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*is study aimed to discuss the application value of the bias field correction algorithm in magnetic resonance imaging (MRI)
images of patients with primary hepatic carcinoma (PHC). In total, 52 patients with PHC were selected as the experimental group
and divided into three subgroups: mild (15 cases), moderate (19 cases), and severe (18 cases) according to pathological grading.
Another 52 patients with hepatic nodules in the same period were included in the control group. All the patients underwent
dynamic contrast-enhanced (DCE) MRI examination, and the image qualities of MRI before and after bias field correction were
compared. *e DCE-MRI perfusion parameters were measured, including the transport constant Ktrans, reverse rate constant
Kep, extravascular extracellular volume fraction (Ve), plasma volume (Vp), microvascular density (MVD), hepatic artery
perfusion index (HPI), mean transit time of contrast agent (MTT), time to peak (TTP), blood volume (BV), hepatic arterial
perfusion (HAP), full perfusion (FP), and portal venous perfusion (PVP). It was found that the sensitivity (93.63%), specificity
(71.62%), positive predictive value (95.63%), negative predictive value (71.62%), and accuracy (90.01%) of MRI examination
processed by the bias field correction algorithm were all significantly greater than those before processing (P< 0.05). *e Ktrans,
Kep, Ve, Vp, and MVD of patients in the experimental group were significantly larger than those of the control group, and severe
group> moderate group> mild group (P< 0.05). HPI, MTT, TTP, BV, and HAP of patients in the experimental group were also
significantly greater than those of the control group, which was shown as severe group >moderate group >mild group (P< 0.05).
FP and PVP of the experimental group were significantly lower than those of the control group, and severe group < moderate
group <mild group (P< 0.05). It was suggested that inMRI images of patients with PHC, the bias field correction algorithm could
significantly improve the diagnosis rate. Each perfusion parameter was related to the pathological grading, which could be used to
evaluate the prognosis of patients.

1. Introduction

Primary hepatic carcinoma (PHC) is one of the common
malignant tumors in humans, and its mortality has been
high [1]. According to the Global Cancer Report 2014 issued
byWorld Health Organization, the deaths due to liver cancer

in China account for about 51% of that globally. It ranks
second in the mortality of malignant tumors in rural areas in
China and ranks the third in cities [2]. Hepatic carcinoma
mostly occurs in the context of hepatitis and liver cirrhosis in
China. Hepatitis, cirrhosis, and liver cancer are three steps
experienced by many patients. Due to the poor reserve
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function of the liver, the antitumor immune function of the
body is low, and the prognosis is also poor. *erefore, early
diagnosis and effective treatment are the keys to improving
the prognosis of patients with hepatic carcinoma [3, 4].

It has been shown that the histopathological grading of
PHC is related to its degree of infiltration and distant me-
tastasis and is themain influencing factor for its prognosis [5].
*us, early diagnosis, accurate pathological grading, and
timely treatment of PHC are the keys to prolonging the
survival time of patients with liver cancer [6]. A hepatic
biopsy is currently the gold standard for pathological grading
of PHC. In addition to sampling errors, this invasive pro-
cedure may bring certain risks to patients, such as infection,
hemorrhage, and even the spread of cancer cells. *erefore, it
is particularly important to find a noninvasive, repeatable,
and highly accurate examination method for clinical diag-
nosis and treatment. *e most common diagnostic method
for PHC is imaging examination. Currently, there are real-
time ultrasound, histopathological examination, computed
tomography (CT), magnetic resonance imaging (MRI), an-
giography, radionuclide imaging, and so on [7, 8].

Histopathological examination is the gold standard for
the diagnosis of liver cancer, but it is necessary to combine it
with clinical evidence in the pathological diagnosis.*is is to
comprehensively understand hepatitis B virus (HBV) and
hepatitis C virus (HCV) infections in patients, the detection
results of other tumor markers, and the imaging features of
hepatic space occupying lesions [9]. With the rapid devel-
opment of imaging technology, ultrasound and CT have
become the common methods for clinical diagnosis, with
easy operations and affordable cost. But if the imaging
features of the hepatic space occupying lesions are not
typical, it may be missed or misdiagnosed. MRI showed
more and more prominent advantages in the diagnosis of
PHC. Its good resolution of tissues, multisection, multipa-
rameter observation, relatively nontoxic contrast agent, no
radiation, nontrauma, and other characteristics make MRI
the optimal choice for imaging diagnosis of PHC [10]. In the
past, the diagnosis of PHC by MRI mainly focused on
morphological changes according to the imaging features of
the tumor, such as T2 weighted imaging (T2WI) hyper-
intensity, diffusion-weighted imaging (DWI) hyperintensity,
pseudocapsule sign, and rapid wash-in and wash-out en-
hancement. *ereby, tumors can be easily distinguished
from nontumor nodules, but the degree of pathological
differentiation of tumors cannot be accurately inferred.With
the continuous development of functional MRI technology,
it can not only reflect histological characteristics such as
microcirculation state and cell density of tumors but also
reflect cell metabolism and biochemical information of
tumors [11, 12]. *is makes it possible to assess the path-
ological grading of PHC accurately using MRI.

Dynamic contrast-enhanced (DCE) imaging technology
is a three-dimensional volumetric thin-slice scanning on the
ground of the T1 weighted imaging (T1WI) sequence. *e
magnetic resonance contrast agent is injected into the ve-
nous bolus for repeated, multistage, and rapid scanning,
which allows MRI to detect the situation of blood perfusion
in internal organs and tissues and obtain multiple perfusion

parameter information through relevant analysis by the
processing software [13]. DCE-MRI can quantitatively
evaluate the properties of blood vessels in tissues. It has been
reported that this technique can accurately assess the level of
tumor tissue microcirculation, as well as capillary perme-
ability and hepatic artery blood supply ratio in hepatic
malignant tumor tissues [14].

With the development and application of deep learning,
deep learning models can replace traditional machine
learning algorithms to automatically extract lesion features
and achieve lesion classification and identification [15].
Hepatic MRI bias field correction is mainly to deal with
image grayscale inhomogeneity caused by radiofrequency
field inhomogeneity and other factors. *e bias field cor-
rection algorithm utilized the estimation of the bias field and
the corresponding spatial information, which could well deal
with the impact of the image bias field on the segmentation.
A hepatic bias field correction algorithm was put forward on
the basis of grayscale preservation, which ensured that the
corrected image retained the grayscale information of the
original image to the greatest extent. Hepatic tissue seg-
mentation was performed on the corrected images, and
evaluation parameters like segmentation were used to reflect
the performance of the bias field correction algorithm
[16, 17]. To sum up, the hepatic MRI images of patients were
processed under the bias field correction algorithm. *e
correlation was analyzed between multiphase DCE-MRI
perfusion parameters andmicrovascular density (MVD) and
pathological grading of PHC patients, which was to provide
a certain theoretical basis for the diagnosis of PHC.

2. Materials and Methods

2.1. General Data of Patients. In this study, 52 patients with
PHC admitted to the hospital from July 2019 to July 2021
were included in the experimental group. Another 52 pa-
tients with benign hepatic nodules admitted during the same
period were chosen as the control group. *e inclusion
criteria of patients were as follows. *e clinical symptoms
and histopathological examination results of the patients
were in line with the diagnostic criteria for PHC formulated
in PHC Diagnosis and Treatment Standards (Edition 2011)
[18]. *e patients were willing to undergo a DCE-MRI
examination, and they all had the first-time onset. All the
patients and their families fully understood the situation and
signed the informed consent, and this study was approved by
the ethics committee of the hospital.

*e exclusion criteria below were followed. Patients had
cancer tissue infiltration or metastasis to other tissues or
organs. Patients had dysfunction of other important organs,
such as heart, lung, and kidney. Patients were complicated
with severe immune system diseases, infectious diseases, or
infectious diseases. Patients had contraindications to DCE-
MRI.

*e general data of the two groups of patients are shown
in Table 1 for details. *ere was no significant difference in
gender, age, and average age between the two groups
(P> 0.05), which made the research was of comparability.
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2.2.DCE-MRIExaminationMethod. *epatients underwent
a DCE-MRI examination after respiratory function training.
*en 1.5 T MRI instrument was used, and the abdominal
phased array coil was set to 8 channels. *e abdominal belt
was used to adjust the breathing state of the patients. Dy-
namic, fast, and enhanced scanning were performed, re-
spectively. For scanning parameters, the field of view (FOV)
was set to be (350× 320) mm, time of echo (TE) was 1.5ms,
time of repetition (TR) was 4.2ms, the interlayer spacing was
0, the layer thickness was 3.6mm of the (320×195) matrix,
and the number of excitations was 1. Only the flip angles (3°,
9°, and 25°) needed to be adjusted; during enhanced scanning,
a total of 50 dynamic cycles were scanned, each cycle lasted
about 6 seconds with 30 layers, and the whole process lasted
about 5minutes.*e scanning parameters were set as follows:
FOV� (215× 284) mm, TE� 1.35ms, TR� 3.2ms, slice
thickness� 3.24mm, the matrix was sized as 521× 521, and
the number of excitation was 2. In the second scanning, the
contrast agent gadolinium diamine of 0.2mL/kg was injected
from the median cubital vein at a rate of about 4mL/s. In
total, 20mL of normal saline was injected at the same rate
after the injection. DCE scanning required the patients to
hold their breath throughout the procedure, with only light
and rapid ventilation.

2.3. Bias Field Correction Algorithm. MRI bias field cor-
rection was an algorithm model under local coherence,
global intensity, and spatial continuity information. It could
keep the grayscale of images consistent before and after
correction. Its objective function was shown as follows:

Aour � AMPFCM + c􏽘
m

k�1
1 − hk( 􏼁

2

� 􏽘

d

i�1
􏽘

m

k�1
v

n
ikNik + c􏽘

m

k�1
1 − hk( 􏼁

2
.

(1)

In the equation, Nik � 􏽐a∈Mi
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2]. Ω represents the whole
hepatic MRI image with background noise removed. Ok
represents the local area of the grayscale value of the k-th pixel
in the image.*emembership template functionwas expressed

as V � [vik], which was used to describe the degree to which
the pixel belonged to a certain cluster. gkp ∈ [0, 1] refers to the
local spatial continuity weight, which stands for the influence of
domain pixels.Ti(r), i � 1, 2, . . . , d; r � 1, 2, . . . , m represents
the label function, which was the intensity information for this
image and guided the correct clustering. Ikp is the filtered
image after background noises were removed, and it was
obtained by multiplying the membership template with the
original image. U � u1, u2, . . . , ud􏼈 􏼉 is the clustering center.
α(0≤ α≤ 1) stands for a positive value to balance global in-
tensity with local intensity. Parameter n> 1, d represents the
number of clusters, and m is the total number of pixels in the
image. *e weighted function K(r − k) also represents a
truncated Gaussian kernel function, which reflects the influ-
ence of the center pixel r on the surrounding pixels, and its
value decreased as the distance from the center r to the
neighbor pixels k increased. c> 0 is to balance the effects of the
intensity and intensity-preserving constraints mentioned
above.

In the energy minimization equation,
􏽐r∈ΩTi(r)‖Ikp − hrui‖

2 refers to the global intensity of the
image, which was to ensure the correct clustering of each
pixel in the image. *e term 􏽐r∈Ok

K(r − k)‖Ikp − hrui‖
2 is

used to guarantee the smoothness of the bias field under the
local intensity of the image. 􏽐

m
k�1 (1 − hk)2 is the constraint

term proposed to ensure the grayscale of the image after bias
field correction, ensuring the grayscale consistency of the
image before and after bias field correction; that is, the
corrected image (I/h) and the original image have the same
grayscale. gkp ∈ [0, 1]s indicates the local spatial continuity
weight, which was the influence of neighbor pixels. In the
image space domain, a pixel k had a spatial coordinate
(nk, mk), and a pixel p in the neighborhood had a spatial
coordinate (np, mp), then the local spatial weight infor-
mation could be expressed as follows:
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Table 1: General data of patients in the two groups.

Groups Males Females Age Average age
Experimental group 32 cases 20 cases (19–76) years old (57.14± 5.45) years old
Control group 30 cases 22 cases (17–78) years old (56.17± 5.29) years old
P value 0.081 0.094 — 0.083
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where k represents a constant and δkp is the same when the
image pixel value was multiplied by a constant.

*e parameters V, U, and h could be obtained by mini-
mizing the energy function Aour. In this process, when solving
one parameter, the other two parameters could be kept un-
changed, which was the same as the standard D-means
clusteringmethod.*erefore, the parametersV,U, and h could
be obtained by making the first derivative of the objective
function Aour equal 0, respectively. *e iteration of parameters
was applied to estimate the bias field h, and the corrected image
of the bias field could be obtained by I/h. Since the energy
function Aour was a convex function to its variables, the
method proposed here was robust to initialize parameters.

*e membership function was solved at first.
*e first-order partial derivative of the energy function

Aour to the parameter V was computed, and the result was
made equal to 0. *en the following equation was worked
out:
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*e variable vik was determined by the following
equation:
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Next, the clustering center was solved.
*e first-order partial derivative of the energy function

Aour to the parameter U was solved, and the result was made
equal to 0, then the following equation was obtained:
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*e variable ui was determined by the following
equation:
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*en the solution of ui was calculated through the
following equation:
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In the equation, the symbol ∗ refers to the convolution
operator. I � 􏽐p∈Mk

(ωkp · Ikp)/􏽐p∈Mk
ωkp, and I is the he-

patic MRI image after background noises were removed. Ik

represents the grayscale value of the k-th pixel in the filtered
image I.

Finally, the bias field estimation was performed.
*e energy function Aour was utilized to find the first-

order partial derivative of the bias field parameter h, and it was
set equal to 0, then equation equation could be worked out:
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*e variable hk was determined by the following
equation:
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*erefore, the bias field hk could be expressed as follows:
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represents the membership degree of category i.
*e experimental steps of this method are described in

Figure 1.

(1) Parameters V, U, and h and other parameters were
initialized.

(2) *e membership template function Imask was
calculated.

(3) *e membership matrix was updated by multiplying
equation (6) and the membership template function
Imask.

(4) *e global variable Ti(r) was updated.
(5) *e cluster center was updated via equation (9).
(6) *e bias field was updated through equation (12).
(7) It was judged whether the convergence condition

‖Unew − Uold‖< ε was satisfied, where ε is a very small
number. If it was satisfied, the calculationwas stopped; if
not, the calculation was continued with steps (3) to (6).

2.4. Pathological Judgment Standards. *e patients in the
experimental group were graded with Edmondson–Steiner’s
tumor pathological grading method [19]. *e pathological
grading was performed according to the size and morphology
of tumor cells, nuclear size, basophilic cytoplasmic staining,
nuclear staining depth, and cytoplasmic ratio. Differentiation
grade I referred to the tumor cells arranged in fascicles; grade
II referred to the tumor cells that were shown eosinophilic
with rich cytoplasm, large nuclei, and dark staining. Grade III
meant that the nuclear staining degree was deeper than that of
grade II, and tumor giant cells appeared. For grade IV, the
tumor cells were shown with less cytoplasm, larger nuclei,
darker staining, lacking of intercellular connections, and low
differentiation. According to the grading of pathological
conditions, grade I belonged to the mild group, grades II-III
were in the moderate group, and grade IV was in the severe
group.
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2.5. Observation Indicators. After the DCE-MRI scanning,
processing software was used to analyze the measurement
results as the two-chamber Tofts model was selected. During
the period, necrotic tissue and blood vessel areas were
avoided. *e maximum microvascular density (MVD) was
selected under a low power lens, while the number of
microvessels was calculated under a high power lens.
Double-blind counts were performed by two experienced
radiologists, respectively; then the average value of MVD
was taken.*ree regions of interest were selected to measure
the plasma volume (Vp), the extravascular extracellular
volume fraction (Ve), and the transport constant Ktrans
from intracellular to extracellular space. *e reverse rate
constant Kep from extracellular to intravascular space,
hepatic artery perfusion index (HPI), mean transit time
(MTT) of contrast agent, time to peak (TTP), blood volume
(BV), full perfusion (FP), hepatic arterial perfusion (HAP),
and portal venous perfusion (PVP) were used to determine
the mean value of the three fields of view.

2.6. Statistical Methods. SPSS19.0 was applied for statistical
analysis. *e enumeration data were expressed as a per-
centage (%). *e measurement data Ktrans, Kep, Ve, Vp,
MVD, HPI, MTT, TTP, BV, FP, HAP, and PVP were
expressed as mean± standard deviation (x( ) ±s). *e dif-
ferences in the measurement data among the three groups
were analyzed by variance analysis. *e t-test and Pearson
method were adopted to analyze the differences in mea-
surement data between two groups. When P< 0.05, the
difference was statistically significant.

3. Results

3.1. MRI Results of Liver Cancer Patients. Figure 2 shows the
MRI images of a 64-year-old male patient with hepatic
carcinoma. In Figure 2 below, the images a, b, c, and d were
the MRI images of the PHC patient before being processed
by the bias field correction algorithm, while images e, f, g,
and h were the MRI images after the bias field correction
algorithm processing. Images a and e were the MRI images,
images b and f were the T1WI images, images c and g were
the T2WI images, and images d and h were the DWI images.

After being processed by the bias field correction al-
gorithm, the sensitivity, specificity, positive predictive value,
negative predictive value, and accuracy of MRI examination
were 93.63%, 71.62%, 95.63%, 71.62%, and 90.01%, re-
spectively. *ese were all significantly greater than those
before processing (P< 0.05), and the differences were of
statistical significance, which could be discovered in Figure 3
for details.

3.2. Comparison of Ktrans, Kep, Ve, Vp, andMVD in Patients
between the Two Groups. Ktrans, Kep, Ve, Vp, and MVD of
patients in the experimental group were significantly greater
than those in the control group (P< 0.05), suggesting that
the differences were statistically significant. *e details are
shown in Figure 4.

3.3. Comparison of Ktrans, Kep, Ve, Vp, and MVD among
Subgroups of Patients in the Experimental Group. With the
pathological judgment standards, the patients in the ex-
perimental group were divided into three subgroups,
namely, the mild group (15 cases), the moderate group (19
cases), and the severe group (18 cases). Ktrans, Kep, Ve, Vp,
and MVD of the severe group > those of the moderate group
> those of the mild group (P< 0.05), and all the differences
were considered to be statistically significant. Figure 5 shows
the comparisons in detail.

3.4. Comparison of HPI, MTT, TTP, BV, FP, HAP, and PVP
between theTwoGroupsofPatients. HPI,MTT, TTP, BV, FP,
HAP, and PVP of patients were compared between the
experimental group and the control group. HPI, MTT, TTP,
BV, and HAP of patients in the experimental group were
significantly higher than those of the control group
(P< 0.05). FP and PVP of the experimental group were
significantly lower than those of the control group
(P< 0.05), which were all displayed in Figures 6 and 7.

3.5. Comparison of HPI,MTT, TTP, BV, FP, HAP, and PVP of
Patients in Each Subgroup of the Experimental Group. *e
levels of HPI, MTT, TTP, BV, andHAP in the severe group >

Input 
image

Initialization 
parameters: V, 

h, U

Membership 
template 
function

Update 
membership 

matrix

Update 
global 

variables

Update 
cluster center

Update bias 
field

Output 
image

Figure 1: Schematic diagram of the algorithm flow.
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Figure 3: MRI results before and after the bias field correction processing. A, B, C, D, and E indicated sensitivity, specificity, positive
predictive value, negative predictive value, and accuracy, respectively. ∗Compared with those before processing, P< 0.05.
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Figure 4: Comparison of Ktrans, Kep, Ve, Vp, and MVD between the two groups. ∗Compared with those of the control group, P< 0.05.
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Figure 2: MRI images of a PHC patient before and after processing by the bias field correction algorithm.
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Figure 7: Comparison of FP, HAP, and PVP between the two groups of patients. ∗Compared with the control group, P< 0.05.
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those in the moderate group > those in the mild group,
P< 0.05. FP and PVP in the severe group < those in the
moderate group < those in the mild group, P< 0.05. All the
differences were of statistical significance, as observed in
Figures 8 and 9.

3.6. Correlation Analysis of Hepatic DCE-MRI Perfusion
ParametersandMVDinPHCPatients inExperimentalGroup.
Hepatic DCE-MRI perfusion parameters Ktrans, Kep, Ve,
Vp, HPI, MTT, TTP, BV, and HAP were positively corre-
lated with MVD in the experimental group (P< 0.05). FP
and PVP were negatively correlated with MVD in the group
(P< 0.05). *e differences were suggested to be statistically
significant, as shown in Figure 10 in detail.

4. Discussion

DCE-MRI is a noninvasive imaging technique. It is to inject
a paramagnetic contrast agent into the blood vessel after the

T1 is shortened. If the imaging is repeated, the change in the
signal intensity in the tissue can be measured. As the dif-
fusion time of the contrast agent increases, the peripheral
tissues are monitored. After being processed by professional
software, the quantitative parameter technology can be
applied to measure the pathological changes in blood per-
fusion, and this technology has been increasingly used to
evaluate the vascular permeability and the tumor micro-
circulation [20, 21].

*e level of MVD can reflect the formation of new blood
vessels in tumor tissues. *e permeability of new blood
vessels in immature tumors is higher, and the permeability
of new blood vessels is related to the dynamic enhanced
detection method of DCE-MRI [22]. It has been reported
that with the increase of the tumor tissue volume and the
degree of differentiation of PHC, the arterial blood supply
also increases accordingly, and the hepatic sinusoids may
present a capillary state. Because the morphological basis of
tumor tissue growth and infiltration lies in blood vessels, the
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Figure 8: Comparison of HPI, MTT, TTP, and BV of patients in each subgroup of the experimental group. ∗Compared with the data of the
moderate group, P< 0.05; #compared with the data of the moderate group, P< 0.05.
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Figure 9: Comparison of FP, HAP, and PVP in each subgroup of the experimental group. ∗Compared with the data of the moderate group,
P< 0.05; #compared with the data of the moderate group, P< 0.05.
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new tumor tissues and blood vessels can provide nutrients. If
the blood vessels are immature, their permeability is higher;
the contrast agent injected in DCE-MRI examinations has a
small molecular weight and is easy to exudate from blood
vessels into the extracellular space [23, 24]. It was found in
this research that the sensitivity, specificity, positive pre-
dictive value, negative predictive value, and accuracy of MRI
diagnosis processed by the bias field correction algorithm
were 93.63%, 71.62%, 95.63%, 71.62%, and 90.01%, re-
spectively. All of the results were remarkably greater than
those before processing as P< 0.05, which indicated that
compared with the simple MRI images, the diagnostic
performance of MRI under the bias field correction algo-
rithm was more excellent.

*e blood flow velocity, which can be reflected as Ktrans
on the vascular permeability, is used to indicate the per-
meability of the microvessels in the cancer tissues. *e rate
of contrast agent infiltration from the extracellular space to
the intravascular space of the blood vessels is regarded as
Kep. *e volume ratio of contrast agent leaks into the ex-
travascular interstitial space to the extracellular volume is
denoted as Ve. Ktrans, Kep, and Ve increase if the vascular
permeability around the tumor tissue increases [25]. It was
found that Ktrans, Kep, Ve, Vp, and MVD of the experi-
mental group were significantly higher than those of the

control group, P< 0.05 with statistically significant differ-
ences. In the subgroups, Ktrans, Kep, Ve, Vp, and MVD of
the severe group > those of the moderate group > those of
the mild group, and P< 0.05, indicating the differences were
statistically significant. It was suggested that the quantitative
perfusion parameters of PHC patients by DCE-MRI ex-
amination were greatly related to the MVD and lesion se-
verity of patients, which was similar to the results of Liu and
Qian [26].

Some scholars have reported that the hepatic lobular
structure is damaged in patients with PHC, regenerative
nodules and a large number of fibrous tissue hyperplasia are
shown, and even the blood circulation path is changed [27].
*e portal vein reflux is not smooth, the hepatic arterio-
venous shunt occurs, the hepatic blood flow resistance in-
creases, and the PVP can be reduced. Under the action of
fibrous cords, hepatic veins and portal vein branches in
patients with PHC are occluded and narrowed, and a large
number of collagen fibers are deposited in the intercellular
space of hepatocytes. *e flow time of the contrast agent in
the liver is prolonged, which increases MTT and TTP. As
blood flow resistance increases, the blood flow through the
portal vein decreases and the proportion of hepatic artery
blood flow in the total hepatic circulation increases, resulting
in a decrease in FP and an increase in HPI [28]. It was found
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Figure 10: Correlation between hepatic DCE-MRI perfusion parameters and MVD in PHC patients in the experimental group. (a) showed
the correlation between parameters Ktrans, Kep, Ve, and Vp and MVD, while (b) showed the correlation between parameters HPI, MTT,
TTP, BV, FP, HAP, and PVP and MVD.
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that HPI, MTT, TTP, BV, and HAP of the experimental
group were significantly higher than those of the control
group (P< 0.05), while FP and PVP were significantly lower
(P< 0.05); the differences were computed to be statistically
significant. *e levels of HPI, MTT, TTP, BV, and HAP in
patients were shown that those of the severe group > the
moderate group > the mild group (P< 0.05). In FP and PVP,
those of the severe group < the moderate group < the mild
group (P< 0.05); the differences were all of statistical sig-
nificance. It could be suggested that the quantitative per-
fusion parameters of PHC patients by DCE-MRI were
significantly related to the incidence of portal vein throm-
bosis in patients. With the aggravation of PHC lesions, the
risk of portal vein thrombosis increased, HPI, MTT, TTP,
BV, and HAP increased, while FP and PVP decreased. *ese
results were exactly similar to the findings of Song et al. [29].

5. Conclusion

*e hepatic MRI images of the patients were processed under
the bias field correction algorithm. *e correlation was also
analyzed between the perfusion parameters of multiphase
DCE-MRI andMVD and pathological grades of PHC patients
to assist the clinical diagnosis of PHC.*e results showed that
the sensitivity, specificity, positive predictive value, negative
predictive value, and accuracy of MRI were significantly
improved after processing the bias field correction algorithm.
DCE-MRI could evaluate the microcirculation status of PHC
patients objectively and quantitatively, and the changes of
quantitative perfusion parameters were significantly corre-
lated with MVD and pathological grades. Quantitative per-
fusion parameters detected by DCE-MRI could evaluate
MVD level and pathological grading, which was worthy of
further promotion. However, only 52 cases with PHC were
included in this work, the sample size was small and the
source was single, which might affect the results. *e image
processing performance of the bias field correction algorithm
also needed to be further analyzed. *e research would need
to be expanded in the future so as to verify the conclusion
with more clinical experiments.
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