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Abstract

Co-transcriptional RNA-DNA hybrids (R loops) cause genome instability. To prevent harmful
R loop accumulation, cells have evolved specific eukaryotic factors, one being the BRCA2
double-strand break repair protein. As BRCA2 also protects stalled replication forks and is the
FANCD1 member of the Fanconi Anemia (FA) pathway, we investigated the FA role in R
loop-dependent genome instability. Using human and murine cells defective in FANCD2 or
FANCA and primary bone marrow cells from FANCD2 deficient mice, we show that the FA
pathway removes R loops, and that many DNA breaks accumulated in FA cells are R loop-
dependent. Importantly, FANCD2 foci in untreated and MMC-treated cells are largely R loop
dependent, suggesting that the FA functions at R loop-containing sites. We conclude that co-
transcriptional R loops and R loop-mediated DNA damage greatly contribute to genome insta-
bility and that one major function of the FA pathway is to protect cells from R loops.

Author Summary

R loops are co-transcriptional RNA-DNA hybrids that can have a physiological role in
transcription and replication, but also may be a major threat to genome stability. To avoid
the deleterious effects of R loops, specific factors prevent their formation or facilitate their
removal. The double-strand break repair factor BRCA2 is among those that prevent R-
loop accumulation. As BRCA2 also protects stalled replication forks and is the FANCD1
member of the Fanconi Anemia (FA) pathway, we studied the role of this pathway in pre-
venting R loop accumulation and R loop-dependent genome instability. Using human and
murine cells defective in FANCD2 or FANCA and primary bone marrow cells derived
from FANCD?2 deficient mice, we show that the FA pathway removes R loops and that
many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2
foci accumulation is largely R loop-dependent, suggesting that the FA functions at R loop-
containing sites. The FA pathway is primarily known as a DNA interstrand crosslinks
(ICLs) repair pathway. Our findings reveal a novel function of the FA pathway in prevent-
ing R loop-mediated DNA damage, providing new clues to understand the relevance of R-
loops as a natural source of genome instability and the way they are processed.
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Introduction

Genome instability is a cell pathology in which chromosomes undergo alterations in the form
of DNA breaks, mutations, rearrangements and loss at a high rate. In many cases, the mecha-
nism responsible for genome instability implies a DNA replication failure. For this reason,
genome instability and replication stress are two features tightly linked and are hallmarks of
tumor cells [1, 2]. Chromosome duplication emerges thus like the most vulnerable process in
the cell, so that events impairing progression of the replication fork (RF) have the potential of
compromising genome integrity [3].

Apart from DNA damage generated by reactive oxygen species (ROS) and other natural
genotoxic agents such as reactive aldehydes (RA), transcription is a major natural contributor
to genome alterations. In the last decade evidence has accumulated that co-transcriptional R
loops, structures formed by an RNA-DNA hybrid and a single strand DNA (ssDNA), may
have an important role in the origin of genome instability [4-6]. From yeast to human cells,
different factors play distinct roles in maintaining low levels of R loops along the genome.
Importantly, mutations in such factors not only lead to accumulation of R loops above wild-
type (WT) levels but also cause genome instability [7-13]. R loops, however, have been
observed at different regions of the eukaryotic genome [14, 15] and have also regulatory roles
in transcription [5].

Cells have two ways to limit R loops, those resolving them, such as RNase H or Senataxin,
and those preventing their formation such as Topo I, the THO complex or the SRSF splicing
factor, among other functions [4]. These functions serve to prevent genome instability by
avoiding accumulation of R loops as a putative barrier to RF progression [16, 17], The observa-
tions that R loops trigger chromatin condensation and heterochromatin formation [5, 18, 19]
suggest the possibility that chromatin compaction may be a major source of R-loop-mediated
replication stress and genome instability [20], consistent with previous observations linking
premature chromatin condensation and chromosome fragility [21]. Interestingly, factors like
the yeast and human FACT chromatin reorganizing complex, which is crucial for RF progres-
sion through transcribed regions [22], and of the human BRCA1 and BRCA2 double-strand
break repair (DSB) factors [23, 24] are also involved in R loop processing.

The fact that BRCA2/FANCD1 and BRCAL1 directly or indirectly participate in the Fanconi
Anemia (FA) pathway, involved in the repair of inter-strand crosslinks (ICLs) that block RF
progression [25, 26] suggests that R loops may be an important contributor to genome instabil-
ity in FA cells. To test this hypothesis we investigated the role of the FA pathway in resolving R
loops and in protecting cells from R loop-mediated DNA breaks. Using human and murine
cells defective in FANCD2 or FANCA and primary bone marrow cells derived from FANCD2
deficient mice, we validated our hypothesis. We propose that R loops accumulate in BRCA/
FA- cells due to the incapacity of these cells to replicate R loop-containing regions.

Results

R loops accumulate in FANCA-/- and FANCD2-/- patient cell lines and
knocked-down human cell lines

To assay whether the FA pathway has a role in preventing or resolving R loops in human cells,
we analyzed R loop accumulation in cells with dysfunctional FANCA or FANCD2 proteins or
depleted of either of them (Fig 1). We performed DRIP-qPCR in four human genes, APOE,
RPL13A, EGRI and BTBD19 (S1 Fig) in well-established cell lines derived from Fanconi Ane-
mia patients. We selected these four genes because they were identified as regions prone to
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Fig 1. R loop accumulation in Fanconi Anemia-deficient patient cells. (A) DRIP-gPCR using the anti-
RNA-DNA hybrids S9.6 monoclonal antibody, in FANCA-deficient human HSC72 lymphocytes and the
corrected FANCA+ cells at APOE, RPL13A, EGR1, and BTBD19 genes. Pre-immunoprecipitated samples
were untreated (-) or treated (+) with RNase H (RNH) as indicated. Signal values of RNA-DNA hybrids
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immunoprecipitated in each region, normalized to input values and to the signal at the SNRPN negative
control region are shown. Data represent mean + SEM from three independent experiments. *, P <0.05
(Mann-Whitney U test). (B) Relative amount of R loops in patient FANCD2-/- human PD20 cell line and the
corrected PD20 FANCD2+/+ control at 4 different genes. Details as in (A). (C) Levels of DNA-RNA hybrids
accumulated in actively transcribed genes in Hela + siC, HeLa + siFANCD2 cells, as determined by DRIP-
gPCR using the S9.6 monoclonal antibody with and without RNase H (RNH) treatment. Details as in (A).

doi:10.1371/journal.pgen.1005674.g001

form R loops and have been positively validated for the analysis of R loop accumulation [14,
22,23].

We first determined the levels of R loops in wild-type lymphoblast cell line NV012 used as a
reference control as well as in FANCA-/- lymphoblast patient cell line HSC72 and its corrected
version [27]. Results clearly show that in all four genes tested, FANCA-/- cell lines accumulated
R loops at a statistically significant higher level in APOE, RPL13A and EGRI; in BTBD19 the R
loops were also higher but to a lower level (Fig 1A). Importantly, when the samples were
treated with RNase H that digests the RNA moiety of RNA-DNA hybrids, the levels of R loops
dramatically decreased, confirming that indeed the signal detected was specific for RNA-DNA
hybrids. The absolute amount of R-loop signal as a function of input DNA is also provided (52
Fig). In all analyses, the SNRPN gene was used as negative control because it does not accumu-
late R-loops, as previously reported [22, 23], and to normalize the values of the four genes ana-
lyzed (Fig 1).

Next we assayed whether this result could be extended to another cell line from an FA
patient. We used the PD20 human fibroblast cell line from a FANCD2-/- patient [28]. Again,
there was a clear increase of R loop accumulation in all four genes analyzed, this accumulation
being statistically significant in APOE and RPL13A (Fig 1B). Importantly, the R loop signal was
dramatically and significantly reduced when samples were treated with RNase H. Therefore,
we can conclude that cell lines of different tissues from patients with two different dysfunc-
tional FA genes accumulate R loops.

Finally, we tested whether this conclusion was also valid for HeLa cells depleted of FA pro-
teins. We depleted cells of FANCD2 by siRNA (S3 Fig) and R loops accumulation was assayed
in the same four human genes tested in patient cell lines. R loops clearly increased in
siFANCD?2 cell lines, up to 3 fold above the siC control levels (Fig 1C). The results confirm that
a deficiency in the FA pathway, regardless of whether occurring in cells from human patients
or in standard cell lines depleted of an FA factor by siRNA, leads to R loop accumulation. The
similarity of results for the FANCD2-/- patient PD20 cell line and siFANCD?2 depleted cells
enabled us to use FANCD2-depleted HeLa cells as a reliable system to study the role of R loops
in FA-deficient cells. In addition to demonstrate the presence of high levels of RNA-DNA
hybrids as a consequence of FANCD2 knockdown at the molecular level by DRIP, we also con-
firmed this fact at the cellular level by immunofluorescence (IF) (Fig 2).

Murine FANCD2-deficient cells accumulate R loops

So far we have demonstrated that R loops accumulate in transformed human cells. Next we
assayed R loop accumulation in murine embryonic fibroblasts (MEFs) obtained from mice
defective in FANCD2. We performed DRIP-qPCR analyses in three different regions of the
Acat3 gene (Acat3-1, Acat3-2 and Acat3-3) formerly annotated as AIRN locus (54 Fig), which
have been shown to be reliable for R loop detection in murine cells, as assayed by non-denatur-
ing bisulfite treatment combined to RNase H digestion [15]. DRIP-qPCR in FANCD2-/- MEFs
reveals a statistically significant increase of up to 3 fold in R loop accumulation compared to
wild-type MEFs (Fig 3A). As expected, the signals decreased when MEFs were treated with
RNase H, confirming that the signal detected was specific for R loops.
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Fig 2. RNA-DNA hybrid accumulation in FANCD2-depleted HeLa cells. Immunostaining with S9.6 and
nucleolin antibodies of siC and siFANCD2 HelLa cells. The graph shows the median of the S9.6 signal
intensity per nucleus after nucleolar signal removal. More than 300 cells from two independent experiments
were considered. *** P <0.001 (Mann-Whitney U test, two-tailed).

doi:10.1371/journal.pgen.1005674.9002

Next we addressed whether R loops physiologically accumulated in bone marrow cells from
FANCD2-/- mice. We analyzed R loop accumulation in the Acat3-1 and Acat3-2 regions of
myeloid Grl+ and lymphoid B220+ committed cells from FA mice by DRIP-qPCR and
observed that again R loops were clearly accumulated, at least 5 fold over the levels observed in
WT mice (Fig 3B and 3C). As expected, the detected signal was clearly decreased by RNase H
treatment.

Our results both at molecular and cellular levels indicate, therefore, that human cells defi-
cient in the FA pathway accumulate R loops, regardless of the cell type analyzed, and the same
occurs in bone marrow cells from FANCD2-deficient mice.

PLOS Genetics | DOI:10.1371/journal.pgen.1005674 November 19, 2015 5/17
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Fig 3. R loops in FANCD2-deficient murine cells. (A) Relative levels of RNA-DNA hybrids as determined
by DRIP-qPCR in the Acat3 gene at 3 independent regions in WT and FANCD2-/- MEFs with and without
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RNase H (RNH) treatment. (B) Relative levels of R loops as detected by DRIP-qgPCR analysis at independent
regions of the Acat3 gene in WT and FANCD2-/- murine bone marrow Gr1+ cells with and without RNase H
treatment. (C) Relative levels of R loops as detected by DRIP-gPCR analysis at independent regions of the
Acat3 gene in wild-type and FANCD2-/- murine bone marrow B220 cells with and without RNase H (RNH)
treatment. Other details as in Fig 1.

doi:10.1371/journal.pgen.1005674.g003

DNA breaks accumulated in FA cells are mediated by R loops

Once demonstrated that both human and murine cells defective in FA genes accumulate R
loops, we investigated the functional impact of R loops in cells with a defective FA pathway.
For this we used the FANCD2-depleted HeLa cells. First we wondered whether the accumula-
tion of double strand breaks (DSBs) in siFANCD?2 cells was related to R loop accumulation.
We assayed DSBs indirectly by detection of YH2AX foci by immunofluorescence in cells trans-
fected with a control or an RNase H1 overexpressing plasmid. Upon knockdown of FANCD2 a
significant increase in YH2AX foci formation was observed by quantifying the number of cells
with more than 10 foci (Fig 4A, left panel). Importantly, those high levels of YH2AX foci were
strongly reduced by RNase H1 overexpression, confirming that yH2AX formation in
FANCD2-depleted cells is R loop-dependent. Since the overexpressed RNase H1 protein local-
ized both in cytoplasm (mitochondria) and nucleus, to prove that the observed effect was spe-
cific of the nuclear function of RNase H1 we performed the same experiment using the
truncated version of the RNase H1 that lacks the mitochondrial localization signal and localizes
only into the nucleus (S5 Fig) [29]. As expected, overexpression of the nuclear form of RNase
H1 reduced the YH2AX foci accumulation caused by FANCD?2 depletion.

As the hallmark phenotype of FA-deficient cells is sensitivity to inter-strand crosslinking
(ICL) agents such as mitomycin C (MMC) we reasoned that MMC might not only generate
DNA-DNA ICLs but also RNA-DNA ICLs that would eventually lead to DNA breaks. There-
fore, we determined whether MMC-induced YH2AX foci in siFANCD2 HeLa cells were also
mediated by R loops. MMC clearly increased YH2AX foci both in siC and siFANCD2 cells as
seen by IF and quantification of cells with more than 10 foci, whose value increased 12 to 14
fold above those of the untreated cells (Fig 4A, right panel) reaching >75% in siC MMC-
treated cells and >85% siFANCD2 MMC-treated cells. Importantly, however, a large fraction
of these MMC-induced foci were reduced in cells transfected with the RNase H1-overexpres-
sing plasmid, confirming that they were R loop-dependent. This conclusion is further sup-
ported by the observation that MMC-induced YH2AX foci were also significantly reduced by
RNase H1 overexpression in MEFs FANCD2-/- (S6 Fig). Consistent with the partial R-loop
dependency of YH2AX foci, DNA-RNA hybrids accumulate at higher levels in cells treated
with MMC, as detected by a significant increase in 9.6 signal both in siC and siFANCD2
depleted cells (S7 Fig).

The statistically significant reduction of MMC-induced breaks in both siC and siFANCD2
cells by RNase H1 overexpression suggests that MMC may induce ICLs also at RNA-DNA
hybrids as a cause of its DNA damage capacity, and that such RNA-DNA hybrids may be a rel-
evant source of MMC-induced DNA breaks in siFANCD2 cells. Although we cannot formally
discard the possibility that ICLs did not form at RNA-DNA hybrids, but instead hybrids could
divert limiting-DNA repair factors from ICLs, so that RNase H1 would promote ICL repair
indirectly by degrading R-loops and releasing such repair factors, there is no chemical basis to
assume that ICLs cannot form between RNA and DNA strands.

If siFANCD?2 cells accumulate DNA breaks dependent on co-transcriptional R loops, the
breaks should be transcription-dependent. To assay this, we performed single cell electropho-
resis or comet assay in cells incubated with cordycepin, a specific inhibitor of adenine
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Fig 4. Genome instability in FANCD2-depleted human cells. (A) Detection of yH2AX foci by IF in siC and siFANCD2 HelLa cells transfected with pcDNA3
(-RNH1) or pcDNA3-RNaseH1 (+RNH1) for RNase H1 overexpression and either untreated or treated for 16 h with 80 ng/ml mitomycin C (MMC). Nuclei
were stained with DAPI. The graph shows the quantification of the relative amount of cells containing >10 yH2AX foci with respect to the siC in each case.
More than 100 cells overexpressing RNase H1 (positive-stained) or more than 100 cells of mixed population transfected with the empty vector were counted
in each of the three experiments. Data represent mean + SEM from three independent experiments. The red asterisks refer to the comparison of each MMC-
treated samples versus its own untreated sample. *, P < 0.05 (Mann-Whitney U test). As a reference the percentage of cells with >10 yH2AX foci is >75% in
siC cells treated with MMC (B) DNA breaks measured by single-cell gel electrophoresis (comet assay) of siC and siFANCD2 Hela cells treated or untreated
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for 4 h with 50 uM cordycepin. The graph shows the median comet tail moment. More than 100 cells were counted in each of the three experiments. Data
represent mean + SEM from three independent experiments. *, P < 0.05 (Student's t-test).

doi:10.1371/journal.pgen.1005674.9004

incorporation into the nascent RNA. DNA breaks were clearly reduced in the presence of cor-
dycepin in both siC and siFANCD2 cells (Fig 4B), suggesting that a large portion of DNA
breaks in cells are mediated by transcription, as expected (reviewed in [30]). Importantly, a sig-
nificant 5-fold increase in DNA breaks was observed in siFANCD?2 cells compared to control
cells, that was completely suppressed by cordycepin (Fig 4B). Therefore, DNA breaks accumu-
lated in siFANCD2 cells are transcription-dependent, consistent with them being mediated by
co-transcriptional R loops.

FANCD2 foci are R loop-dependent

As the FA pathway repairs ICLs that impede normal RF progression [31] we reasoned that if
ICLs are formed between the RNA and DNA strands, the FA core complex should accumulate
at sites containing RNA-DNA hybrids. Therefore, we expected that removal of R loops by
RNase H1 overexpression reduced the accumulation of FA foci at the sites of putative RF
blockages. To test this possibility we performed IF with anti-FANCD2 antibody in HeLa cells
transfected with the plasmid overexpressing RNase H1 as well as the empty plasmid in cells
untreated and treated with MMC. As can be seen in Fig 5A, a significant increase of FANCD2
foci was observed after MMC treatment. Importantly, overexpression of RNase H1 drastically
reduced FANCD?2 foci both in MMC-treated and untreated cells. To exclude the possibility of
an indirect effect of RNase H1 overexpression that could slow down proliferation and indi-
rectly the activation of the FA pathway, we determined the effect of RNase H1 overexpression
on cell cycle progression by measuring via BrdU incorporation and FACS analysis the percent-
age of cells in S phase (S8 Fig). We found that 24 hours after plasmid transfection there was no
difference in the amount of cells in S phase in RNase H1 overexpressing cells with respect to
control cells, which rules out a major impact of RNase H1 on cell proliferation to explain our
results.

This result is consistent with the FA core complex locating at RFs blocked at R loop sites
and supports that MMC causes RNA-DNA ICLs, indicating that the FA pathway plays a key
function assisting the repair of RFs blocked at R loop-containing sites. To prove that the FA
pathway acts at the sites where RNA-DNA hybrids are accumulated we performed ChIP of the
FA core complex protein FANCA. Using anti-FANCA antibody we found that the FA core
complex is indeed recruited to the genes that we had shown to accumulate RNA-DNA hybrids
in FA deficient cells (Fig 5B). Finally, to demonstrate the functional link between the site of
action of these FA complexes and DNA damage, we assayed whether YH2AX was enriched at
genes that accumulate RNA-DNA hybrids in the absence of a functional FA pathway in an R
loop-dependent manner. ChIP analyses with anti-yH2AX antibody confirmed that this was the
case (Fig 5C). RNase H1-sensitive YH2AX signals were significantly higher in FANCD2-/-
cells, confirming a physical link of R-loops with the regions at which DNA damage and the FA
proteins are found.

Discussion

We demonstrated using different cell lines defective in FANCD2 or FANCA from either
human patients or HeLa and primary bone marrow murine cells, that FA cells accumulate R
loops. Using siFANCD?2 HelLa cells, we demonstrated that the increase in DNA breaks is
strongly reduced by RNase H1 overexpression and transcription inhibition. The results

PLOS Genetics | DOI:10.1371/journal.pgen.1005674 November 19, 2015 9/17
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Fig 5. FANCD2 foci assemble in a R-loop dependent manner. (A) Immunofluorescence of FANCD2 in HeLa cells with or without RNase H1
overexpression treated or untreated for 16 h with 40 ng/ml MMC and then released for 9 h. More than 100 cells overexpressing RNase H1 (positive-stained)
or more than 100 cells of mixed population transfected with the empty vector were counted in each of the three experiments. The graph shows the
quantification of the percentage of cells. containing >5 FANCD2 foci. Data represent mean + SEM from three independent experiments. *, P < 0.05
(Student’s t-test). **, P < 0.01 (Student’s t-test). Other details as in Fig 4. (B) ChIP analysis of FANCA recruitment in HeLa cells with or without RNase H1
overexpression. Signal values of DNA immunoprecipitated in each region, normalized to input values and to the signal without antibody are shown. Data
represent mean + SEM from four independent experiments. *, P < 0.05 (Mann-Whitney U test). (C) ChIP analysis of yH2AX in siC and siFANCD2 HelLa cells
with or without RNase H1 overexpression. Data represent mean + SEM from four independent experiments. *, P < 0.05 (Mann-Whitney U test).

doi:10.1371/journal.pgen.1005674.g005
indicate that the FA pathway plays an important role in protecting cells from naturally formed

R loops and that R loops are a major source of DNA breaks in FA cells. This not only occurs in
untreated cells, but also in cells treated with the ICL agent MMC (Figs 4 and 5). RNA-DNA
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hybrids seem to be a major source of RF blockage that requires the FA pathway for replication
resumption and repair. Proper replication in FA+ cells would contribute to prevent R loop
accumulation. Consistently, a high increase in R loops was observed in highly proliferative
bone marrow tissues and MEFs from replication-impaired FANCD2-/- mice (Fig 3).

We have recently shown that BRCA2- and BRCALI- cells accumulate R loops and that an
important fraction of the DNA breaks generated in these cells could be suppressed by RNase
H1 overexpression [23]. A role of BRCA1 in R loop resolution is supported by its ability to
recruit the RNA-DNA helicase SETX to DNA [24, 32]. As BRCA2 binds ssDNA [33] and
protects RFs, avoiding their collapse [34, 35], a major role for BRCA2 in preventing R loop
accumulation could be mediated by replication, without excluding additional putative roles
of BRCA2 and BRCAL in non-replicating cells. The FA pathway is involved in the repair of
ICLs [36], and the fact that BRCA2/FANCDI is a member of the FA pathway and BRCA1
has an FA-associated function opened the possibility that the FA pathway played a relevant
role in removing R loops via the replication of R-loop-containing regions [23]. FANCA
belongs to the FA core complex, FANCD2 being the main switcher that activates the pathway
after monoubiquitination. Our work with FANCD2-/- and FANCA-/- cells therefore demon-
strates the need of the FA pathway to remove R loops or R loop-associated DNA damage,
including presumably RNA-DNA ICLs (Figs 1-4). This work also suggests that R loop accu-
mulation might be a potential driver of bone marrow failure and haematopoietic stem cell
attrition seen in FA mice deficient in aldehyde catabolism, but further work is needed to ver-
ify this hypothesis [37].

Our study suggests that in addition to ribonuclease H and RNA-DNA helicases, R loops
might also be resolved during replication/repair. The observation that the FACT chromatin
reorganizing complex is involved in RF progression preferentially when transcription is
active and that FACT dysfunction leads to R loop accumulation in yeast and human cells,
indicate indeed that R loops are a main source of genome instability in cells unable to prop-
erly replicate through R loop-containing regions [22]. The role of the FA pathway would be
critical for progression of RFs stalled at either R loops or RNA-DNA ICLs. By repairing the R
loop-dependent RF block, the R loop would be removed. This is consistent with the observa-
tions that FANCD?2 foci formed in MMC-treated and untreated cells are strongly reduced by
RNase H1 overexpression (Fig 5A), and that FANCA is recruited to R loop-forming genes in
an RNA-DNA hybrid-dependent manner (Fig 5B). In addition, DNA damage accumulation
in FANCD2-depleted cells specifically takes place at R-loop forming genes (Fig 5C),
strengthening the hypothesis that the FA core complex assembles at sites where R loops
block the progression of RFs and prevents R loop-dependent DNA damage, as proposed in
our model (Fig 6).

R loops may thus constitute a major source of replication stress and genome instability.
These are features commonly found in cancer cells and cells lacking a functional FA pathway
that will not be able to resume replication through R-loop containing regions. This study,
therefore, not only provides evidence that co-transcriptional R loops are major sources of repli-
cation stress, but also demonstrates that the FA pathway plays a crucial role in the repair of R
loop-mediated damage or RF blockage (Fig 6). We propose that the action of FA during repli-
cation allows the removal of the R loop, whereas in FA cells, the block persist and therefore R
loops are accumulated and DNA breaks arise. Knowing of the ability of R loops to trigger chro-
matin condensation [18] it would be certainly interesting to assay in the future the contribution
of chromatin condensation to this phenomenon.
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Fig 6. Model for a role of the FA pathway in preventing R-loop accumulation. The model explains the
role of the FA pathway in preventing R loop-mediated genome instability. The FA pathway prevents R loop
accumulation that hampers replication fork (RF) progression and leads to DNA breaks. For clarity, only the
MCM helicase is depicted at the replication fork.

doi:10.1371/journal.pgen.1005674.g006

Materials and Methods

Human cell culture and transfection

HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, Thermo
Scientific, Waltham, MA) supplemented with 10% heat-inactivated fetal bovine serum at 37°C
(5% CO,). Transient transfection of siRNA was performed using DharmaFECT1 (Dharmacon)
according to the manufacturer’s instructions. Lipofectamine 2000 (Invitrogen, Carlsbad, CA)
was used for plasmid transfection. All assays were performed 48 h after siRNA transfection
plus 24 h after plasmid transfection as described previously [38]. The plasmids used were the
following: pcDNA3, an empty vector; pcDNA3-RNaseH]1, containing the full length RNase H1
cloned into pcDNA3 [39]; pEGFP, a vector expressing GFP, and pEGFP-M27, containing the
GFP-fused RNase H1 lacking the first 26 amino acids responsible for its mitochondrial locali-
zation cloned into pEGFP [29].

Human NV012 (WT), HSC72 (FA-A) and HSC72+FANCA (FANCA-corrected) EBV-
immortalised lymphoblastoid cell lines [27] were cultured in RPMI 1640 (GIBCO) supple-
mented with 15% heat-inactivated fetal calf serum under standard culturing conditions.
Human transformed fibroblasts PD20 (FANCD2 ") and PD20 corrected (PD20 retrovirally
corrected with pMMp-FANCD2 ¢cDNA) [28] were grown in DMEM (GIBCO) supplemented
with 15% heat-inactivated fetal calf serum as previously described [40, 41].

Mitomycin C (MMC, M4287, Sigma-Aldrich) was used to a final concentration of 80 ng/ml
for 16 h for detection of YH2AX foci, 250 ng/ml for 5 h for $9.6 inmunofluorescence and 40
ng/ml for 16 h and then released for 9 h for FANCD2 foci.
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Mouse maintenance and murine cell cultures

Fancd2”” mice (Fancd2™"™°", MGI code: 2673422, backcrossed into C57BL/6 background for
at least 11 generations), obtained from K.J. Patel [42, 43], were maintained in a conventional
mouse facility. All animal experiments undertaken in this study were performed under the
approval of the EU Directive 2010/63EU, Spanish law RD53/2013 and the Hospital Virgen del
Rocio Ethical Review Committee. Timed matings between Fancd2"'~ males and females were
set up. Females were checked for the presence of a vaginal plug the following morning, and
considered to be at day E0.5 of pregnancy. Pregnant females were sacrificed at E13.5, uteruses
removed and embryos dissected. Murine embryonic fibroblasts (MEFs) cultures were obtained,
genotyped and transformed using a lentiviral vector pLOX-Ttag-iresTK (addgene 12246).
Clones were isolated and expanded.

Murine bone marrow cells from femora and tibias were obtained by flushing in 2 mls of
PBS+3% fetal bovine serum. Cells were enumerated using trypan blue 0.2% in a TC20 Auto-
mated Cell Counter (Bio-Rad). Biotinylated B220 (cloneRA3-6B2), Grl (Clone RB6-8C5) were
obtained from BDBioscience. Cells were enriched using Streptavidin-bound magnetic particles
(BD IMag) according to manufacturer instructions.

Immunofluorescence and single-cell electrophoresis

For the analysis of DNA damage foci, immunofluorescence was performed as described previ-
ously [38]. FANCD2 IF was performed as described previously [44] with minor modifications.
In brief, cells were pre-permeabilized with 0.25% Triton X-100 in PBS for 1 minute on ice and
then fixed with 2% formaldehyde in PBS. After blocking with 3% BSA in PBS, cells were incu-
bated with the anti-FANCD?2 (1:100 dilution) and the anti-RNASEH]1 (1:400 dilution) followed
by the secondary antibody conjugated with Alexa 488 and Alexa 546. DNA was stained with
DAPI. In pre-permeabilized cells the overexpressed RNase H1 stained only nucleus and nucle-
oli because the rest of the protein had been washed out. $9.6 (hybridoma cell line HB-8730)
immunofluorescence was performed as previously described [45] using secondary antibodies
conjugated with Alexa 488 and Alexa 647. Images of IF and single-cell electrophoresis were
acquired with a Leica DM6000 microscope equipped with a DFC390 camera (Leica). Images of
$9.6 immunofluorescence were acquired with a Leica TCS SP5 confocal microscope. Data
acquisition was performed with LAS AF (Leica). Images were captured at x63 (IF) and x10
(comet assay) magnification. Metamorph v7.5.1.0 software (Molecular Probes) image analysis
software was used to quantify foci and nuclear $9.6 signal intensity.

Comet assay was performed as described [22] using a commercial kit (Trevigen, Gaithers-
burg, MD, USA) following the manufacturer’s protocol. Means and SEM (Standard Error of
the Mean) from three independent experiments were obtained and are shown in each case.
Comet tail moments were analyzed using Comet-score software (version 1.5).

Anti-yH2AX (clone JBW301; Upstate), Anti-RNASEH1 (15606-1-AP; Proteintech), Anti-
FANCD?2 (sc-20022; Santa Cruz, Dallas, TX), anti-B-Actin (ab8226, Abcam, Cambridge, UK),
anti-Vinculin (V9264; Sigma-Aldrich) and anti-nucleolin (ab50279 Abcam) antibodies were
used.

DNA-RNA immunoprecipitation (DRIP)

DRIP assays were performed as described [22], with the exception of the DRIP conducted in
MEFs, in which double amount of RNase H was used. RNA-DNA hybrids were immunopre-
cipitated using the §9.6 antibody from gently extracted and enzymatically digested DNA,
treated or not with RNase H [15]. Quantitative PCR was performed at the indicated regions
(S1 and $4 Figs). The relative abundance of RNA-DNA hybrid immunoprecipitated in each
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region was normalized to the signal at the negative control region SNRPN gene in human cell
lines. All experiments were performed in triplicate; average and SEM of results are provided.

Chromatin immunoprecipitation (ChIP)

HeLa cells were transfected with the corresponding siRNAs and 48h after siRNA transfection,
they were transfected with either the RNase H1-coding plasmid pEGFP-M27 or the control
plasmid pEGFP-CI1. After 72 h of siRNA transfection, cells were crosslinked and processed for
ChIP using standard procedures with minor modifications as previously described [23]. Anti-
FANCA (Bethyl Laboratories) or anti-yH2AX (clone JBW301; Upstate) previously conjugated
with Dynabeads Protein A (Life Technologies) were used to immunoprecipitate chromatin.

FACS analysis

Cells were pulse-labeled with BrdU 10 pM added directly to the growing medium for 20 min,
harvested, fixed with 70% ethanol in PBS and incubated on ice for 1 h. Cells were then treated
with 2 N HCI 0.5% Triton X-100 for 30 min at room temperature, then with 0.1 M Sodium tet-
raborate pH 8.5, washed once with washing buffer (1% BSA 0.1% Triton X-100 in PBS), and
incubated for 1 h in the same buffer containing 1:25 anti-BrdU antibody conjugated with Alexa
Fluor 488 (B35139, Invitrogen) and 0.5 pug/ul RNase A. After one wash with washing buffer,
cells were resuspended in PBS containing 100 ng/ml propidium iodide to counterstain DNA
for 30 min and examined by flow cytometry (FACSCalibur; BD).

Supporting Information

S1 Fig. (A) Positions along the genes of the amplicons used. (B) Sequences of the primers
used to perform qPCR.
(TIF)

S2 Fig. Signal values of RNA-DNA hybrids immunoprecipitated in each region normalized
to input values in (A) FANCA-/- human HSC72 lymphocytes and the corrected FANCA
+/+ cells; (B) in FANCD2-/- human PD20 cell line and the corrected PD20 FANCD2

+/+ control and (C) in siFANCD?2 transfected HeLa cells and siC transfected control cells.
AU, Arbitrary Units.

(TIF)

S3 Fig. Western blot showing FANCD2 expression in siRNA transfected HeLa cells. The
amount of B-Actin protein was used as a loading control
(TIF)

S4 Fig. (A) Positions along the gene of the amplicons used. (B) Sequences of the primers
used to perform qPCR.
(TIF)

S5 Fig. Detection of DNA breaks by IF of YH2AX in siC and siFANCD2 HeLa cells trans-
fected with pEGFP (-RNH1) or pEGFP-M27 (+RNH1) for GFP-RNase H1 overexpression
and its nuclear localization. The graph shows the quantification of the relative amount of cells
containing >5 foci with respect to the siC in each case. Data represent mean + SEM from three
independent experiments. *, P < 0.05 (Mann-Whitney U test).

(TIF)

S6 Fig. yYH2AX foci in FANCD2-/- MEFs treated (+MMC) or untreated (-MMC) with 80
ng/ml mitomycin C (MMC) for 16 h and transfected with pcDNA3 (-RNH]1) or
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pcDNA3-RNase H1 (+RNH1). The graph shows the quantification of the relative amount of
cells containing >10 foci with respect to the untreated (-MMC) cells. Data represent

mean + SEM from three independent experiments. * P < 0.05 (Mann-Whitney U test).

(TTF)

S7 Fig. RNA-DNA hybrid accumulation detected by immunostaining with $9.6 and
nucleolin antibodies in siC and FANCD2-depleted HeLa cells untreated or treated for 5 h
with 250 ng/ml mitomycin C (MMC). The graph shows the median of the $9.6 signal intensity
per nucleus after subtraction of the nucleolar signal. More than 300 cells from four indepen-
dent experiments were considered. ***, P < 0.001 (Mann-Whitney U test, two-tailed).

(TTF)

S8 Fig. FACS profile of HeLa cells transfected with the RNase H1-coding plasmid (pRNH1)
or with the empty plasmid (pcDNA3). The graph shows the quantification of the percentage
of cells in S phase. Data represent mean + SEM from three independent experiments. Western
blot shows the overexpression of RNase H1. The amount of Vinculin protein was used as a
loading control.

(TIF)
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