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Abstract: Tungsten oxide (WO3) is a wide band gap semiconductor with unintentionally n-doping
performance, excellent conductivity, and high electron hall mobility, which is considered as a can-
didate material for application in optoelectronics. Several reviews on WO3 and its derivatives for
various applications dealing with electrochemical, photoelectrochemical, hybrid photocatalysts, elec-
trochemical energy storage, and gas sensors have appeared recently. Moreover, the nanostructured
transition metal oxides have attracted considerable attention in the past decade because of their
unique chemical, photochromic, and physical properties leading to numerous other potential appli-
cations. Owing to their distinctive photoluminescence (PL), electrochromic and electrical properties,
WO3 nanostructure-based optical and electronic devices application have attracted a wide range
of research interests. This review mainly focuses on the up-to-date progress in different advanced
strategies from fundamental analysis to improve WO3 optoelectric, electrochromic, and photochromic
properties in the development of tungsten oxide-based advanced devices for optical and electronic
applications including photodetectors, light-emitting diodes (LED), PL properties, electrical proper-
ties, and optical information storage. This review on the prior findings of WO3-related optical and
electrical devices, as well as concluding remarks and forecasts will help researchers to advance the
field of optoelectric applications of nanostructured transition metal oxides.

Keywords: tungsten oxide; nanostructure-based; optical and electronic devices

1. Introduction

The transition metal oxide tungsten oxide (WO3), an oxygen-deficient n-type wide
band gap semiconductor material with an electronic bandgap of ~2.6–3.0 eV, has received
a lot of attention [1–4]. WO3 structures include cubic, triclinic, monoclinic, orthorhombic
tetragonal, and hexagonal. Because of its high melting temperature, photo electrochromic,
toughness, and mechanical properties, it is regarded as a potential candidate for optical
and electrical applications [5,6]. Nanostructured WO3 has a high specific surface area
and good surface permeability, making it ideal for a wide range of applications. WO3
nanostructures in various morphologies (for example, instant nanorods (NRs), nanosheet,
3D nanostructured papilio paris, and thin films (TFs)) have been fabricated for a variety
of applications, including gas sensors [7], efficient water splitting [8], photoelectrocatalytic
activity [9], memory devices [10], photodetectors [11,12], and high temperature diodes [13,14].
At present, nanostructured WO3 are deposited on various substrates to fabricate optical and
electrical devices, such as TiO2 [15], NiO [16], ZnO nanowires (NWs) [17], diamond [14],
Fe2WO6 [8], and BiVO4 [18]. In the last few years, several review reports have been pub-
lished based on photo catalysts [19,20], electrochromic devices [21,22], gas sensors [23,24],
and oxygen-deficient WO3 [25]. However, so far there is no review focusing specifically on
nanostructured WO3 optical and electrical devices.

As a result, in this review, the authors present a comprehensive overview of past
developments in optical properties, such as photodetectors, light-emitting diodes (LED),
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photoluminescence (PL) and electrical properties, and optical information storage, as re-
ported by various research groups, which make WO3 appealing for a variety of applications.
Additionally, we offer some closing remarks as well as a forecast of the future advances in the
subject. The research presented here should serve as a solid starting point for developing new
nanostructured WO3 structures for emerging and future optical and electrical applications.

2. Photodetector

An ideal photodetector will display a low dark current to minimize the interference
noise and high responsiveness to maximize the optical signal. The performance of pho-
todetectors usually depends on the bandgap of the semiconductors and metal oxides. WO3
is a typical wide bandgap semiconductor with a large exciton binding energy of 0.15 eV,
a high optical absorption coefficient ≥104 cm−1, and a phonon-limited electron mobility of
~12 cm2 V−1 s−1. The WO3 band gap resonates with incident ultraviolet (UV) light energy,
which can generate excess electrons that contribute to the photocurrent, thereby improving
the characteristics of the photodetector [26]. These physical properties show that WO3
semiconductors have great potential for the fabrication of high-performance visible light
and UV detectors with reasonable performance [27].

2.1. UV Photodetector
2.1.1. Nanostructured WO3 Photodetector

In recent years, there have been a few reports on the WO3 photodetector with a single
nanostructure since its response time is slow and it has a low current on/off ratio [28–30].
In comparison to the previously described WO3 NWs [29,30] and nanospheres [28], Liu
et al. have developed a photodetector based on a few layers of WO3 nanosheets that
has a faster light response, a greater on/off ratio, a higher external quantum efficiency,
high sensitivity, outstanding stability, and reversibility. This distinctive performance of WO3
photodetectors lays the foundation for the fabrication of high-performance flexible and multi-
functional photodetectors derived from layered semiconductor materials (Figure 1a–d) [31].
To investigate UV photoresponse, symmetrical and asymmetrical standard lithography
were evaluated to differentiate the sensitivity of the Ohmic contact and Schottky contact
devices to UV photodetector based on a single WO3 NWs. The linear I-V curves of the
symmetrical device in dark and UV illumination conditions demonstrated that the device
is Ohmic contact. For Schottky contact device, one end of a WO3 nanowire was completely
covered by the gold electrode from Omhic contact, and only very small area was covered
at the other end. The I-V of a single WO3 nanowire device shows a typical diode I-V
curve, and the effective circuit diagram in the lower-right inset. When reverse bias, the
current was completely cut-off owing to the Schottky contact (Figure 2a,b). The Schottky
contact device has a faster response time than the Ohmic contact device. This is due to
the oxygen adsorption and desorption in the heterojunction influence the Schottky contact
device barrier height. The adsorbed oxygen molecules on the surface of WO3 nanowire can
modify the density of defect states and enhances the injection barrier (Figure 2c). Under
UV illumination, the generated holes can release the adsorbed oxygen ions, and reduce the
height of the injection barrier (Figure 2d). The reduction of the barrier height causes more
electrons to cross the barrier and then enhances the photocurrent [32].

In a recent study, Kim et al. heat-treated a large area of amorphous WO3 TFs to
fabricate high quality, high-density WO3 NRs. It is used to prepare UV detectors, with
a fast reaction speed (0.316 s), very sensitive to the actual UV 261 nm wavelength, and
can effectively perform UV detection (Figure 3a–d) [33]. The carriers can be generated by
transitions between bands caused by UV absorption. The generated carriers can also be
transferred between each WO3 NRs. Finally, enough applied voltage can overcome the
energy band barrier between the WO3 NRs and the electrodes.
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Figure 1. (a) Schematic of the device operation. (b) The photocurrent responses with time under the 
illumination of 365 nm. (c) The time−resolved photocurrent of the photodetector in response to light 
on/off at an irradiance of 131 mW/cm2 with 365 nm light. (d) The photocurrent–time curve with the 
change of light intensity. Reproduced or adapted from [31]. 

 

Figure 2. (a) A single WO3 nanodevice symmetrical device both in the dark and under 312 nm UV 
illumination, and the upper left inset is an SEM image of WO3 nanowire device. (b) I−V characteris-
tics of the nonsymmetrical contact device, upper left inset is an SEM image of WO3 nanowire device 
and lower right inset shows the schematic structure of the device. (c) Band diagram of the Schottky 

Figure 1. (a) Schematic of the device operation. (b) The photocurrent responses with time under the
illumination of 365 nm. (c) The time-resolved photocurrent of the photodetector in response to light
on/off at an irradiance of 131 mW/cm2 with 365 nm light. (d) The photocurrent–time curve with the
change of light intensity. Reproduced or adapted from [31].

Nanomaterials 2021, 11, 2136 3 of 26 
 

 

 
Figure 1. (a) Schematic of the device operation. (b) The photocurrent responses with time under the 
illumination of 365 nm. (c) The time−resolved photocurrent of the photodetector in response to light 
on/off at an irradiance of 131 mW/cm2 with 365 nm light. (d) The photocurrent–time curve with the 
change of light intensity. Reproduced or adapted from [31]. 

 

Figure 2. (a) A single WO3 nanodevice symmetrical device both in the dark and under 312 nm UV 
illumination, and the upper left inset is an SEM image of WO3 nanowire device. (b) I−V characteris-
tics of the nonsymmetrical contact device, upper left inset is an SEM image of WO3 nanowire device 
and lower right inset shows the schematic structure of the device. (c) Band diagram of the Schottky 

Figure 2. (a) A single WO3 nanodevice symmetrical device both in the dark and under 312 nm UV
illumination, and the upper left inset is an SEM image of WO3 nanowire device. (b) I-V characteristics
of the nonsymmetrical contact device, upper left inset is an SEM image of WO3 nanowire device
and lower right inset shows the schematic structure of the device. (c) Band diagram of the Schottky
barrier of the nonsymmetrical device in dark state. (d) Under UV illumination, the change of the
barrier height. Reproduced or adapted from [32].
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Figure 3. (a) The schematic illustration of performance measurement of self-crosslinked WO3

nanorods as a UV detector. (b) The photograph of the UV detector. The photocurrent response of
UV-C ray (216 nm) irradiation of self-crosslinked WO3 (c) without Ag nanoparticles and (d) with Ag
nanoparticles. Reproduced with permission from [33]. Copyright Royal Society of Chemistry.

2.1.2. WO3 Thin Films for UV Photodetector

There are several reports on WO3 TFs based UV photodetectors. Reddy et al. stud-
ied the efficiency of UV photodetector characteristics by TiO2/WO3 bilayer TFs. The
enhancement of oxygen vacancies in TiO2/WO3 bilayer plays an important role in photore-
sponse [34]. For the first time, high response and controllable recovery UV detector derived
from a WO3 gate AlGaN/GaN heterojunction integrated microheater has been investigated
(Figure 4a,b). The UV response rate of the device at 240 nm is 1.67 × 104 A W−1, and the cut-off
wavelength is 275 nm [11].
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To improve the performance of the UV detector based on WO3 films, the sputtering
parameters need to be optimized, mainly oxygen partial pressure and sputtering pressure.
Yadav et al. described the effect of oxygen partial pressure on the performance of WO3
thin films UV detectors [35]. Sputtering technology is used to deposit WO3 film under
different oxygen partial pressures to improve its response rate under low UV power density.
The fabricated photodetector can respond to a small quantity of UV radiation. In addition,
the effects of sputtering pressure on the morphology, crystallinity, and photodetector
properties of WO3 films were also investigated [12]. WO3 film has high crystallinity, surface
roughness, and customized grain size, which contribute to achieving high responsivity and
external quantum efficiency by minimizing the overall impedance. The results show that
the WO3 film deposited under a sputtering pressure of 10 m Torr has good stability and
high photodetector performance.

Furthermore, the oxygen vacancies were found as doubly ionized donors and help
with photodetection at the same time. In addition, Sn ions into the WO3 lattice can enhance
the conductivity and reduce the resistivity by increasing the carrier concentration and
oxygen vacancy. The prepared WO3 and Sn–WO3 precursor solutions of 3 mL were
deposited separately on the cleaned p-Si substrates (1 cm × 1 cm) by the jet nebulizer spray
pyrolysis technique with different concentrations of Sn (0, 4, 8, and 12 wt.%) the copper
(Cu) metal contact was coated on the Sn–WO3/p-Si using dc sputtering (Model Name:
HIND high vacuum-PS 2000) with 4 mm diameter and 500 nm thickness. The instrument
details and deposition conditions of the metal contacts were mentioned in their previous
work [36,37]. The Sn-WO3/p-Si diode showed a positive light response of high reverse
saturation current under illumination [38]. As the concentration increases, the detection
capability of the interface layer also increases. The diode measured under light conditions
exhibits higher current values than under the dark conditions. This behavior outcome
indicates that all the Cu/Sn–WO3/p-Si diodes are highly photo-conducting in nature.
In particular, the diode fabricated with 12 wt.% of Sn shows higher current values (mA
level) when compared to other diodes (Figure 5a). It is presumed that the incorporation
of Sn atoms in the WO3 matrix has effectively improved the photocurrent of the Cu/Sn–
WO3/p-Si diodes. The ideality factor (n) of the diodes was found to reduce steeply under
dark conditions on increasing the Sn concentration from 0 to 12 wt.%. Compared to the
dark conditions, the diodes measured under light conditions revealed lower n values. This
is mainly due to the increase in the photo-generated charge carriers (e−–h+) along with the
improved conversion efficiency of the semiconductor layer and absorption of interfacial
layer (Figure 5b).
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2.2. Visible Photodetectors

The nanostructures of WO3 and the UV detectors have been investigated, and device
characteristics have been reported. However, there is not much research on the application
of WO3 as visible light detectors. Wang et al. reported on the controlled synthesize of WO3
NWs and their application as visible photodetectors. The WO3 single NWs photodetector
has shown outstanding device characteristics with a high responsivity of 19 A W−1 at 0.1 V,
high detectivity of 1.06 × 1011 Jones, and a short response time of 8 ms under a 404 nm laser
illumination (Figure 6a–f). Thus, the enormous possibility of WO3 NWs for manufacturing
visible photodetectors has been established [27].
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The WO3−x/Si n−n homo−heterojunction has the potential for superior visible photodetec-
tor characteristics with the scope for optoelectronic applications. 

Figure 6. (a) Sketch of the WO3 nanowire device structure; (b) SEM image of the WO3 nanowire
device. (c) Current-voltage curves and (d) photo-switching behavior of the WO3 nanowires photode-
tector under the illumination of a 404 nm laser with different laser intensities. (e,f) are the rising time
and decay time of the WO3 nanowire photodetector. Reproduced or adapted from [27].

Sub-stoichiometric WO3−x/Si n-n homo-heterojunction with rectification properties
has been fabricated by Zhang et al. (Figure 7a–d) [39]. The heterojunction shows remarkable
photodetection performance involving a high specific detectivity of 3.96 × 1011 Jones,
a large responsivity of 72.8 A/W, and fast response times of 5.8 µs/1.27 ms under 405 nm.
The WO3−x/Si n-n homo-heterojunction has the potential for superior visible photodetector
characteristics with the scope for optoelectronic applications.
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3. Light-Emitting Diode

WO3 has a low emission efficiency due to the presence of a highly linked metal ion
polyhedron [40], which limits its use in light-emitting diodes (LEDs). Researchers have
fabricated tandem organic light-emitting diodes (OLEDs) connected to WO3 intermediate
connections in the early days to fully utilise the photoelectric capabilities of WO3 and
make it more useful in LEDs [41–44]. Zhang et al. used an Al/WO3/Au structure as
the interconnection layer of tandem white LED. Through the microcavity effect, this
connecting layer makes white light emission more stable and eliminates the angular
dependence of the spectrum generated by the microcavity effect. The design of this
laminated structure provides an idea for the realization of higher-efficiency organic white
LEDs. Performance comparison of a serial OLED with a single LED is shown in Figure 8.
Compared with traditional LEDs, serial OLEDs display higher current efficiency, brightness,
and longer operating life [41]. Wei et al. investigated a pure blue OLED with a blue
fluorescence emitter, in which the charge producing layer was made up of transparent
WO3 TFs and the electron transport layer was Li-doped. When compared to single emitting
unit devices, series devices have significantly more power and longer service life [42].
Bao et al. studied the electronic structure and the energy level arrangement of WO3-
based intermediate connectors. The authors have explained the significance of using
WO3 as an interlayer—it can significantly change the energy level arrangement, make
the interface dipole and energy level bend, and facilitate the injection of carriers into
the appropriate molecular energy level of the adjacent electroluminescent unit [43]. Bin
et al. have fabricated a tandem stack to enhance the electroluminescence property of
white OLED. In the tandem laminate, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile
(HAT-CN) is used as the organic charge generation layer and WO3 is used as the inorganic
charge generation layer. In double-stack OLEDs, it is observed that WO3, as the charge
generating layer, has the best performance with exceptional CIE color coordinates [44].
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Researchers have observed that doping nanostructured WO3 into high molecular polymers
(PEDOT:PSS, PANI:PSS) [45,46] as the hole injection layer in classic OLEDs, may be a good
choice. Using a simple solid-state mechanochemical approach, Zhuo et al. have produced
WO3 nanoribbons with a width of 10 nm and a length of 80 nm and doped them into
PEDOT:PSS as a mixed hole injection layer for QDLEDs [45]. Figure 9a,b shows the device
structure and its energy level diagram. Compared with the QDLED with PEDOT:PSS as the
hole injection layer alone, the QDLED based on the mixed hole injection layer shows high
external quantum efficiency(EQE) and stronger current efficiency, as shown in Figure 9c–f.
Zhu et al. synthesized WO3 nanocrystals hybridized with conductive polymer (PANI:PSS)
and used them in the hole injection layer of OLEDs. The hybrid system reduces the
surface defects of WO3 nanocrystals and improves the interface contact ability. Compared
with OLED containing only WO3 nanocrystals and traditional PEDOT: PSS-WO3 devices,
this device exhibits higher capacitance and stronger luminous efficiency. PANI:PSS-WO3
composite material is expected to be a candidate material as the charge injection layer in
new generation OLEDs [46].
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4. Photoluminescence Properties

WO3 has been extensively explored in electrochromic, photochromic, and gas sensing
materials, and other applications due to its exceptional physical and chemical features.
However, being an indirect bandgap semiconductor, WO3 shows lower emission efficiency,
which makes its light-emitting characteristics poor. Manfredi et al. investigated light
emission in WO3 TFs at liquid nitrogen temperatures in the early years. The light emission
ceases while the TFs are at room temperature, indicating that studying the PL of WO3 at
room temperature is not acceptable [47]. Researchers have put in a lot of effort to study
WO3’s light emission at ambient temperature. For example, Niederberger et al. [48–50].
achieved room temperature blue emission of WO3 nanoparticles in ethanol solution. Later,
Khold et al. have shown that the morphology, particle size, and quantum confinement
play a critical role in the luminescence at room temperature [51], which indicates how to
improve the luminescence of WO3 at room temperature. On this basis, Feng et al. prepared
crystalline WO3 TFs with different nanostructures by thermal evaporation of tungsten
wires and observed strong PL at room temperature [52]. Wang et al. synthesized WO3
nanosheets on a large-scale using tungsten powder as raw materials and demonstrated its
blue emission at room temperature [53]. Park et al. synthesized needle-like nanostructures
of WO3 by thermal evaporation in the temperature range of 590 ◦C to 750 ◦C and explained
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the influence of substrate temperature and the morphology of WO3 nanostructures on
luminescence [54].

Except for the methods mentioned above, doping with rare-earth ions (Eu3+, Tb3+) [40,55,56]
or metal ions (Li, Sn, Cu) [57–60] in WO3 is considered as another effective method to
improve luminescence performance at room temperature. Luo et al. prepared Eu3+ doped
WO3 TFs by hydrothermal method. They found that with the increasing of Eu ion content,
the morphology of WO3 changed significantly. Moreover, Eu3+ doping significantly im-
proved the transparency and optical contrast of WO3 [55]. Ruan et al. prepared WO3:Eu3+

inverse opal photonic crystals and studied their luminescence characteristics. The crystal
generated red PL at 615 nm and showed a better red purity [56]. Kavitha and his col-
leagues used RF magnetron sputtering to prepare high-quality and efficient luminescent
Tb3+-doped WO3 TFs, which showed strong green, blue, and red emission under UV
excitation [40]. In addition, they also used the same technique to prepare Cu-doped WO3
TFs. The plasmon resonance behavior of Cu nanoparticles on the TFs has been studied, and
it has been observed that they can considerably improve the quantum efficiency of various
photonic devices and that Cu doping causes the TFs to emit intense blue light (Figure 10) [60].
Kovendhan et al. reported the effect of Li doping (1–5 wt.%) with different contents into the
WO3 TFs. They proposed that the structure and optical characteristics of WO3 TFs changed
with the increase of lithium, and observed blue PL emission that was difficult to detect
at room temperature. The bandgap values of WO3 TFs doped with Li (1–5 wt.%) shifted
blue, and the blue emission increased dramatically, as compared to pure WO3 TFs [57].
Mukherjee et al. investigated the preparation of Sn-doped WO3 TFs by chemical spray
pyrolysis. They found that the peak intensity of near-band edge emission in doped TFs
was enhanced relative to that in undoped TFs, and the spectral intensity was enhanced
with the increase of Sn content [58]. Sn-doped WO3 nanosheets were produced using a
simple precipitation process by Mehmood et al. and their photoelectric characteristics were
examined. SEM images of WO3 nanosheets with different Sn doping levels (0–8 wt.%) are
shown in Figure 11a–e. Similar to the results reported by Mukherjee et al. [58], they found
that Sn doping significantly enhanced the PL intensity of WO3 nanosheets and resulted in
a shift in the near-band edge emission transition (Figure 11f) [59].
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5. Electrical Properties

WO3, despite its unique properties of high thermal stability, superior charge transport,
tunable electrical properties, and high electron mobility, is not commonly used in the
electrical device sector [61–64]. The electronic devices are used in a variety of environments,
including humid, dry, and high-temperature environments, as well as in the dark or under
light irradiation. In recent years, researchers are looking at the electrical features of WO3
nanostructures and TFs, including electrical transport properties, electrical conductivity,
field emission mechanism, and resistance switching behavior.

5.1. Nanostructured WO3 Electrical Properties

Throughout the last decade, nanoscale electronic and optoelectronic devices involving
nanometer-sized inorganic systems have been shown to have comprehensive electrical
properties that are sensitive to form and size [65–67]. As such, researchers have paid close
attention to the electrical characteristics of WO3 nanoparticles.

WO3 is one of the typically unintentionally doped n-type characteristic semiconduc-
tors [68]. WO3 often presents sub-stoichiometric oxide (WO3−x) due to the presence of
several oxygen deficiencies, such as WO2.9, WO2.83, WO2.8, and WO2.72. That is to say,
the lattice of WO3−x could sustain a considerable amount of oxygen vacancy and contain
a number of W5+. Consequently, change of oxygen vacancies in WO3−x could effectively
tune the density of electron, and then have considerable conductivity [69–71]. WO3 that
strictly satisfy the stoichiometric ratio should be an insulator, and non-stoichiometric
WO3−x exhibits n-type semiconductor behavior. A slight change in oxygen content can also
greatly change the conductivity of WO3, so its electrical properties vary with its oxygen
content and can be divided into exhibiting metal and semiconductor behavior. Extrinsic
n-doping is therefore not required for WO3 to exhibit significant conductivity. Due to the
greater bandgap of quasi-two-dimensional (Q2D) WO3, Q2D WO3 nanoflakes have more
potential electrical applications. Zhuiykov et al. investigated the electrical characteristics
of orthorhombic-WO3 nanoflakes with thicknesses ranging from 7 to 9 nm [72]. Sun et al.
prepared high-quality WO3/CoWO4 core-shell p-n junction NWs by hydrothermal method.
A physical model of Ag ions spreading along core-shell NWs to form conductive wires was
proposed to interpret the bipolar resistance switching behavior. The new WO3/CoWO4
core-shell p-n junction NWs are suitable for the next generation of nonvolatile memory [73].

5.1.1. Oxygen Vacancy Effect

The separate oxygen vacancies effect on WO3 electrical characteristics has been a
source of debate [74,75]. The electrical characteristics of tungsten oxides with various
oxygen vacancy levels are important to investigate. The thermal evaporation produced
nano/microrods with the same morphology that show varying oxygen vacancy content as
the WO3−x level increased [76]. The devices composed of WO3−x crystals have shown a
negative to positive humidity resistance response. The device’s conductivity was boosted
with more oxygen vacancies as a result of a more photogenerated carrier transit and
effective separation. The ability to manufacture a range of optoelectronic devices and
humidity sensors has been demonstrated by the WO3−x crystal. The current-voltage
characteristics related to the Au/WO3 NW/Au devices show that with the increase of
bias voltage and oxygen vacancy concentration, the conduction mechanism of the devices
changes from volume-limited (space charge-limited) to electrode-limited (Schott Base
launch) as have been reported by Yang et al. By adjusting the concentration of oxygen
vacancies and even the scanning range of the bias voltage, the resistance switching behavior
of WO3 NWs can be adjusted [77].

5.1.2. Electrical Transport Behavior

In recent years, a few applications have focused on the electrical transport characteristics
of the WO3 nanostructures. Li et al. studied the high-temperature electrical transport char-
acteristics of hydrothermally produced n-WO3 NRs/p-diamond heterojunctions. Within
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the temperature range of room temperature to 290 ◦C, the p-n heterojunction displayed
excellent thermal stability and rectification properties (Figure 12a,b). With increasing
temperature, the turn-on voltages decreased and the rectification ratio increased. This re-
search broadens the design and application possibilities for heterojunctions based on BDD,
particularly at high temperatures, high power, and in a variety of hostile environments [14].
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Figure 12. (a) Schematic diagram of the n-WO3NRs/p-BDD heterojunction device. (b) I-V plots of
the n-WO3 NRs/p-BDD heterojunction working at varying temperatures from 20 ◦C to 290 ◦C. The
top inset is the plot of log (Current) vs. voltage, and the bottom inset is the plot of ln(Is) vs. 1/kBT to
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Khan et al. studied the dielectric and electrical transport mechanism of multilayer
flower-like WO3 microstructure by impedance spectroscopy. The equivalent circuit model
is used to explain the impedance plane. The electrical transport properties of WO3 were
studied in detail. The low dielectric loss at 1MHz makes WO3 a potential material for
high-frequency applications. Reproduced or adapted from [78].

5.1.3. Field Emission Properties

WO3 NWs show high conductivity owing to abundant oxygen vacancies, which is
contributed to the progress of its FE performance. Previous studies have also shown that
WO3 NWs have excellent FE performance as a cold cathode potential.

A non-catastrophic breakdown phenomenon was found during the FE process of
single defect WO3−x NWs, which can extend the life of the electron source of the NWs.
The main reasons for this phenomenon are the defect-related electrical transport-induced
breakdown mechanism and the Nottingham effect-induced cooling impact. The detection
provided a practical method for designing a single NW point source with a long lifespan,
which was critical to the advancement of high-performance semiconductor NW point
sources [79]. Uniform large area and micropatterned WO3 NWs were fabricated and their
FE properties were investigated by Lin et al. A high FE current up to 3.5 mA was obtained
in a defect-rich WO3 sample with an effective area of 0.25 cm2 (Figure 13a–c). The high
emission current was incited by the high defect density in the WO3 NWs [80].

A field emission study of well-aligned uniform WO3 nanoconifer was carried out at
~1 × 10−8 mbar pressure. The turn-on and threshold field values were achieved to be 2.43
and 3.08 V µm−1, respectively. The findings of the WO3 nanoconifer FE characteristics
investigation suggest that it could be a good candidate for multifunctional applications
like cold cathodes in nanoelectronic devices.
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5.2. WO3 Thin Film Electrical Properties

WO3 TFs have gained importance in recent years, both in terms of basic research [81]
and in terms of their application potential as energy-saving smart windows and batter-
ies [82]. Although many studies have focused on using nanostructured WO3 TFs to increase
film optical efficiency, nothing has been done to optimize their electrical properties. How-
ever, their mixed conductivity (ionic and electronic) is particularly significant. Samad
et al. have studied the relationship between the nanostructure and electrical properties of
amorphous WO3 TFs. The ionic conductivity and lithium chemical diffusion coefficient
are explored to increase with the supplement of the grain size while the conductivity is
proposed to diminish with increasing grain size (Figure 14) [83].

Shanmugasundaram et al. used spray atomizer pyrolysis technology to prepare Sn0.26WO3
TFs with Sn (0, 5, 10, 15 wt.%) and n-Sn0.26WO3/p-Si heterojunction diode 15 wt.% doping
concentration at 500 ◦C substrate temperature. The J-V curve indicates that the 15 wt.% Sn
doped WO3 TFs demonstrate a minimum conductivity of 1.429 × 10−9 S/cm. From the diode
characterization under illumination and in dark, the acquired ideality factor of n values are
4.89 and 5.03 for 15 wt.% of n-Sn0.26 WO3/p-Si heterojunction diode (Figure 15) [84].
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The electrical transport mechanism of p-SnS/n-WO3:Sb TFs heterojunction in the
temperature range of 20–300 K was investigated. At low forward bias voltage (<0.25 V), the
diode shows Ohmic conduction. At the middle voltage range (0.25 < V < 1.0 V), the carrier
transport mechanism followed the thermionic emission. When the forward bias voltage
is above 1.0 V, the current transport is space charge limited current (SCLC) according to
the exponential trap contribution in the WO3:Sb bandgap. (Figure 16a) The temperature
dependence of the ideality factor n and saturation current can be interpreted by tunneling
enhanced recombination model emerging at the interface the heterojunction with E00 and
Ea values about 99.5 meV and 1.565 eV, respectively (Figure 16) [13].

Pure and Al:WO3/p-Si heterojunction diode was fabricated by the sol-gel spin coating
method. The electrical conductivity of the WO3 TFs increases with Al (0–9 wt.%) dopant
concentration in the temperature range of 303–473 K (Figure 17). The J-V characteristic
of Al:WO3/p-Si diode shows the decreasing barrier heights ΦB at the lower temperature,
The decreasing barrier height with low temperature is easily understood considering that
the current becomes gradually controlled by electrons that can cross the lower barrier
patches, which reduces apparent barrier height. Supposing a Gaussian spatial distribution
for ΦB, with mean ΦBm and the standard deviation σB, the temperature dependence of
the measured barrier height ΦB at zero applied bias is expected to follow the relation [85]:

ΦB = ΦBm − qσ2
B

2KT . The results show that 9wt.% Al:WO3/p-Si diodes have better perfor-
mance than other diodes [86].
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6. Memory Application

Since traditional silicon-based storage technology will soon reach its limit, this brings
a serious challenge to the scaling of the device size. To overcome this limitation, researchers
have been trying to find new materials to develop new information storage technologies.
In recent years, to solve the scaling limitations of traditional flash memory, research on non-
volatile memory has become a top priority. At present, the research on non-volatile memory
has become matured. The common non-volatile memory includes magnetic random
access memory (MRAM), ferroelectric random access memory (FRAM), resistance random
access memory (RRAM), and phase change random access memory (PCM). Compared
with other memories, resistance random access memory (RRAM) is easily manufactured,
a simple device structure, low operating voltage, high durability, high-density storage, long
retention time, fast switching speed, and excellent performance. It has the advantages of
scalability and compatibility with traditional complementary metal-oxide-semiconductor
(CMOS) technology [87,88]. To exhibit high performance, the size of the memory device
should be kept small, because the large devices exhibit higher noise levels and poor
reproducibility. This is due to uncontrollable deviations and defects within the larger
devices [89]. Therefore, building nano-level devices has become a necessity to solve
this problem.

Because of its outstanding performance in three-dimensional stacking, compatibility
with CMOS process [90–92], good durability [93], non-volatile rectification characteris-
tics [94] with excellent electrochromic and photochromic properties, and other factors,
nanostructured tungsten oxide (NWs, NRs, nanosheets, etc.) has been widely used in
RRAM devices in recent years. Among these advantages, the electrochromic proper-
ties of WO3 are one of the criteria that determines the storage performance of RRAM.
The degree of crystallinity of tungsten oxide determines its electrochromic performance.
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Compared with crystal-oriented tungsten oxide, amorphous tungsten oxide shows better
electrochromic performance. However, amorphous tungsten oxide exhibits poor durability
in acid electrolyte solutions [95]. To solve the above problems, researchers have studied
wet chemical preparation methods to construct tungsten oxide composite systems, such as
electrodeposition [96,97] and sol-gel methods [98,99]. Shim et al. prepared polycrystalline
WO3 NWs on ITO substrates by electrospinning. Compared with traditional WO3 nano-
films, they found that the prepared WO3 NWs showed faster charge transfer, better optical
response, and better pigmentation efficiency, and the memory effect after pigmentation also
significantly improved [100]. Pang et al. synthesized WO3 composite TFs modified with
Ag nanoparticles by a combination of vacuum deposition and electrodeposition methods.
Compared with pure WO3 TFs, the films show stronger electroactivity and electrochromic
properties [101].

Kozicki et al. demonstrated that low-power RRAM devices doped with copper WO3
are achievable. This type of device exhibits a high turn-off resistance and can be switched
to an on-resistance state under a low voltage state. This state is independent of the device
geometry but is strongly controlled by the current. If a small reverse bias is applied, they
can be restored to a high-impedance state. Schematic diagram of the device structure and
its resistance switching characteristic is shown in Figure 18. Unfortunately, the manufacture
of such devices requires the diffusion of copper light into WO3, which will be difficult
to apply in semiconductor processing [90]. On this basis, Li and co-workers fabricated
RRAM devices using Cu/WO3/Pt structures. This device exhibits better resistive switching
characteristics, such as better durability, lower power consumption, and better retention.
In addition, they also explained the physical mechanism of the multi-level storage character-
istics in Cu/WO3/Pt storage devices. The origin of these multi-level storage characteristics
can be explained as that when a higher current is applied to the device, the radial growth of
conductive filaments and the formation of more conductive filaments together, lead to this
characteristic [92,102]. Inspired by this phenomenon, Kozicki et al., Li et al., and Sun et al.
synthesized high-quality WO3/CoWO4 core-shell NWs using the hydrothermal method.
They studied the bipolar resistance switching behavior of Ag/[WO3/COWO4]/Ag de-
vices using Ag as an electrode. They found that the device maintained excellent stability
for 100 cycles and had an on/off ratio of up to 333 at room temperature [73]. Similarly,
Chakrabarti et al. designed a new RRAM device with W/WO3/WOx/W structure and ob-
served the effects of post-annealing of metal on the behavior of shapeless resistance switch
in this structure, especially the F-N tunneling effect after LRS and reset. Furthermore, for
all nonlinear current-voltage switching characteristics, the authors have used simulations
to account for SCLC conduction in low voltage field, F-N tunneling in high voltage field,
and oxygen vacancy carbon fiber with a diameter of ~34 nm. This work will contribute to
comprehend the switching mechanism of other similar RRAM structures and selector-free
nanoscale crossover structures [103].

Recently, Sun et al. have fabricated ITO/WO3/AZO resistance switching devices
by a magnetron sputtering and observed that the devices have significantly enhanced
resistance-switching memory behavior. The schematic diagram of the ITO/WO3/AZO
device and I-V characteristic curve are shown in Figure 19. Subsequently, they proposed a
physical model of photogenerated carriers tunneling in the Schottky barrier layer driven
by electrical pulses to fully explain this phenomenon. The deployment of non-volatile
RRAM devices in future development will be guided by this physical model [104]. Singh
and his colleagues synthesized Ag-decorated WO3 NWs by the glancing angle deposition
(GLAD) technique. The growth process of Ag-decorated WO3 NWs is shown in Figure 20a.
Figure 20b shows the I-V characteristic curves of the device, exhibiting a large storage
window of ~ 12.02 V at ±10 V and a low interface density trap of ~5.74 × 1010 eV−1 cm−2

at 1 MHz. It also exhibits an on/off switching time lasting up to 1500 cycles (Figure 20c)
and a stable retention time of up to 103 s on/off resistance ratio (~245) [105]. Moreover,
the same technology was used to synthesize WO3 NWs based capacitive memory on Si
substrates. Through the measurement and analysis of the device performance, the authors
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found that the memory exhibited a stable retention time (103) and a good endurance cycle
of up to 100 [106]. These works provide interesting ideas for the design and application of
next-generation non-volatile memory.
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Figure 20. (a) Schematic illustration of the growth processes of Ag-decorated WO3 NWs. (b) Semi-logarithmic scale
volt-ampere characteristic curve of Ag-decorated WO3 NWs device at room temperature. The inset shows the image of
Ag-decorated WO3 NWs devices. (c) Switching durability of Ag-decorated WO3 NWs at +2 V read voltage. The inset shows
the data retention characteristics of Ag-decorated WO3 NWs devices. Reprinted (adapted) with permission from [105].
Copyright {2021} American Chemical Society.

7. Conclusions and Future Outlook

Recent research has significantly increased our knowledge of the features and uses of
WO3-related nanostructures in optical and electrical devices, such as photodetectors, LEDs,
PL properties, electrical properties, and optical information storage devices. Although
WO3 based devices exhibit good performance in the fields of various photoelectrical
applications, it is also desirable to find new fabrication routes and the types of electrodes
for these devices to improve the optical and electrical properties in the future. Modifying
the electrode configuration of the device, controlling the variety of morphologies of WO3
nanostructures, and optimizing the preparation process could be the effective strategy for
various futuristic photoelectrical applications. In order to better understand the physical
transport mechanism of the devices, it is critical to use more relevant semiconductor
theory and computational models for carrier transport research toward the development
of WO3 devices.

Up to present, the WO3 nanostructure related tunnel diode with negative differential
resistance (NDR) investigation is scarcely researched, NDR is a non-linear carrier transport
phenomenon, whereby the electrical current decreases with increasing bias voltage. N-WO3
semiconductor exerts degenerative features through heavy n-type doping and possibly
displays a NDR phenomenon when combined with p-degenerative semiconductor. The
NDR effect of WO3 will make an important contribution to the implementation of logic
switches, oscillators, inverters, resistive switching memory, and radiation reliable device
applications in the field of flexible electronics semiconductors.

Over the past decades, the development of the optoelectronic applications based on
the WO3 nanostructures that can operate in harsh environments (high temperature or
strong radiation environments) is still challenging. It is also necessary to put further efforts
to investigate WO3 related optical and electrical devices under extreme conditions such as
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high temperature, high pressure, and harsh environments. Diamond is an excellent semi-
conductor material for manufacturing high-performance electronic devices that are used in
high temperatures and a strong radiation environment. Therefore, it is expected to fabricate
WO3/diamond heterojunction device for providing the possibility of photodetectors, LEDs,
PL properties, and optical information storage devices application at higher temperatures.
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