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ABSTRACT
Background: Recurrence is a risk factor for the prognosis of lung squamous
carcinoma (LUSC). DNA methylation levels of RNAs are also associated with LUSC
prognosis. This study aimed to construct a prognostic model with high performance
in predicting LUSC prognosis using the methylation levels of lncRNAs and genes.
Methods: The differentially expressed RNAs (DERs) and differentially methylated
RNAs (DMRs) between the recurrent and non-recurrent LUSC tissues in The Cancer
Genome Atlas (TCGA; training dataset) were identified. Weighted correlation
network analysis was performed to identify co-methylation networks. Differentially
methylated genes and lncRNAs with opposite expression-methylation levels were
used for the screening of prognosis-associated RNAs. The prognostic model was
constructed and its performance was validated in the GSE39279 dataset.
Results:A total of 664 DERs and 981 DMRs (including 972 genes) in recurrent LUSC
tissues were identified. Three co-methylation modules, including 226 differentially
methylated genes, were significantly associated with LUSC. Among
prognosis-associated RNAs, 18 DERs/DMRs with opposite methylation-expression
levels were included in the methylation prognostic risk model. LUSC patients with
high risk scores had a poor prognosis compared with patients who had low risk
scores (TCGA: HR = 3.856, 95% CI [2.297–6.471]; GSE39279: HR = 3.040, 95%
CI [1.435–6.437]). This model had a high accuracy in predicting the prognosis
(AUC = 0.903 and 0.800, respectively), equivalent to the nomogram model inclusive
of clinical variables.
Conclusions: Referring to the methylation levels of the 16-RNAs might help to
predict the survival outcomes in LUSC.
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Keywords Coronavirus disease 2019, Lung squamous cell carcinoma, Recurrence-free survival,
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INTRODUCTION
Lung squamous carcinoma or lung squamous cell carcinoma (LUSC) is a histologic type of
lung cancer that ranks first in the rate of incidence and mortality (Bray et al., 2018).
The number of newly diagnosed cases and cancer-related death of lung cancer in 2018 was
approximately 2.1 million and 1.8 million, respectively (Bray et al., 2018). Non-small cell
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lung cancer (NSCLC) is the most predominant type of lung cancer (accounting for 80%)
and LUSC composes ~30% of NSCLC (Lemjabbar-Alaoui et al., 2015).

Patients with recurrent LUSC have a very poor survival prognosis. Tumor recurrence is
distinctly influenced by clinical characteristics including patients’ age, histologic type,
stage, treatment response, gene expression, and epigenetic regulation (Dziedzic et al., 2016;
Feng et al., 2015; Smith et al., 2010). DNAmethylation of genes is critical for tumorigenesis,
progression, metastasis, recurrence, and resistance to therapy (Castilho, Squarize &
Almeida, 2017; Liu et al., 2017; Ma, Chen & Petersen, 2017; Sosa, Bernstein & Aguirre-
Ghiso, 2017. For instance, the promoter methylation levels of secreted frizzled-related
protein genes have a high accuracy in diagnosing NSCLC (Liu et al., 2017). Also, DNA
methylation levels of tumor suppressor genes, including death-associated protein kinase 1
(DAPK1) and retinoic acid receptor beta (RARB), are higher in lung cancer tissues
than noncancerous lung tissues (Daniunaite et al., 2020). Also, the aberrant
hypermethylation levels of RARB and DAPK1 promoters are strongly associated with the
invasive progression in cervical cancer (Tawe et al., 2020). Furthermore, DNA
methylation-mediated regulation of long non-coding RNAs (lncRNAs) also plays crucial
roles in tumors by regulating the expression of genes and microRNAs (Heilmann et al.,
2017; Ma et al., 2017)

The hypomethylated promoter of the angiotensin-converting enzyme 2 (ACE2) gene, a
receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been
identified in lung adenocarcinoma tissues (Chai et al., 2020). Most of the coronavirus
disease 2019 (COVID-19)-affected patients are patients who have malignancies (Calabrò
et al., 2020; Luo et al., 2020). Also, lung adenocarcinoma patients are more susceptible to
SARS-CoV-2 infection than LUSC patients (Kong et al., 2020). COVID-19 patients
who have a history of radiation therapy for cancers appear to have a poor prognosis
(Robilotti et al., 2020). COVID-19 pandemic has brought great challenges not only to lung
cancer therapy (Calabrò et al., 2020; Guckenberger et al., 2020; Passaro et al., 2020) but also
to the diagnosis and prognosis of lung cancer (Maringe et al., 2020; Pruis et al., 2020;
Robilotti et al., 2020). These studies show a potential correlation between an increased risk
of COVID-19 infection in patients with lung cancer. Therefore, the identification of
more and potential biomarkers in lung cancer might provide additional information on
making treatment strategies for lung cancer.

This study aimed to screen a prognostic risk score system based on DNA
methylation levels of genes and lncRNAs between recurrent and non-recurrent LUSC
using bioinformatics analysis. The performance of this model in predicting the prognosis
of LUSC was validated using a microarray dataset. Also, a combined nomogram model to
predict the prognosis in LUSC patients was constructed. This study might provide a
reference for assessing the prognosis of patients with LUSC.

MATERIALS AND METHODS
Datasets
The Cancer Genome Atlas (TCGA; https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga) LUSC RNA-seq (Illumina HiSeq 2000 RNA
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Sequencing; n = 550) and methylation profile data (Illumina InfiniumHumanMethylation
450 BeadChip; n = 415) were downloaded. After matching sample IDs, 293 samples with
gene expression profiles, methylation profiles, and clinical recurrence information (with
recurrence = 78; without recurrence = 215) were retained and used as the training dataset
in this study.

The methylation microarray dataset GSE39279 was downloaded from the Gene
Expression Omnibus (GEO) at the National Center for Biotechnology Information
(NCBI; https://www.ncbi.nlm.nih.gov/geo/). It was selected using the following criteria:
(1) methylation profiles from patients with LUSC; (2) inclusive of clinical recurrence
information; (3) ≥150 samples. GSE39279 (GPL13534, Illumina HumanMethylation450
BeadChip) contains 444 samples, including 43 samples with recurrence information. This
dataset was used as the validation dataset.

RNA annotation and identification of RNAs differentially expressed
and methylated in recurrent LUSC
The annotation of lncRNAs and mRNAs in the expression and methylation files was
performed using the HUGO Gene Nomenclature Committee (HGNC; http://www.
genenames.org/). Ensembl IDs were converted to official gene symbols. The differentially
expressed RNAs (DER) and differentially methylated RNAs (DMR), including lncRNAs
and genes, between the samples with and without recurrence were identified in the TCGA
training dataset. The limma package (version 3.34.7; https://bioconductor.org/packages/
release/bioc/html/limma.html) in R was used for the identification of DERs and DMRs.
To maximize the intersection of DERs and DMRs, we set p < 0.05, false discovery rate
(FDR) < 0.05, and |log2(Fold change, FC)| > 0.263 as the criteria for significant difference.
The expression profiles of RNAs with differential expression and methylation levels were
presented using the bidirectional hierarchical clustering heatmap by pheatmap (version
1.0.8; https://cran.r-project.org/web/packages/pheatmap/index.html). Besides, RNAs with
both differential methylation and expression levels were identified using the Venn
diagram.

Weighted correlation network analysis (WGCNA) of genes
The WGCNA networks identify gene modules associated with disease status based on the
expression/methylation profiles of genes. The WGCNA package (version 1.63; https://
cran.r-project.org/web/packages/WGCNA/index.html) in R was used to analyze the
co-methylation networks for RNAs in the TCGA training dataset, irrespective of the
expression and methylation level. The criteria for WGCNA module identification were:
min size = 100, cutHeight = 0.995, p < 0.05, and enrichment fold > 1. Genes included in
WGCNA modules were matched with the RNAs with differentially expression and
methylation levels, and the overlapping items were used for further analysis.

Construction of methylation prognostic model
Genes and lncRNAs included in WGCNA co-methylation modules that had opposite
levels of methylation and expression between the TCGA LUSC samples with and without
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recurrence were used as candidates for screening prognosis-associated RNAs.
The univariate Cox regression analysis in the R Survival package (version 2.41-1; http://
bioconductor.org/packages/survivalr/) was used for the screening of RNAs associated with
LUSC prognosis. The criterion was log-rank p value < 0.05. The optimal methylation
combination was subsequently identified using the Cox-Proportional Hazards (Cox-PH)
model (L1-penalized least absolute shrinkage and selection operator, LASSO) in the
R penalized package (version 0.9-50, http://bioconductor.org/packages/penalized/).
The methylation prognostic model was then established and the prognostic risk score
of each individual was calculated using the following algorithm: Prognostic risk
score = ∑coefDMRs × MethylationDMRs, where coef represents the coefficient (LASSO coef)
of each gene identified by the Cox-PH model and Methylation notes the methylation level
of the gene in each sample, respectively. For the Kaplan–Meier survival curve analysis
(version 2.41-1), samples in the training and validation datasets were grouped into the high
and low-risk groups according to the median prognostic risk score. Also, the receiver
operating characteristic (ROC) curve analysis was performed using the R pROC (version
1.14.0; https://cran.r-project.org/web/packages/pROC/index.html) to evaluate the
accuracy of using this methylation prognostic model in predicting LUSC prognosis.

Identification of clinical variables associated with LUSC prognosis
This study also identified clinical variables associated with the LUSC prognosis in the
TCGA training dataset. The associations of prognostic risk score and clinical variables
(including patient age, gender, pathologic TNM classification, tumor stage, and radiation/
targeted therapy) with LUSC prognosis were assessed using the univariate and multivariate
Cox regression analysis in the R Survival package (version 2.41-1). Independent
variables that were significantly associated with LUSC prognosis were selected using the
threshold of log-rank p value < 0.05.

Prognostic nomogram and index for survival
Prognostic nomogram and index are widely applied for estimated survival probability
among patients with cancers and other conditions (Barnholtz-Sloan et al., 2012; Gold et al.,
2009). Nomogram was established using the R “RMS” package (Version 5.1-2; https://cran.
r-project.org/web/packages/rms/index.html). The score of each variable was ascribed
according to its weight in the nomogram, and the individualized 3- and 5-year survival
probabilities were then predicted according to total points.

Functional annotation for lncRNAs in the methylation prognostic
model
Importantly, the functional annotations of differentially expressed lncRNAs including in
the methylation prognostic model were identified to investigate the biological themes
associated with lncRNAs. The correlation between expression profiles of differentially
expressed genes and lncRNAs in recurrent LUSC samples in the TCGA training dataset
were calculated using the Pearson correlation coefficient (r). LncRNA-gene pairs with
confident coexpression levels (r > 0.4 or r < –0.4) were retained and the lncRNA-mRNA
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regulatory network was constructed using the Cytoscape software (version 3.8.0;
http://www.cytoscape.org/). Using the expression profiles of the lncRNA-associated genes
in the TCGA training samples, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways associated with lncRNAs were identified using the Gene Set Enrichment
Analysis (GSEA) software (version 4.0.2; http://software.broadinstitute.org/gsea/index.
jsp). The threshold for significant enrichment was a normal p value < 0.05.

RESULTS
Identification of DERs and DMRs
After annotation in the HGNC database, a total of 54 lncRNAs and 12,932 genes with
available expression profiles were obtained in the TCGA dataset, including 664 DERs and
981 DMRs (including 972 genes and nine lncRNAs) between the LUSC samples with and
without recurrence (Figs. 1A and 1B). The expression and methylation profiles of the
DERs and DMRs in the LUSC samples are shown in Figs. 1C and 1D, respectively. Venn
diagram showed that 155 DERs were differentially methylated in recurrent LUSC samples
compared with samples without tumor recurrence (Fig. 2; Table S1).

WGCNA for DERs with differentially methylation levels in LUSC
samples
Prior to the WGCNA module analysis, the scale-free topology prerequisite
soft-thresholding power was identified. It was 7 when the scale-free topology model fit
R2 = 0.9 for the first time (Fig. 3A). The mean gene connectivity = 1 when
soft-thresholding power = 7 (Fig. 3B), conforming to the scale-free network property.
Based on the methylation profiles of all RNAs, 12 WGCNA modules (including 105-1327
RNAs) were subsequently identified in the TCGA training dataset according to the
criteria we set before (soft threshold power = 7, min size = 100, and cutHeight = 0.995;
Fig. 3C; Table 1). The module-trait relationship heatmap showing the correlations of
modules with clinical variables is shown in Fig. 4. Also, the numbers of differentially
methylated genes and fold enrichment value of each module are shown in Table 1.
Three WGCNA co-methylation modules (green, pink, and turquoise), including 226
differentially methylated genes, had enrichment folds of >1 and an enrichment p value
of <0.05.

Identification of LUSC prognosis-associated RNAs
After matching the above 226 WGCNA module genes with the 155 RNAs in Fig. 2,
41 common genes were identified (Table S3). Among them, 28 genes had opposite
methylation-expression levels in the TCGA LUSC samples (Table S3). Besides, six of the
nine lncRNAs listed in Table S1 had opposite methylation-expression levels. Among the
34 candidate DERs (including 28 genes and six lncRNAs), 26 DERs (including four
lncRNAs and 22 genes) were identified as prognosis-associated RNAs by univariate Cox
regression analysis and methylation profiles (Table S4).
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Construction of the methylation prognostic model
An optimized methylation prognostic combination was identified using the Cox-PH
model based on the 26 prognosis-associated DMRs. Eighteen DMRs, including two
lncRNAs and 16 genes, were included in this methylation prognostic combination
(Table 2). The associations of seven RNAs with LUSC prognosis by the multivariate Cox
PH model (Table 2), including DIRC3, RMST, ABCA12, ADH7, DGKA, NPHP3, and
WFDC10B, were inconsistent with those analyzed by the univariate Cox regression
analysis in R package (Table S4). Accordingly, the methylation prognostic model was
constructed and the prognostic risk score of each sample was calculated as: (–0.0103) ×
MethylationDIRC3 + (–0.0242) × MethylationRMST + 0.0866 × MethylationLTF + 0.0438 ×
MethylationSGCG + (–0.0476) × MethylationABCA12 + (–0.0171) × MethylationADH7 +

Figure 1 The expression and methylation levels of lncRNAs and genes in lung squamous carcinoma
samples. (A & B) The Volcano plots indicating the differentially expressed and methylated RNAs
between recurrent and non-recurrent tumors. (C & D) The bidirectional hierarchical clustering heatmap
indicating the expression (log2[FPKM + 1]) and methylation profiles (beta value) of RNAs. FDR, false
discovery rate. Full-size DOI: 10.7717/peerj.13057/fig-1
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0.0846 × MethylationBNIPL + (–0.0273) × MethylationDGKA + 0.1114 × MethylationFAM181B

+ 0.0376 × MethylationGNRH2 + 0.0575 × MethylationHORMAD2 + (–0.7505) ×
MethylationLIMCH1 + (–0.0164) × MethylationNPHP3 + 0.0823 × MethylationRTP1 + 0.1422
× MethylationST6GALNAC1 + 0.0667 × MethylationTHNSL2 + 0.0546 × MethylationTRIM7 +
(–0.0604) × MethylationWFDC10B. Almost all these genes, except LIMCH1 (expression
logFC = 0.27, methylation logFC = –0.39), were downregulated and hypermethylated in
recurrent LUSC samples compared with non-recurrent LUSC samples (Tables S1 and S2).

Accuracy of the methylation prognostic model in predicting prognosis
in LUSC
To validate the predictive power of the methylation prognostic model in LUSC, samples in
the TCGA training dataset (n = 293) and the GSE39279 validation dataset (n = 43) were
separately grouped into the high and low-risk groups according to the median risk score of
each sample. Kaplan–Meier survival curve analysis showed that there was a significant
difference in the recurrence-free survival ratio between patients with high and low-risk
scores in the TCGA training dataset (HR = 3.856, 95% CI [2.297–6.471], p = 2.648e - 08;
Fig. 5A) and the GSE39279 validation dataset (HR = 3.040, 95% CI [1.435–6.437],
p = 2.403e - 03; Fig. 5B). The ROC curve analysis showed that this methylation prognostic
model had a high accuracy in predicting LUSC prognosis in the training dataset (area
under the ROC curve, AUC = 0.903, 95% CI [0.902–0.946]; Fig. 5C) and in the validation
dataset (AUC = 0.800, 95% CI [0.700–0.846]; Fig. 5D).

Clinical variables associated with LUSC prognosis
We also identified the clinical variables associated with the prognosis of LUSC in the
TCGA cohort. Univariate and multivariate Cox regression analysis confirmed that
pathologic stage (HR = 1.443, 95% CI [1.297–2.854], p = 2.92e - 02), radiation therapy
(HR = 1.963, 95% CI [1.022–3.771], p = 4.27e - 02), and prognostic risk score (HR = 3.874,

Figure 2 The Venn diagram indicating the RNAs with differentially expression and methylation
levels in recurrent lung squamous carcinoma samples. Full-size DOI: 10.7717/peerj.13057/fig-2
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95% CI [2.256–6.653], p = 9.12e - 07) were associated with LUSC prognosis (Table 3).
Kaplan–Meier curve analysis showed that patients with advanced stages and with
radiotherapy had a lower recurrence-free survival ratio compared with controls
(pathologic stage: HR = 2.604, 95% CI [1.570–4.318], p = 1.177e - 04; Fig. 6A, left;
radiotherapy: HR = 2.054, 95% CI [1.145–3.686], p = 1.36e - 02; Fig. 6B, left). Subgroup
survival analysis showed that patients with high prognostic risk scores (high-risk group)
had a lower survival ratio compared with patients who had low scores (low-risk group),
irrespective of pathologic stage and radiotherapy (Figs. 6A and 6B, middle and right).

Prognostic nomogram
The prognostic nomogram was constructed using the methylation prognostic model,
pathologic stage (1–4), and radiation therapy (yes/no; Fig. 7A). The predicted 3- and
5-year survival probabilities based on the nomogram had high compliances with the actual
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Table 1 Weighted correlation network analysis (WGCNA) module information.

Module Size DMGs Enrichment information

Enrichment fold (95% CI) Phyper

Black 245 10 0.387 (0.182–0.729) 1.30E-03
Blue 601 58 0.914 (0.677–1.217) 5.75E-01
Brown 570 47 0.781 (0.561–1.068) 1.27E-01
Green 352 99 2.665 (2.076–3.398) 8.41E-14
Greenyellow 105 5 0.451 (0.143–1.093) 9.72E-02
Grey 1,327 135 0.964 (0.786–1.176) 7.65E-01
Magenta 220 21 0.905 (0.544–1.431) 7.38E-01
Pink 224 36 1.523 (1.029–2.198) 3.16E-02
Purple 186 4 0.204 (0.0547–0.533) 1.08E-04
Red 329 33 0.951 (0.637–1.378) 8.54E-01
Turquoise 861 91 1.201 (1.046–2.267) 4.96E-02
Yellow 372 28 0.713 (0.463–1.060) 9.28E-02

Notes:
DMG, differentially methylated genes; CI, confident interval; Phyper, p value by hypergeometric algorithm.
Bold text notes significant modules and parameters.
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Figure 4 Heatmap showing the correlation of WGCNA modules with clinical variables. Red and blue
notes positive (maximum value = 1) and negative (minimum value = –1) correlation, respectively.
WGCNA, weighted correlation network analysis. Full-size DOI: 10.7717/peerj.13057/fig-4

Wang et al. (2022), PeerJ, DOI 10.7717/peerj.13057 9/21

http://dx.doi.org/10.7717/peerj.13057/fig-4
http://dx.doi.org/10.7717/peerj.13057
https://peerj.com/


situations (Fig. 7B; c-index = 0.747 and 0.759 for 3-year and 5-year prediction,
respectively). For an example case with stage III tumor (points = 33.3), radiation therapy
(points = 0), and a risk score of 0.2 (points = 37.7; total points = 71), the predicted 3- and
5-year survival probability of the case based on the nomogram model was about 38.7%
and 23.9%, respectively. ROC curve analysis showed that the combination of the
clinical variables with the methylation prognostic model had the highest AUC value
(AUC = 0.948, 95% CI [0.894–0.958]) and c-index (0.755; p = 2.22e - 16; Fig. 7C; Table 4),
followed by the methylation prognostic model alone (AUC = 0.927, 95% CI [0.884–0.931],
c-index = 0.739, p = 6.66e - 15).

Pathways associated with the two lncRNAs in the methylation
prognostic model
A total of 320 lncRNA-mRNA pairs related to the two lncRNAs (DIRC3 and RMST,
downregulation and hypermethylation) in the methylation prognostic model were
extracted (r > 0.4 or r < –0.4; Table S5). Accordingly, the lncRNA-mRNA network
included 320 interactions and 281 nodes (two lncRNAs and 279 differentially expressed
genes; Fig. 8).

Downregulated genes with hypermethylation levels, including LTF, ADH7,
ST6GALNAC1, THNSL2, and WFDC10B, had positive correlations with RMST, genes

Table 2 RNAs used for the construction of the prognostic methylation model in this study.

Symbol Type Multivariate Cox regression analysis LASSO coef

HR 95% CI p value

DIRC3 lncRNA 0.932 0.779–0.996 3.880E-02 –0.0103

RMST 0.961 0.830–0.985 1.140E-02 –0.0242

LTF mRNA 1.276 1.101–3.946 2.080E-02 0.0866

SGCG 1.198 1.054–5.930 4.170E-02 0.0438

ABCA12 0.925 0.769–0.986 4.120E-02 –0.0476

ADH7 0.965 0.797–0.976 4.140E-02 –0.0171

BNIPL 1.349 1.112–5.9131 2.630E-02 0.0846

DGKA 0.864 0.684–0.937 3.220E-02 –0.0273

FAM181B 1.585 1.199–3.864 2.550E-02 0.1114

GNRH2 1.194 1.029–3.888 2.690E-02 0.0376

HORMAD2 1.380 1.114–4.899 4.130E-02 0.0575

LIMCH1 0.401 0.257–0.624 5.280E-06 –0.7505

NPHP3 0.953 0.800–0.986 4.420E-02 –0.0164

RTP1 1.363 1.118–5.918 3.070E-02 0.0823

ST6GALNAC1 1.491 1.190–3.950 1.100E-02 0.1422

THNSL2 1.224 1.080–4.954 1.980E-02 0.0667

TRIM7 1.289 1.097–4.934 2.940E-02 0.0546

WFDC10B 0.895 0.728–0.912 3.640E-02 –0.0604

Note:
LASSO, L1-penalized least absolute shrinkage and selection operator; HR, hazard ratio; CI, confident interval; coef,
coefficient.
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including ABCA12, DGKA, FAM181B, and TRIM7 were positively correlated with DIRC3,
LIMCH1 had negative correlation with both of RMST and DIRC3, and the other genes
including SGCG, BNIPL, GNRH2, HORMAD2, NPHP3, and RTP1 had positive
correlations with both of RMST and DIRC3 (Table S5). Based on the expression profiles of
the 279 genes in the TCGA LUSC cohort, we identified that DIRC3 and RMST were
associated with five and four KEGG pathways, respectively (Table 5). DIRC3 and RMST
both were associated with the “Pathways in cancer” and “Endocytosis”.

DISCUSSION
Our study constructed a methylation prognostic model consisting of 18 DERs, including
two lncRNAs (DIRC3 and RMST) and 16 genes (LTF, ADH7, ST6GALNAC1, LIMCH1,
THNSL2, WFDC10B, SGCG, BNIPL, GNRH2, HORMAD2, ABCA12, DGKA, FAM181B,
TRIM7, NPHP3, and RTP1), based on the recurrent status in LUSC patients. Among the
18 RNAs, 17 DERs were downregulated with hypermethylation levels in recurrent LUSC
tissues compared with non-recurrent tumors. The 18-RNA methylation prognostic model
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Figure 5 Analysis of the methylation prognostic model in lung squamous cell carcinoma. (A & B)
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and the nomogram model consisting of the 18-RNA methylation signature and clinical
variables both had high performance in predicting LUSC prognosis.

The inconsistency that seven RNAs, including DIRC3, RMST, ABCA12, ADH7, DGKA,
NPHP3, and WFDC10B, by the multivariate Cox PH model was inconsistent with the
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Figure 6 Subgroup analysis showing the performance of the methylation prognostic model in
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Table 3 Cox regression analysis for clinical variables in The Cancer Genome Atlas (TCGA) lung squamous cell carcinoma cohort.

Clinical characteristics TCGA ( n = 293) Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

Age (years, mean ± SD) 67.72 ± 8.63 0.988 (0.962–1.014) 3.51E-01
Gender (Male/Female) 211/82 1.329 (0.783–2.257) 2.90E-01
Pathologic M (0/1/–) 227/2/64 0.303 (0.151–1.536) 6.07E-01
Pathologic N (0/1/2/–) 193/76/20/4 1.562 (1.142–2.138) 4.72E-03 1.011 (0.519–1.854) 9.53E-01
Pathologic T (1/2/3/4) 79/159/48/7 1.639 (1.209–2.220) 1.43E-03 1.223 (0.749–1.998) 4.21E-01
Pathologic stage (I/II/III/IV/–) 139/110/39/2/3 1.768 (1.326–2.356) 7.57E-05 1.443 (1.297–2.854) 2.92E-02
Radiation therapy (Yes/No/–) 31/251/11 2.054 (1.145–3.686) 1.37E-02 1.963 (1.022–3.771) 4.27E-02
Targeted therapy (Yes/No/–) 94/188/11 1.238 (0.774–1.981) 3.72E-01
PS status (High/Low) 146/147 3.856 (2.297–6.471) 2.65E-08 3.874 (2.256–6.653) 9.12E-07
Recurrence (Yes/No) 78/215

RFS time (months, mean ± SD) 28.28 ± 27.45

Note:
CI, confident interval; HR, hazard ratio; SD, standard deviation; RFS, recurrence-free survival; PS, prognostic risk score.
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univariate Cox regression analysis in R package was identified in our study.
The methylations of seven RNAs were associated with poor prognosis in LUSC patients by
the univariate Cox regression analysis, but the Multivariate Cox PH model showed that
they were associated with good prognosis in LUSC. However, further analyses showed that
there were confident correlations among the two lncRNAs RMST andDIRC3 and the other
16 genes, which could be the cause of the above inconsistency. Also, the lncRNA-mRNA
network showed that the genes might be regulated by the two lncRNAs. These results
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showed that the two lncRNAs RMST and DIRC3 might be confounding factors for the
other genes.

In the methylation prognostic model, LIM and calponin-homology domains 1
(LIMCH1) is the only gene downregulated and positively correlated with the LUSC
prognosis by univariate Cox regression analysis (HR = 7.96E–03). LIMCH1 regulates the
activity of an important motor protein monmuscle myosin II and cell migration and
growth in lung cancer cells (Lin et al., 2017; Zhang, Zhang & Xu, 2019). It partially restored
the invasive phenotype of cancer cells (Bersini et al., 2020). However, Halle et al. (2021)
showed that high LIMCH1 expression was significantly associated with poor survival
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Table 4 The receiver operating characteristic (ROC) curve analysis for the clinical variables and
prognostic methylation model.

Type AUC C-index p value

Stage 0.596 (0.537, 0.658) 0.653 4.64E-06
Radiotherapy 0.548 (0.604, 0.500) 0.550 6.41E-02
Clinical 0.598 (0.568, 0.536) 0.656 8.38E-06
lncRNAs 0.640 (0.732, 0.547) 0.542 2.77E-01
mRNAs 0.924 (0.894, 0.931) 0.732 7.04E-14
multi-RNAs 0.927 (0.884, 0.931) 0.739 6.66E-15
Combine 0.948 (0.894, 0.958) 0.755 2.22E-16

Note:
AUC, area under the ROC curve.
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of cervical cancer (p = 0.004, HR = 3.17). Also, our study showed that high LIMCH1
methylation level contributed to a low risk score and was significantly associated with a
good prognosis of LUSC. These results showed that the contribution of expression and
methylation levels of LIMCH1 and other RNAs in the methylation prognostic model to
LUSC prognosis should be validated in more cohorts.

The HORMA Domain Containing 2 (HORMAD2) gene is a host gene of HIV
proviruses and it has one provirus integration, which is essential for synapsis surveillance
during host cell meiosis (Fennessey et al., 2017; Symons, Cameron & Lewin, 2018).
Also, this increases the difficulty of virus removal and provides an implication for virus
management (Symons, Cameron & Lewin, 2018). The tripartite motif-containing 7
(TRIM7) gene is a tumor suppressor gene that encodes glycogenin-interacting proteins
and an E3 ubiquitin ligase, which suppresses the progression of hepatocellular carcinoma
(Jin et al., 2020; Zhu et al., 2020). E3 ubiquitin ligases are involved in various cellular
functions, including innate immunity and inflammation (Giraldo et al., 2020a). Loss of
N6-Methyladenosine modification of TRIM7 promoter was observed in osteosarcoma
tissues (Zhou et al., 2020). Evidence shows that E3 ubiquitin ligase positively regulates
toll-like receptor 4 (TLR4)-mediated immune response in macrophages (Lu et al., 2019).
Of special interest are recent reports showing their roles in virus replication (Giraldo et al.,
2020a; Stukalov et al., 2020).

TRIM7 can either promote virus pathogenesis or protect against infection, depending
on the context of virus infection (Giraldo et al., 2020a; Orchard et al., 2019). It promotes
herpes virus and Zika virions infection (Giraldo et al., 2020b) but may play an antiviral
role against norovirus (Orchard et al., 2019). TRIM7-mediated ubiquitination of the
envelope protein of Zika virions promotes the release of virus from infected cells and
binding of envelope protein to host cellular receptors, and enhances viral entry and
replication (Orchard et al., 2019). A recent study by Stukalov et al. (2020) highlighted that
the TRIM7 protein binding to the SARS-CoV-2 M phosphorylation site to drive

Table 5 Pathways associated with lncRNA DIRC3 and RMST.

Name Size ES NES NOM p-value Gene

lncRNA DIRC3

Metabolism of xenobiotics by cytochrome P450 4 0.82 1.65 8.14E-03 CYP2S1, GSTM2, GSTA1, ADH7

Drug metabolism cytochrome P450 3 0.82 1.51 2.75E-02 GSTM2, GSTA1, ADH7

Endocytosis 3 0.74 1.50 3.37E-02 GRK7, PLD1, FGFR2

MAPK signaling pathway 2 0.64 1.31 4.14E-02 NTRK2, FGFR2

Pathways in cancer 4 0.59 1.44 4.82E-02 WNT2B, WNT5A, COL4A6, FGFR2

lncRNA RMST

Pathways in cancer 5 –0.62 –1.64 5.03E-03 WNT7B, WNT5A, COL4A6, PLD1, FGFR2

Neurotrophin signaling pathway 2 –0.76 –1.37 1.20E-02 NTRK2, CALML3

Endocytosis 4 –0.67 –1.37 1.55E-02 EPN3, GRK7, PLD1, FGFR2

Wnt signaling pathway 2 –0.52 –1.18 2.88E-02 WNT7B, WNT5A

Note:
ES, enrichment score; NES, normalized enrichment score; Nom p-value, normal p value.
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ubiquitination. However, TRIM7’s effect on SARS-CoV-2 replication is not clear now.
Our present study found that the DNA methylation levels of HORMAD2 and TRIM7
promoter were upregulated in recurrent LUSC tissues compared with non-recurrent
tissues, and HORMAD2 and TRIM7 expression were downregulated in recurrent LUSC
tissues. The deregulation and methylation levels of HORMAD2 and TRIM7 in recurrent
LUSC tissues might provide references for exploring the potential association of LUSC
prognosis with virus infection.

LncRNAs rhabdomyosarcoma 2 associated transcript (RMST) and disrupted in renal
carcinoma 3 (DIRC3) both, especially the former, are known as tumor suppressors (Coe
et al., 2019; Kong, Liu & Kong, 2018; Liu et al., 2019;Wang et al., 2018). The depletion and
loss of function mutation of the two lncRNAs eliminate the threat of malignant
transformation, promote tumor cell proliferation, migration, and invasion (Coe et al.,
2019; Liu et al., 2019;Wang et al., 2018). RMST could enhance tumor cell apoptosis, block
the G0/G1 phase and cell proliferation, and restrain cell invasion and migration in
triple-negative breast cancer (Wang et al., 2018). RMST (Peng et al., 2020) positively
regulates the DNA methyltransferase 3B (DNMT3B) and negatively regulates DNMT3
expression (Peng et al., 2020). RMST knockout suppresses DNMT3 by promoting the
binding of HuR protein to DNMT3B and enhancing DNMT3B stability (Peng et al., 2020).
What’s more, the deletion of Dnmt3a in mouse promotes lung tumor progression (Gao
et al., 2011), suggesting the critical roles of RMST in regulating tumor progression and
development.

Among the downregulated and hypermethylated genes associated with both RMST and
DIRC3 (including BNIPL, HORMAD2, and NPHP3), HORMAD2 is the only gene related
to lung cancer (Liu et al., 2012). Liu et al. (2012) showed that HORMAD2 mRNA
expression was rarely expressed in the lung and HORMAD2 protein was detected more
frequently in early-stage lung adenocarcinoma compared with advanced cancers.
The nephronophthisis 3 (NPHP3) gene is associated with nephronophthisis and is
necessary for the formation of primary cilia formation (Abdullah et al., 2017; Lee, Kim &
Moon, 2019). BNIP-2-like (BNIPL) is an apoptosis-associated protein that interacts with
cell proliferation-related proteins including BCL-2 and Cdc42GAP (Qin et al., 2003).
However, our present study showed that these genes and lncRNAs were downregulated in
recurrent LUSC specimens, along with increased methylation levels. Besides, the inclusion
of them in the prognostic model had high performance in predicting the prognosis in
LUSC patients, suggesting the novel and crucial roles of these genes in LUSC progression.

CONCLUSIONS
In summary, our study identified a prognostic model based on the methylation levels of
lncRNAs and genes in LUSC patients with and without recurrence. This methylation had
high performance in predicting the prognosis as well as the 3-year and 5-year survival
probabilities in LUSC patients. Of special interest is that most of these RNAs had not been
reported in lung cancers and two genes (HORMAD2 and TRIM7) might associate with
virus infection. Referring to the methylation levels of these RNAs might help to predict the
survival outcomes in LUSC.
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