high-risk gene FUS (Cacciottolo et al., 2019). In 
modules-4, TP53 interacting proteins are majorly enriched with mRNA 
splicing function and highly associated with neoplasms diseases. SMN1 
interacted with TP53 in module 4 reported in SMA (Singh and Singh, 
2019), and ALS (Chi et al., 2018). TP53 showed interaction with mod
ules − 5 proteins which are functionally enriched with enzyme activity 
that altered process in ALS(Srinivasan and Rajasekaran, 2020). 

Association of SOD1 with module-1 proteins (PSMD2, ADRM1, 
RAD23A) were involved in ALS15-type with or without Frontotemporal 
dementia (Huttlin et al., 2017). The proteins of module-2 (PSME2, 
PSMA6, ELAVL1, YWHAQ) and module-4 (OPTN, PSMC2, PSMA2, 
PSMC6, BANF1) are enriched with RNA processing and protein ho
meostasis whose disrupts function observed in ALS (Butti and Patten, 
2018; Mejzini et al., 2019). Interestingly, SOD1 showed interaction with 
OPTN involved in neuroinflammation, autophagy, and vesicular traf
ficking in ALS (Maruyama et al., 2010), FTD (Hortobagyi et al., 2011), 
Alzheimer’s disease, and Huntington’s disease (Schwab et al., 2012). 
SOD1 showed more interaction with module-5 which is highly associ
ated with enzymatic activity. The proteins (SNCA, HSPA8, HINT1) are 
associated with neurodegenerative diseases like Parkinson’s, Alz
heimer’s, Huntington’s, Prion disorders, and Fronto-temporal dementia 
(Lin et al., 2020; Matsumura et al., 2013; Shchagina et al., 2020; Sung 
et al., 2005; Wyttenbach and Arrigo, 2009). The nodes in module-5 
(RUVBL1, RUVBL2) interacts with HINT1 and modulates TP53 levels 
and TP53-mediated apoptosis (Weiske and Huber, 2006). 

Many studied reported that more than 50 missense mutations in gene 

coding VCP is causative in many neurodegenerative diseases charac
terised by ALS, FTD, IBM, CMT2Y, and PBD (Al-Tahan et al., 2018). 
Approximately 9% of patients with VCP mutations had ALS phenotype, 
4% with Parkinson’s disease, and 2% has been diagnosed with Alz
heimer’s (Al-Obeidi et al., 2018). In module-1, VCP interacts with 5 
proteins which are functionally associated with protein metabolism and 
mostly associated with neoplasms disorders. VCP showed interaction 
with (ELAVL1, HNRNPK, ATXN1, PSMA7, USP14) of module-2 play 
important role in protein homeostasis process which is mostly affect in 
ALS. A functional deficiency of VCP observed contributes to impaired 
DNA repair in multiple polyglutamine diseases. Although normal and 
mutant polyglutamine proteins (ATXN1) interact with VCP, only mutant 
protein affect dynamism of VCP (Fujita et al., 2013). In module-3 VCP 
showed no interaction with any of the proteins. In module-4 VCP in
teracts with 8 proteins (HSP90AA1, USP7, PSMA1, PSMA2, PSMA4, FUS, 
RANBP2, OPTN) functionally enrichment with mRNA processing. Both 
FUS and OPTN are well known studied protein to cause ALS and cause 
aberrant protein homeostasis due to various mutations. FUS protein 
reported as one of the top 4 high risk genes to cause both sALS and fALS 
(Volk et al., 2018). Q290X mutation leads to FUS mRNA degraded by 
nonsense-mediated decay, which results in loss of FUS functions and 
cause ALS (Deng et al., 2014). OPTN is an autophagy receptor and 
mutations in the OPTN gene result in familial glaucoma (E50K) and ALS 
(E478G) reportedly abolishes its NF-κB suppressive activity (Nakazawa 
et al., 2016; Shen et al., 2015). In module-5, VCP shown interaction with 
5 proteins (AKTI, CAV1, HSPA8, DNM1L, TKT) functionally associated 
with enzyme binding processes and most of these genes are mostly 
related to neoplasms disorder followed by nervous system diseases. role 
of DNM1L seen in abnormal mitochondrial dynamics, mitochondrial 
fragmentation, autophagy/mitophagy, and neuronal damage in alz
heimer’s disease and other neurological diseases, including Parkinson’s, 
Huntington’s, ALS, multiple sclerosis, diabetes, and obesity (Oliver and 
Reddy, 2019; Vantaggiato et al., 2019). Analysis reveals that LanCL1 is a 
positive regulator of AKT1 activity, and LanCL1 overexpression restores 
the impaired AKT1 activity in ALS model mice (Tan et al., 2020). 
Neuron-targeted CAV1 improves neuromuscular function and extends 
survival in SOD1G93A transgenic mice (Sawada et al., 2019). 

We also found 29 node/protein, showed a common connection be
tween the five Bn-H (CDC5L, SNW1, TP53, SOD1, and VCP) and others 
also in ALS-PPIN. HSPA5 nodes showed interaction with 10 Bn-H (APP, 
AR, ATXN1, CDC5L, EGFR, HSP90AA1, PSEN1, SNW1, SQSTM1, and 
TP53) whereas HSPA8 with (APP, ATXN1, CDC5L, HSP90AA1, HTT, 
PSEN1, SNW1, SOD1, TP53, and VCP). HSPA5 majorly associated with 
digestive system disorders and neoplasm (Liver carcinoma) (Feng et al., 
2019; Shu et al., 2020). HSPA5 (GRP78) activates the Wnt/HOXB9 
pathway to promote invasion and metastasis of hepatocellular carci
noma by chaperoning LRP6 (Xiong et al., 2019). Post transcriptional 
inhibition of HSPA8 expression leads to synaptic vesicle cycling defects 
in multiple models of ALS (Coyne et al., 2017). HSPA8 mostly reported 
in many neurodegenerative diseases like Parkinson’s, Alzheimer’s, 
Huntington’s, Prion disorders, and Fronto-temporal dementia (Lin et al., 
2020; Matsumura et al., 2013; Sung et al., 2005). Whereas, GAPDH is 
another node showed interactions with 9 Bn-H (APP, AR, ATXN1, 
CDC5L, HSP90AA1, HTT, PSEN1, SOD1, TP53). The alteration in GAPDH 
function is associated with oxidative stress in ALS (Pierce et al., 2008). 
S-nitrosylated GAPDH mediates neuronal apoptosis induced by 
ALS-associated mutant SOD1G93A (Lee et al., 2016). GAPDH expression 
defects were also found in muscles from ALS patients (Desseille et al., 
2017). The nodes (PARK7, HSPA4, CCAR2) were found as an inter
mediator for SOD1, TP53, AR and HSP90AB1, RUVBL1 for AR, SOD1, 
CDC5L. In future, biochemical investigation of the observed Bn-H and 
their interacting partners could provide further understanding to pri
oritize key genes and their role in the pathophysiology of ALS. 
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Tedeschi, G., Monsurrò, M.R., Piccirillo, G., Femiano, C., Ticca, A., Ortu, E., La 
Bella, V., Spataro, R., Colletti, T., Sabatelli, M., Zollino, M., Conte, A., Luigetti, M., 
Lattante, S., Santarelli, M., Petrucci, A., Pugliatti, M., Pirisi, A., Parish, L.D., 
Occhineri, P., Giannini, F., Battistini, S., Ricci, C., Benigni, M., Cau, T.B., Loi, D., 
Calvo, A., Moglia, C., Brunetti, M., Barberis, M., Restagno, G., Casale, F., Marrali, G., 
Fuda, G., Ossola, I., Cammarosano, S., Canosa, A., Ilardi, A., Manera, U., 
Grassano, M., Tanel, R., Pisano, F., Mazzini, L., Messina, S., D’Alfonso, S., 
Corrado, L., Ferrucci, L., Harms, M.B., Goldstein, D.B., Shneider, N.A., Goutman, S., 
Simmons, Z., Miller, T.M., Chandran, S., Pal, S., Manousakis, G., Appel, S., 
Simpson, E., Wang, L., Baloh, R.H., Gibson, S., Bedlack, R.S., Lacomis, D., Sareen, D., 
Sherman, A., Bruijn, L., Penny, M., Moreno, C. d A.M., Kamalakaran, S., Allen, A.S., 
Boone, B.E., Brown, R., Carulli, J.P., Chesi, A., Chung, W.K., Cirulli, E.T., Cooper, G. 
M., Couthouis, J., Day-Williams, A.G., Dion, P.A., Gitler, A.D., Glass, J., Han, Y., 
Harris, T., Hayes, S.D., Jones, A.L., Keebler, J., Krueger, B.J., Lasseigne, B.N., 
Levy, S.E., Lu, Y.F., Maniatis, T., McKenna-Yasek, D., Myers, R.M., Petrovski, S., 
Pulst, S.M., Raphael, A.R., Ravits, J., Ren, Z., Rouleau, G.A., Sapp, P.C., Sims, K.B., 
Staropoli, J.F., Waite, L.L., Wang, Q., Wimbish, J.R., Xin, W.W., Phatnani, H., 
Kwan, J., Broach, J.R., Arcila-Londono, X., Lee, E.B., Van Deerlin, V.M., Fraenkel, E., 
Ostrow, L.W., Baas, F., Zaitlen, N., Berry, J.D., Malaspina, A., Fratta, P., Cox, G.A., 
Thompson, L.M., Finkbeiner, S., Dardiotis, E., Hornstein, E., MacGowan, D.J., 
Heiman-Patterson, T., Hammell, M.G., Patsopoulos, N.A., Dubnau, J., Nath, A., 
Musunuri, R.L., Evani, U.S., Abhyankar, A., Zody, M.C., Kaye, J., Wyman, S., 
LeNail, A., Lima, L., Rothstein, J.D., Svendsen, C.N., Van Eyk, J., Maragakis, N.J., 
Kolb, S.J., Cudkowicz, M., Baxi, E., Benatar, M., Taylor, J.P., Wu, G., 
Rampersaud, E., Wuu, J., Rademakers, R., Züchner, S., Schule, R., McCauley, J., 
Hussain, S., Cooley, A., Wallace, M., Clayman, C., Barohn, R., Statland, J., 
Swenson, A., Jackson, C., Trivedi, J., Khan, S., Katz, J., Jenkins, L., Burns, T., 
Gwathmey, K., Caress, J., McMillan, C., Elman, L., Pioro, E., Heckmann, J., So, Y., 
Walk, D., Maiser, S., Zhang, J., Silani, V., Gellera, C., Ratti, A., Taroni, F., Lauria, G., 
Verde, F., Fogh, I., Tiloca, C., Comi, G.P., Sorarù, G., Cereda, C., De Marchi, F., 
Corti, S., Ceroni, M., Siciliano, G., Filosto, M., Inghilleri, M., Peverelli, S., 
Colombrita, C., Poletti, B., Maderna, L., Del Bo, R., Gagliardi, S., Querin, G., 
Bertolin, C., Pensato, V., Castellotti, B., Camu, W., Mouzat, K., Lumbroso, S., 
Corcia, P., Meininger, V., Besson, G., Lagrange, E., Clavelou, P., Guy, N., 
Couratier, P., Vourch, P., Danel, V., Bernard, E., Lemasson, G., Laaksovirta, H., 
Myllykangas, L., Jansson, L., Valori, M., Ealing, J., Hamdalla, H., Rollinson, S., 
Pickering-Brown, S., Orrell, R.W., Sidle, K.C., Hardy, J., Singleton, A.B., Johnson, J. 
O., Arepalli, S., Polak, M., Asress, S., Al-Sarraj, S., King, A., Troakes, C., Vance, C., de 
Belleroche, J., ten Asbroek, A.L.M.A., Muñoz-Blanco, J.L., Hernandez, D.G., Ding, J., 
Gibbs, J.R., Scholz, S.W., Floeter, M.K., Campbell, R.H., Landi, F., Bowser, R., 
Kirby, J., Pamphlett, R., Gerhard, G., Dunckley, T.L., Brady, C.B., Kowall, N.W., 
Troncoso, J.C., Le Ber, I., Heiman-Patterson, T.D., Kamel, F., Van Den Bosch, L., 
Strom, T.M., Meitinger, T., Shatunov, A., van Eijk, K., de Carvalho, M., Kooyman, M., 
Middelkoop, B., Moisse, M., McLaughlin, R., van Es, M., Weber, M., Boylan, K.B., 
Van Blitterswijk, M., Morrison, K., Basak, A.N., Mora, J.S., Drory, V., Shaw, P., 
Turner, M.R., Talbot, K., Hardiman, O., Williams, K.L., Fifita, J.A., Nicholson, G.A., 
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