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A B S T R A C T

The sensation of sng (pronounced/səŋ/, the Romanization form of 痠or soreness in Taiwanese Southern Min)
associated with de qi, a composite of unique sensations, is a novel phenotype for acupoint stimulation. It is
perceived by test participants but also by experienced practitioners as a sensation of “taking the bait” (by fish
when fishing), a characteristic heavy and tight sensation from the needle. Here, we propose that sng is a powerful
biomarker for de qi associated with successful manual acupuncture. Sngception (sng-ception), a specific so-
matosensory function of acid-sensation or tether-mode mechano-sensation, may serve as the ideal molecular and
physiological link between sng perception and needle manipulation (e.g., lifting, thrusting, and twisting). To
explain how manual acupuncture can induce de qi, we constructed a hypothetical model of manual needling-
driven sngception. In acupoints (e.g., ST36), an acupuncture needle can easily stick to extracellular matrix
(ECM) proteins (e.g., fibronectin and laminin). While the acupuncture needle is manually twisted, it mingles with
ECM and delivers a pulling force to ECM-tethered mechanically sensitive ion channels (e.g., acid-sensing ion
channels) on somatosensory nerves to induce sngception. The concept of sng and sngception represents an
emerging field for research into the peripheral mechanisms of acupuncture.

1. De qi is a cornerstone in acupuncture research

The soreness sensation associated with de qi, a composite of unique
sensations experienced during acupuncture, is a novel phenotype in
acupoint stimulation. It is perceived by test participants as well as
experienced practitioners as a sensation of “taking the bait” (by fish
when fishing), a characteristic heavy and tight sensation from the nee-
dle.1 Cumulating evidence from traditional research and clinical expe-
rience has supported de qi as a prerequisite for any clinical therapeutic
effect.2–4 In humans, outcomes were more favorable with a stronger
intensity of de qi with the needle and transcutaneous electrical nerve
stimulation.5,6 In our animal study, we further demonstrated that elec-
troacupuncture to the ST36 acupoint could prolong tail-flick latency
depending on intensity.7 However, the most challenging task in any

acupuncture study design is how to remove the cognitive bias associated
with treatment-induced discomfort and placebo expectation. In a sys-
temic review, Madsen et al. found that a meaningful analgesic effect
couldn’t be distinguished from bias, and thus casual needling, even
without any de qi, could reduce pain as a result of the psychological
impact of the treatment ritual.8 Recently, Kim et al. found no significant
differences in levels of 36 serum biomarkers before and after sham and
verum acupuncture needling.9

2. Biomarkers are vital for translational research in pain
management

Pain is an unpleasant sensory and emotional experience associated
with, or resembling that associated with, actual or potential tissue
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damage (revised International Association of the Study of Pain defini-
tion of pain, 2020).10 From the perspective of clinical research, trans-
lational biomarkers are essential to identify the impact of acupuncture
stimulation on the human body before a clinical effect is evident.11

Biomarkers are defined as “a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic
processes or pharmacological responses to a therapeutic intervention".12

Biomarkers are divided into 3 general classes: target biomarkers,
mechanism biomarkers and disease biomarkers. Numerous histo-
chemical and electrophysiological biomarkers have been reported to
measure acupuncture-induced responses. Electrophysiological tech-
niques (e.g., electroencephalography-based density spectral arrays)
provide a temporal and spatial relationship of neural activities.13

Recently, we found functional near-infrared spectroscopy as a useful,
non-invasive imaging tool to detect levels of oxygenated and deoxy-
genated hemes during local muscular and brain activity during
acupuncture stimulation.14 More recently, neuroimaging techniques (e.
g., positron emission tomography,15 magnetoencephalography,16 and
functional MRI17) have been useful in detecting humans the brain
structure–activity relationship. Although these mechanistic biomarkers
are useful in studying pain and its modulatory pathways under normal
conditions, they are not practical and acceptable in the clinical settings
of acupuncture practice. Thus, we need a translational biomarker that
can be used to continuously monitor the changes in local muscular
response during acupuncture.

3. Biomarker for de qi

Measuring the analgesic response remains a critical challenge in both
animal and clinical studies.18 Most clinical endpoints were designed to
compare the verbal and/or visual rated pain intensity from conscious
and oriented participants. Recording verbal and/or behavioral re-
sponses is difficult among people with poor communication associated
with extreme age and cognitive deficits (e.g., dementia, aphasia,
delirium and under general anesthesia). In a previous study, we found
that intraoperative electroacupuncture stimulation was not attenuated
by general anesthesia, which led to an effective reduction in post-
operative pain and nausea/vomiting.19 A growing concern is the un-
ethical fear and distress during intense stimulation to an awake animal.
In a minimal stress model, we suppressed behavioral and psychological
distress in rats to count intensity-dependent leg withdrawal reflex in
response to graded stimulation of electroacupuncture.20 However,
regardless of the long-held advocacy for de qi, there is no objective,
quantitative biomarker to measure it in either animal or clinical
research.

To distinguish needling-induced analgesia from the emotional
distress associated with treatment-induced discomfort, we propose that
a reliable biomarker with a phenotype characteristic should be
measured under general anesthesia. In an earlier study, Agarwal-
Kozlowski et al. demonstrated an immediate vasodilation response
after needling in an acupoint but not in a non-acupoint.21 Although
microcirculation is increased after de qi, mechanical stimulating the
acupoints could open ion channels, thereby triggering the release of
neurotransmitters, which in turn increase regional blood flow and
simultaneously evoke a painful sensation.22 Thus, local neurogenic
vasodilation and segmental nociception could occur as a result of the
mechanical stimulation to acupoints, which also manifests as the typical
acid (or soreness)-like sensation triggered by massage or ultrasound
stimulation.

4. Sng and sngception

While an acupuncture needle mechanically lifts, thrusts, and twists
the acupoint, a de qi sensation can be achieved as a sign of successful
analgesia.23–25 Acupuncture de qi is a complex somatosensory sensation.
The common and distinctive characteristics include soreness, numbness,

fullness, pain, and many other sensory experiences.26,27 Despite several
ways to validate de qi, sng (pronounced/səŋ/, the Romanization form of
痠or soreness in Taiwanese Southern Min) may be the most promi-
nent.24,25 We previously proposed a sngception theory to address the
somatosensory function of acid sensation and/or mechanical stimuli and
defined sng as the corresponding perception.28 From neurobiological
aspects, sngception (acid sensation) is distinguishable from nociception,
because acid sensation can be pronociceptive or non-nociceptive, or
even antinociceptive.29 In fact, more than 70 % of somatosensory neu-
rons are acid-sensitive, and many (e.g., proprioceptors) are not
nociceptors.29,30

Clinically, we have demonstrated that sng (or soreness) and pain are
2 distinct symptoms in patients with fibromyalgia and degenerative
spine diseases.31–33 However, soreness is defined as pain in the English
language and thus not suitable to represent the acid-like perception of de
qi. To avoid confusion and facilitate scientific progress, we propose
using sng to replace soreness in response to sngception. The sng of de qi
could be a practical biomarker measuring successful analgesia during
acupuncture. Although how the acupuncture-driven sng works is still
not known, proton-sensing ion channels such as acid-sensing ion chan-
nels (ASICs) involved in antinociceptive acid signaling might be a
possible peripheral mechanism to link the mechanical needling and sng
of de qi. Of note, during tissue acidosis, proton-sensing ion channels of
ASIC1b, ASIC3, and transient receptor potential V1 (TRPV1) were pro-
nociceptive, whereas ASIC1a was antinociceptive in a mouse model of
fibromyalgia induced by intramuscular acidosis.34–37 An unsolved
question is how mechanical stimuli induced by needle lifting, thrusting,
and twisting can activate antinociceptive proton-sensing ion channels.

5. Searching for mechanically sensitive ion channels responding
to needle lifting, thrusting, and twisting

Although forceful needle lifting, thrusting, and twisting are the most
common practices to induce de qi, the underlying mechanism is still
unclear. There are at least 3 knowledge gaps between the unique
traditional maneuvers and physiological explanation that remain to be
resolved: (1) whether the acupoints are enriched with acid-sensitive
nerves; (2) how needle lifting, thrusting, or twisting can activate
nerves of acupoints; and (3) how the needle-driven mechano-
transduction can lead to sng perception. To fill in the knowledge gaps,
we propose a “manual needling-driven sngception theory” for a
wholistic explanation of how needle lifting, thrusting, and twisting
selectively activate mechanically sensitive ion channels expressed in
acid-sensitive somatosensory nerves (Fig. 1).

From a biophysics aspect, mechanically sensitive ion channels can be
gated via 2 different models: (1) a bilayer model, in which ion channels
are activated via alteration of membrane tension (e.g., membrane
deformation due to osmotic stress), and (2) a tether model, in which ion
channels are activated by tethered elements of extracellular matrix
(ECM) proteins and/or intracellular cytoskeletons to transmit the
force.38 Previous studies had largely used different mechanical stimuli of
osmotic stress, cell indentation, membrane suction, and ultrasound to
discover mechanically sensitive ion channels involved in the bilayer
model, including Piezo proteins, transient receptor potential (TRP)
channels, two-pore potassium channels (K2P), transmembrane protein
16/Ancatamin (TMEM16/Ano).39,40 However, these approaches failed
to activate ASICs, which are gated via tether-mode
mechanotransduction.41–43 To determine what mechanically sensitive
ion channels are involved in tether-mode mechanotransduction, we
developed a substrate deformation-driven neurite stretch (SDNS)
approach with neurite-bearing neurons cultured on ECM (e.g., fibro-
nectin or laminin)-coated elastic substrate (e.g., polydimethylsiloxane)
and single neurites stretched via substrate deformation (Fig. 1a).44 By
using the SDNS approaches, we found that ASIC3 is a dual function
protein involved in both acid-sensation and mechano-sensing of the
tether model in dorsal root ganglia proprioceptors.45 Furthermore, we
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recently developed a micropipette-guided ultrasound approach to
selectively activate ASIC1a via tether-mode mechanotransduction.46 Of
note, the required ultrasound energy levels to activate ASIC1a are
10–100 lower than those needed for activating TRP channels or other
mechanically activated ion channels gated via a bilayer model.47

From a molecular aspect, mechanically sensitive ion channels of the
tether model such as ASICs are possible candidates to convert the me-
chanical force of needle lifting, thrusting, and twisting to electrical
signaling in acid-sensitive somatosensory nerves because needle inser-
tion andmovement would hardly contact the nerve terminals to alter the

neuronal membrane tension during acupuncture. In contrast, an
acupuncture needle can easily stick to ECM proteins (e.g., fibronectin
and laminin), which are widely distributed in connective tissues.
Therefore, needle lifting, thrusting, and twisting can mingle with ECM
proteins and deliver a pulling force to ECM-tethered ion channels on
nerve terminals (Fig. 1b). Hypothetically, manual needling would be
effective to activate ASICs and trigger sngception because ASICs are
gated via tethering elements and enriched in somatosensory nerves.
Also, activation of ASICs can trigger the release of substance P from
muscle afferents to mediate antinociceptive signaling

Fig. 1. A hypothetical model of manual needling-driven sngception. (A) Acid-sensing ion channels (ASICs) are two-transmembrane proteins widely expressed in
somatosensory neurons. There are at least 6 ASIC subtypes (ASIC1a, ASIC1b, ASIC2a, ASIC3, and ASIC4), which can assemble as homotrimeric or heterotrimeric
channels in responding to tissue acidosis and a tethering force. In an in vitro system, tether-mode mechanotransduction can be examined via a substrate deformation-
driven neurite stretch (SDNS) approach, by which neurite-bearing sensory neurons are cultured on an extracellular matrix (ECM) protein-coated elastic substrate (e.
g., polydimethylsiloxane [PDMS]) and stretched via a pipette indentation on the elastic substrate. Whole-cell patch clamp recordings can reveal an ASIC-dependent
SDNS-induced inward current. (B) In acupoints (e.g., ST36), an acupuncture needle can easily stick to extracellular matrix (ECM) proteins (e.g., fibronectin and
laminin). While the acupuncture needle is manually lifted, thrusted, and twisted, it will mingle with ECM and deliver a pulling force to ECM-tethered mechanically
sensitive ion channels (e.g., acid-sensing ion channels) on somatosensory nerves to induce sngception.
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peripherally.29,37,48,49 Of note, the de qi of manual acupuncture-driven
sngception can explain the local analgesic effect but not remote pain
relief. Also, it cannot be explained for an electroacupuncture-induced
analgesic effect or other acupuncture-mediated therapeutic effects.

Although we selected ST36 as an example to portray the manual
needling-driven sngception, acupuncture-induced sng (or soreness) re-
sponses are also observed in other acupoints such as LI4 and Sp6.24,25

However, here we do not specify acupuncture manipulation techniques,
such as tonification, sedation, needling frequency, and depth.23 Further
research is needed to determine whether the needling-driven sngception
is specific to certain acupoints and/or requires specific manipulation
techniques, because different acupoints may have distinct somatosen-
sory characteristics of de qi.50,51

A relevant issue is to know what somatosensory neurons transmit
sngception. A previous study identified specific pain descriptors that can
distinguish neuronal activation via A delta fibers (pricking) and C fibers
(dull or pressing).52 However, soreness (the acid-like perception close to
sng) has no discriminate function perhaps because proton-sensing ion
channels/receptors are ubiquitous in all somatosensory subtypes,
including A- and C-fiber nociceptors and non-nociceptors such as pro-
prioceptors.29 Further studies are needed to explore the neurobiology of
sng sensation and perception.

6. Conclusion

Sng is a unique phenotype and can also be a powerful biomarker for
de qi associated with successful manual acupuncture. Sngception, a
specific somatosensory function of acid-sensation or tether-mode me-
chano-sensation, may be the ideal molecular and physiological link
between sng perception and needling. The concept of sng and sngception
can serve as an emerging field for research into the peripheral mecha-
nisms of acupuncture.
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