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Abstract
Ischemic stroke is a major cause of disability. No efficient therapy is currently available, except for the removal of the occlud-
ing blood clot during the first hours after symptom onset. Loss of function after stroke is due to cell death in the infarcted 
tissue, cell dysfunction in the peri-infarct region, as well as dysfunction and neurodegeneration in remote brain areas. Plastic-
ity responses in spared brain regions are a major contributor to functional recovery, while secondary neurodegeneration in 
remote regions is associated with depression and impedes the long-term outcome after stroke. Hypoxic-ischemic encepha-
lopathy due to birth asphyxia is the leading cause of neurological disability resulting from birth complications. Despite major 
progress in neonatal care, approximately 50% of survivors develop complications such as mental retardation, cerebral palsy 
or epilepsy. The C3a receptor (C3aR) is expressed by many cell types including neurons and glia. While there is a body of 
evidence for its deleterious effects in the acute phase after ischemic injury to the adult brain, C3aR signaling contributes 
to better outcome in the post-acute and chronic phase after ischemic stroke in adults and in the ischemic immature brain. 
Here we discuss recent insights into the novel roles of C3aR signaling in the ischemic brain with focus on the therapeutic 
opportunities of modulating C3aR activity to improve the outcome after ischemic stroke and birth asphyxia.
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Introduction

Each year, stroke affects about 15 million people worldwide. 
50% of the approximately 10 million stroke survivors suf-
fer from long-lasting or permanent functional impairment, 
which makes stroke the primary cause of disability in adults. 
Stroke most commonly results from the occlusion of a major 

vessel in the brain. If the occlusion is not rapidly reversed, an 
infarct develops due to the death of all cells in the affected 
tissue. Only a small fraction of patients arrive at the hos-
pital in time to be eligible for blood clot removing proce-
dures. Rehabilitation - that only rarely leads to full recovery 
- remains as the only option for the majority of stroke survi-
vors. Therefore, improving recovery of function by effective 
neuroprotection, and plasticity- and regeneration-promoting 
strategies has become a major research focus.

Loss of function after stroke is due to cell death in the 
infarcted tissue and cell dysfunction in the surrounding 
as well as remote brain regions that are connected to the 
damaged area. Recovery of function involves reversal of 
dysfunction, activation of cell repair (cell genesis, axonal 
regeneration), functional reorganization within existing net-
works (changing the properties of existing neural pathways) 
and neuroanatomical plasticity leading to the formation of 
new connections (axonal sprouting, synaptogenesis). Some 
of these mechanisms, jointly called neural plasticity, are 
involved in normal learning, are enhanced by the milieu 
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created following the injury, and contribute to recovery of 
function after stroke and other CNS injuries [1].

Hypoxic–ischemic encephalopathy is one of the most 
critical pathologic conditions in neonatal medicine. Neo-
natal hypoxic–ischemic encephalopathy due to perinatal 
asphyxia is the leading cause of neurological disability 
resulting from birth complications. It is caused by the dis-
ruption of blood flow and oxygen supply to the brain prior 
to or during delivery and occurs in 1–2 of 1000 live term 
births. Recent advances in critical care have improved the 
survival of infants suffering from hypoxic–ischemic enceph-
alopathy, but approximately 50% of survivors will develop 
complications such as mental retardation and cerebral palsy. 
Long-term neurological impairment after neonatal hypoxia-
ischemia correlates with the extent of brain damage [2]. 
Perinatal asphyxia and other perinatal brain insults lead to 
neuronal cell death in the acute and secondary phases, which 
last for hours to days; delayed neuronal cell death in the 
so-called tertiary brain damage phase, which can persist for 
weeks to years, prevents repair and regeneration, disturbs 
the development and function of affected brain networks, 
or sensitizes them to dysfunction and cell death due to a 
subsequent inflammatory challenge [3]. Even a mild-to-
moderate ischemic insult can result in progressive cerebral 
atrophy, delayed infarction, and long-term cognitive impair-
ment in rodent hypoxic–ischemic encephalopathy models 
[2, 4–8]. However, the underlying mechanisms are not fully 
understood. Therapeutic hypothermia is a clinically accepted 
therapy for hypoxic–ischemic encephalopathy, however, 
treatment of eight children is required for one child to be 
saved from the development of severe disability. Therapies 
to further improve outcomes of infants suffering from acute 
encephalopathy are therefore urgently needed [9].

The complement system is an important constituent of 
the humoral innate immune response best known for its role 
in the elimination of pathogenic bacteria and initiation of 
inflammation. The complement system consists of more than 
50 soluble proteins, cell receptors and control proteins found 
in the blood and tissues. Their specific roles in innate immu-
nity include the opsonization and lysis of pathogens, elimi-
nation of soluble antigen–antibody complexes, removal of 
dead cells and tissue debris, stimulation of leukocyte chemo-
taxis, and initiation of inflammation. Through the regulation 
of B and T lymphocyte functions, complement affects also 
adaptive immunity [10]. Hepatocytes are the main source of 
soluble complement proteins, however many complement 
factors and receptors are also expressed locally in the brain 
and spinal cord [10]. The complement system mediates the 
reciprocal signaling between the cells in the CNS and acts 
as both the modulator and effector of their functions [11].

C3a receptor (C3aR) is a G-protein-coupled receptor 
for a cognate complement-derived peptide C3a [12]. C3aR 
is expressed in many tissues including the brain [13, 14]. 

Besides its many functions in the regulation of inflammation 
[15], C3aR has been shown to play a role in the development 
and normal function of the CNS, however excessive C3aR 
signaling has been implicated as a factor in neurodegenera-
tion. In the ischemic brain, signaling through C3aR can both 
contribute to tissue damage and stimulate neural plasticity 
responses involved in functional recovery. C3aR represents 
an attractive target for the treatment of ischemic brain injury, 
however, for the optimal outcome neurodevelopmental stage, 
the mode of interaction as well as timing of the intervention 
seem to be of critical importance.

C3aR in CNS Development and Function

C3aR is a member of the rhodopsin family of seven trans-
membrane G-protein-coupled receptors [12]. As the name 
implies, C3aR was identified as the receptor for C3a, a 
9 kDa, 77 amino acid peptide and the smaller of the two 
activation fragments generated through the proteolytic acti-
vation of the third complement component (C3), the cen-
tral molecule of the complement system [12]. Beside the so 
called C3-convertases, i.e. enzymatic complexes generated 
by the complement cascade triggered by e.g. danger associ-
ated signals on the surface of pathogenic microorganisms, 
C-reactive protein and amyloid-β [16], C3a can be released 
through the proteolytic activation of C3 by a number of other 
membrane-associated or serine proteases such as mannan-
binding lectin-associated serine protease 1 [17], neutrophil 
elastase, cathepsins [18, 19], granulocyte neutral proteases 
[20], lysosomal enzymes, kallikrein, as well as coagulation 
factors XIa, Xa, IXa, thrombin, and plasmin [21, 22]. In 
addition to C3a, C3aR has been shown to bind the neuropep-
tide TLQP-21 [23], that is derived from the neurotrophin-
inducible protein VGF through proteolytic cleavage by pro-
hormone convertases 1/3 and 2 [24], Fig. 1.

C3aR is expressed by embryonic stem cells [25], neural 
progenitor cells [26] and mature neurons [27–30]. In neural 
progenitor cells, C3a-C3aR signaling activates the extracel-
lular signal-regulated kinase (ERK)1/2 signaling pathway, 
regulates neuronal differentiation, neuronal maturation and 
migration [31]. C3a was also shown to accelerate the migra-
tion of granule cells of the developing cerebellum [32] and 
regulate neuronal migration during cortical development 
[33]. The neurodevelopmental role of C3aR signaling is 
evidenced by altered brain morphology, cognitive defects 
and hyperactive behavior observed in adult mice constitu-
tively lacking C3aR [25, 34]. C3aR stimulates neurogenesis 
in adult naïve mice [26] and normal level of neuronal C3aR 
signaling is required for synaptic plasticity and maintenance 
of normal dendritic extensions [35].

Astrocytes express C3aR [27, 28, 36] and respond to 
C3a by activation of intracellular signaling [37] and the 
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expression of cytokines such as interleukin (IL)-6, IL-8 
and nerve growth factor (NGF) [38–40].

Microglia express C3aR and C3a stimulation of micro-
glia triggers an increase in intracellular calcium concentra-
tion [41] and upregulation of NGF [42]. C3aR-mediated 
signaling regulates the phagocytic activity of microglia, 
short exposure to C3a stimulates and chronic C3a treat-
ment reduces microglial phagocytosis [43]. Activation of 
microglial C3aR by TLQP-21 in the dorsal horn of the spi-
nal cord has been implicated in spinal neuroplasticity and 
neuropathic pain [44], however the functions of TLQP-21 
in the brain and its role in the brain responses to ischemia 
have not been studied.

C3aR signaling increases vascular permeability, stimu-
lates smooth muscle contraction, and triggers the activa-
tion and directed migration of inflammatory cells [13]. 
C3aR regulates endothelial cell expression of cytokines 
and adhesion molecules, which are important for leukocyte 
recruitment into the brain, and control blood brain barrier 
permeability [45–47]. Activation of C3aR signaling on 
epithelial cells of the choroid plexus can lead to the dis-
ruption of blood-cerebrospinal fluid barrier [48].

The multiple effects of C3aR signaling on the function 
of the different cell types in the CNS are summarized in 
Table 1.

C3aR and Intracellular Signaling

In various cell types such as microglia, astrocytes and 
endothelial cells, C3aR activates the phospholipase C path-
way leading to the opening of intracellular calcium channels 
and increase in the intracellular calcium levels [37, 41, 47]. 
C3a-C3aR signaling modulates the activity of the ERK1/2 
pathway including Ras and c-Raf [31, 37, 49]. At least in 
astrocytes, stimulation of C3aR leads to the inhibition of 
the adenylyl cyclase pathway [37]. In microglia, C3a-C3aR 
signaling was shown to increase the phosphorylation and 
activation of STAT3 [50]. C3aR antagonist SB290157 
reduced the inhibitory Ser9 phosphorylation of glycogen 
synthase 3β (GSK3β) in the SH-SY5Y neuroblastoma cells 
[51], pointing to the role of C3aR signaling in the regulation 
of GSK3β activity, Fig. 2.

Fig. 1   C3a and TLQP-21 are 
endogenous ligands of C3aR in 
the CNS. C3a can be released 
through the proteolytic activa-
tion of C3 by C3-convertases, 
coagulation factors XIa, Xa, 
IXa, thrombin, and plasmin, 
cathepsins and a number of 
other membrane-associated or 
serine proteases such as man-
nan-binding lectin-associated 
serine protease 1, neutrophil 
elastase, granulocyte neutral 
proteases, lysosomal enzymes, 
and kallikrein. The neuropep-
tide TLQP-21 is derived from 
the neurotrophin-inducible 
protein VGF through a stepwise 
proteolytic cleavage by prohor-
mone convertases 1/3 and 2
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The Roles of C3aR in the Ischemic Brain

Astrocytes, microglia and neurons are the source of com-
plement proteins in the CNS [52–55]. After brain ischemia, 
pronounced complement activation was reported both in 
the systemic circulation of human patients [56–60] and in 
the human post-mortem brain tissue [61, 62]. Experimen-
tal studies implicated C3a as the key mediator of brain 
tissue injury in the acute phase after focal brain ischemia 
[63]. However, given the broad expression of C3aR on the 
different cell types in the CNS, and the potential involve-
ment of C3aR in the regulation of several intracellular 

signaling pathways, the net effect of C3aR activation on 
the long-term outcome may depend on the specific cell 
type and the timing of the response in relation to the 
ischemia onset. For example, the expression of C3aR by 
astrocytes is increased by ischemia [27, 28, 36], and C3a 
was shown to promote astrocyte survival after ischemia 
through its inhibitory effect on ERK signaling-mediated 
apoptotic pathway and caspase-3 cleavage [36]. C3a pro-
tects neurons against excitotoxicity-induced cell death, but 
only when neurons are co-cultured with astrocytes [64]. 
Further, microglial cells treated with C3a exhibit neuro-
protective phenotype as evidenced by increased production 
of NGF [42].

Table 1  The effects of C3aR 
signaling on the cells in the 
CNS

Cell type C3aR functions References

Neural stem / progenitor cells Neuronal differentiation
Migration

[31]
[31]

Neurons Migration
Neurite outgrowth
Modulation of synaptic strength
Modulation of dendritic morphology

[32, 33]
[31]
[35]
[35]

Astrocytes Cytokine expression
Survival

[38–40]
[36]

Microglia NGF upregulation
Regulation of phagocytosis

[42]
[43]

Endothelial cells Cytokine expression
Expression of cell adhesion molecules

[45]
[46]

Epithelial cells of the choroid plexus Disorganization of tight junctions [48]

Fig. 2   Intracellular signaling 
pathways regulated by C3aR in 
the cells of the CNS.In micro-
glia, astrocytes and endothelial 
cells, C3aR signaling inhibits 
the adenylyl cyclase pathway 
and reduces the inhibitory Ser9 
phosphorylation of glycogen 
synthase 3β (GSK3β). C3aR 
signaling activates the phospho-
lipase C pathway, modulates 
the activity of the extracellular 
signal regulated kinase 1/2 
(ERK1/2) pathway, and acti-
vates STAT3
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The Effects of C3aR Signaling in the Acute Phase 
After Ischemic Brain Injury

In the first days after stroke, C3a levels in blood are elevated 
and in some stroke subtypes show association with unfa-
vorable outcome [57, 59, 60, 65]. The involvement of C3 
in the pathophysiology of ischemic stroke is also supported 
by human genetic studies [66]. Indeed, C3a-C3aR signaling 
was shown to regulate bleeding time after tail injury and 
thrombosis in mice, and C3aR deficient mice were less prone 
to experimental stroke and myocardial infarction [67]. In 
the acute phase after stroke, endothelial activation and leu-
kocyte recruitment into the brain are reduced in mice lack-
ing C3 and C3aR [46]. C3 deficiency and pre-treatment of 
mice with C3aR antagonist reduced granulocyte infiltration, 
infarct volume and neurological deficit scores assessed 24 h 
after transient cerebral ischemia [63], and mice that were 
treated with SB290157, a C3aR antagonist [68], starting 
before the induction of transient ischemia developed smaller 
infarcts as assessed 7 days after ischemia [69]. Another 
study demonstrated that the C3aR antagonist pre-treatment 
reduced the expression of ICAM-1 protein on endothelial 
cells and granulocyte infiltration to the brain parenchyma 
[70]. Even when administered 2 h after the induction of cere-
bral ischemia, C3aR antagonist treatment reduced functional 
impairment, infarct volume, edema and hemorrhagic trans-
formation assessed 48 h later [71]. In an in vitro ischemia 
model, C3a led to increased endothelial permeability [72], 
and C3aR antagonist administration preserved the integrity 
of endothelial cell tight junctions and reduced the activation 
of ERK, suggesting that endothelial C3aR may act via ERK 
signaling [73]. These results point to therapeutic benefits 
of systemic inhibition of C3aR signaling in the acute phase 
after ischemic injury to the adult brain through mitigating 
the pro-inflammatory effects of C3a-C3aR signaling on 
endothelial cells and reducing the recruitment of inflamma-
tory cells from the systemic circulation.

In contrast to the ischemic injury to the adult brain, in 
a model of neonatal hypoxic-ischemic brain injury, mice 
expressing biologically active C3a under the control of the 
glial fibrillary acidic protein promoter (GFAP-C3a), i.e. 

expressing C3a in reactive astrocytes, showed reduced brain 
tissue loss assessed 3 weeks later [7]. In the same study, 
single intraventricular injection of C3a mitigated cogni-
tive function impairment due to neonatal hypoxia-ischemia 
in control mice but not in mice lacking C3aR (C3aR−/−) 
6 weeks later [7]. Importantly, mice that received intrana-
sal treatment with C3a once daily for 3 days starting 1 h 
after hypoxia-ischemia induction at postnatal day 9 were 
protected against cognitive impairment observed in vehi-
cle treated mice 6 weeks after hypoxia-ischemia [8]. Thus, 
in the acutely injured immature brain, C3a-C3aR signaling 
appears to promote recovery. Therapeutic hypothermia, 
the only intervention that improves clinical outcome after 
neonatal hypoxic-ischemic encephalopathy, was shown to 
increase the levels of C3a in the brain and plasma, and to 
lead to the upregulation of C3aR in the brain in a rat model 
of hypoxic-ischemic encephalopathy [74]. These results 
point to C3a-C3aR signaling as a mediator of the neuropro-
tective effects of hypothermia. Together, these studies sup-
port the notion that the cellular functions of C3aR signaling 
differ profoundly depending on the developmental stage of 
the neural tissue.

C3a‑C3aR and Post‑stroke Neural Plasticity

Ischemic injury to the brain is known to trigger a range 
of endogenous plasticity and repair processes, including 
proliferation, differentiation and migration of neural stem 
and progenitor cells [75–77], axonal sprouting, dendritic 
arborization and synaptogenesis, that lead to rewiring of 
the existing neuronal connections and the formation of new 
ones [78, 79]. The structural and functional constituents of 
ischemia-induced neural plasticity are recognized as criti-
cally important contributors to recovery of function after 
stroke and other CNS injuries [1]. There is growing evidence 
for the role of C3a-C3aR signaling in stimulating adaptive 
neural plasticity responses after ischemic brain injury. These 
findings point to the use of C3aR agonists as a therapeutic 
strategy to facilitate functional recovery in the post-acute 
and chronic phase after ischemic brain injury, Table 2.

Table 2  The functions of C3a 
in the acute, post-acute and 
chronic phase after ischemic 
brain injury

Function References

Acute phase Leukocyte recruitment [46, 63, 69, 70]
Inflammatory endothelial activation [46, 70]
Endothelial cell and blood-brain barrier dysfunction [71–73]

Post-acute and 
chronic phase

Post-stroke neurogenesis [26, 80]
Post-stroke synaptogenesis [89]
Post-stroke expression of GAP-43, marker of axonal and glial plasticity [89]
Modulation of reactive gliosis [8]
Neuroprotection, survival of astrocytes after ischemic stress [7, 36]
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C3aR and Post‑stroke Neurogenesis

C3aR is expressed by hippocampal neural stem cells in vitro 
as well as migrating neuroblasts in vivo [26], and in vitro 
studies show that C3a stimulates neural progenitor cell dif-
ferentiation [31]. C3a also regulates the migration of adult 
neural progenitor cells in response to other environmental 
clues such as stromal derived factor 1α [31]. The contention 
that C3aR signaling acts as a positive regulator of adult neu-
rogenesis is further supported by in vivo evidence showing 
that hippocampal and subventricular zone neurogenesis is 
impaired in mice constitutively lacking C3aR or C3, and 
mice treated with C3aR antagonist SB 290157 [26]. The 
stimulatory effect of C3aR signaling on basal adult neuro-
genesis was confirmed by other investigators, who observed 
reduced number of proliferating doublecortin-positive neural 
progenitor cells in the subventricular zone of unchallenged 
mice treated with the same C3aR antagonist [69].

Despite larger infarct, the C3 deficient mice had reduced 
neurogenic response in the ipsilesional subventricular zone 
and in the peri-infarct region after focal cerebral ischemia 
induced by middle cerebral artery occlusion at both 7 and 
21 days after ischemia [26]. These findings point to C3 acti-
vation products as positive regulators of post-stroke neuro-
genesis and neuroprotection. In a model of ischemic stroke 
induced by photothrombosis - which results in ischemic 
lesion with minimal or no penumbra, and thus allows to 
study the effects of C3aR signaling on neural plasticity and 
functional recovery independent of neuroprotection - we 
showed that C3a overexpression in the GFAP-C3a mice 
increased whereas C3aR deficiency decreased the number 
of newly born neurons in the peri-infarct region on day 21 
after stroke despite comparable infarct volumes [80]. These 
results strongly support the contention that C3a-C3aR sign-
aling stimulates the stroke-induced neurogenic response. 
Although the activity of the GFAP promoter and thus of the 
C3a transgene is too low to affect the levels of basal hip-
pocampal and subventricular zone neurogenesis in unchal-
lenged adult GFAP-C3a mice [81], pronounced and per-
sistent reactive gliosis in the peri-infarct tissue [82] results 
in sufficiently high transgene-derived C3a levels to impact 
post-stroke neurogenesis in this region.

On the other hand, daily systemic treatment with a low 
dose of the C3aR antagonist SB 290157 starting before the 
induction of transient focal cerebral ischemia increased the 
proliferation of neuronal precursor cells in the ipsilesional 
subventricular zone 7 days later [69]. As argued by the 
authors, in the absence of any effect of the same treatment 
protocol on subventricular zone neurogenesis in unchal-
lenged mice, the positive effect of low dose C3aR antagonist 
treatment on post-stroke neurogenesis is conceivably due 
to the inhibition of the inflammation including the reduced 
recruitment of activated T-lymphocytes rather than to the 

direct effect of the drug on the progenitor cells [69]. The 
specific mechanism of C3a generation in an unchallenged 
neurogenic niche and the mechanisms of C3a generation 
in the post-acute and chronic phase after stroke need to be 
elucidated in future studies.

C3aR and Post‑stroke Synaptic Plasticity

In the developing brain, the complement system is involved 
in the regulation of the number of neuronal synapses. Specif-
ically, transforming growth factor β that is secreted by imma-
ture astrocytes triggers the neuronal expression of comple-
ment component C1q in the developing visual thalamus 
[83, 84] and sensorimotor cortex [85]. Binding of C1q to 
externalized phosphatidylserine [86] leads to the deposition 
of C3b which tags the synapse for recognition by microglial 
complement receptor 3 (CR3) and subsequent elimination by 
phagocytosis [83, 87]. However, given that the development 
and experience-dependent plasticity of the binocular zone 
of the primary visual cortex was not altered in mice lacking 
C1q, the contribution of C1q to synapse elimination is not 
universal and instead appears to be context-dependent [88].

While the C3b fragment of C3, through its interaction 
with the CR3, drives the removal of neuronal synapses, at 
least during the CNS development, neuronal C3aR signal-
ing promotes increase in synaptic strength through mem-
brane localization of the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor [35]. In addition, dendritic 
complexity is reduced in mice lacking neuronal C3aR as 
well as in mice treated with a C3aR antagonist [35]. On 
the other hand, excessive activation of neuronal C3aR can 
lead to reduced complexity of dendrites and impair synaptic 
function [35]. In the post-stroke brain, C3a overexpression 
in the GFAP-C3a mice increased whereas C3aR deficiency 
decreased the density and size of glutamatergic pre-synaptic 
terminals in the peri-infarct region as well as in the contral-
esional hemisphere in a manner that was cortical region- and 
cortical layer-specific. None of these parameters was altered 
in an unchallenged brain of these genetically modified mice 
[89]. The synaptogenic function of C3a-C3aR signaling in 
the post-stroke adult brain was further supported by the find-
ing that mice that received daily intranasal treatment with 
C3a for 14 to 21 days starting 7 days after ischemia induc-
tion had higher density of pre-synaptic terminals and faster 
functional recovery that was sustained 4 weeks after cessa-
tion of the treatment [89].

C3aR and Post‑stroke Axonal Plasticity

As a hallmark of CNS regeneration, axonal sprouting and 
plasticity are associated with reactivation of the intrinsic 
neuronal growth program and upregulation of the membrane 
phosphoprotein growth associated protein (GAP)-43 [90]. 



2632 Neurochemical Research (2021) 46:2626–2637

1 3

GAP-43 associates with axonal growth cones, is upregu-
lated during reactive synaptogenesis and is used as marker of 
axonal sprouting and plasticity [91–93]. Astrocyte-derived 
GAP-43 has been shown to promote neuronal survival and 
glial plasticity [94]. The stroke-induced increase in GAP-43 
expression in the peri-infarct region was reduced in mice 
constitutively lacking C3aR, while it was further increased 
when C3a was expressed in reactive astrocytes or adminis-
tered intranasally starting 7 days after stroke [89]. In light 
of the ischemia-induced upregulation of C3 in sprouting 
neurons [95] and the stimulatory effect of C3a on neurite 
outgrowth in vitro [31], these findings implicate C3a-C3aR 
as a contributing factor in post-stroke axonal plasticity.

C3aR and Glial Responses to Ischemia

Given the evidence for the involvement of neuronal C3aR in 
the modulation of synaptic strength and dendritic morphol-
ogy [35], and the role of C3a-C3aR in neural progenitor 
cell differentiation and migration [31], the increase in peri-
infarct neurogenesis, upregulation of expression of GAP-43 
and increased number of pre-synaptic terminals, particularly 
glutamatergic terminals in C3a overexpressing and C3a 
treated mice [80, 89], are arguably at least in part due to a 
direct effect of C3a on neurons. However, given its broad 
expression and the multitude of functions of C3aR in the 
different cell types in the brain (Table 1), the effects of C3a-
C3aR signaling on the plasticity of the post-ischemic brain 
can be also indirect through the modulation of the functions 
of astrocytes, microglia, endothelial cells, stem / progenitor 
cells, and the epithelial cells in the choroid plexus.

Within the first hour after the ischemia onset, microglia 
become activated [96] and the density of activated micro-
glia/macrophages in the periphery of the ischemic lesion 
is increased for several weeks [97]. Astrocytes in the peri-
infarct region change their expression profile [98], prolifer-
ate and form a glial scar that restricts the damaged area and 
prevents the infiltrating leukocytes from spreading into the 
surrounding healthy parenchyma [99–103]. Peri-infarct reac-
tive gliosis persists for at least several weeks [82]. Genetic 
attenuation of reactive gliosis achieved by ablation of genes 
coding for intermediate filament (nanofilament) proteins 
GFAP and vimentin [104–106], markers of astrocyte reac-
tivity [103, 107], led to more pronounced neuronal loss in 
the acute phase after ischemic stroke [99] and after retinal 
ischemia-reperfusion [108], but not in neonatal hypoxic-
ischemic brain injury [109]. Reduced expression of GFAP 
in the peri-infarct cortex was associated with increased 
axonal sprouting and better functional recovery 7 days after 
ischemic stroke [110]. In the post-ischemic brain, astrocytes 
participate in several aspects of remodeling of the neural 
tissue and the peri-infarct networks, such as phagocytic 
clearance of tissue debris, formation of new synapses and 

neurogenesis [111–114]. Our findings that intranasal treat-
ment with C3a improved functional outcome and reduced 
the expression of GFAP and the density of microglia/mac-
rophages in the ipsilesional hippocampus after neonatal 
hypoxic-ischemic brain injury [8], suggest that the protective 
effects of C3a-C3aR signaling in the immature brain may 
be mediated through the modulation of glial responses. The 
functions of C3a-C3aR signaling in the regulation of reac-
tive gliosis in the context of ischemic brain injury in adults 
and a detailed characterization of the impact of C3a-C3aR 
signaling on the phenotypes of reactive astrocytes [115] 
remain to be investigated.

The multiple roles of C3a-C3aR signaling in CNS 
responses to ischemic injury are summarized in Table 2.

C3aR and Neurodegeneration

The complement system is an important driver of age-related 
synapse loss and cognitive decline [116], and a prominent 
factor in neurodegeneration [35, 50, 117–121]. The elimina-
tion of synapses mediated by C3b-CR3 may be re-activated 
in neurodegenerative diseases such as glaucoma [122] and 
Alzheimer’s disease [118]. C3 deficient mice have better 
hippocampus-dependent learning and memory functions 
[123], and are protected from age-related region-specific loss 
of neurons and synapses in the hippocampus, age-related 
cognitive decline [116], and axotomy-induced inhibitory 
synapse removal [124]. In spite of higher amyloid-β plaque 
load, C3 deficient mice were also protected against Alz-
heimer type of neurodegeneration and cognitive decline 
[125]. These results implicate the involvement of the com-
plement system and in particular C3, in amyloid-β clear-
ance and amyloid-β induced synapse elimination. Identical 
or similar mechanisms can operate also in the post-stroke 
brain. Indeed, through a number of mechanisms, including 
impaired perivascular space integrity, reduced efficiency of 
the glymphatic system, inflammation, hypoxia, and blood-
brain barrier dysfunction, stroke can accelerate amyloid-β 
deposition in brain parenchyma, which in turn leads to syn-
aptic dysfunction, cognitive decline and dementia (reviewed 
in [126]).

Neuronal death, reactive gliosis, and axonal degeneration 
occur also after stroke in remote brain regions that were 
not directly affected by the ischemic injury but had synaptic 
connections with neurons in the primary lesion site [127]. 
This so called post-stroke secondary degeneration has been 
linked to neurological deficits such as depression and cogni-
tive impairment [128, 129], and can affect motor function-
related outcome [127]. However, the underlying molecular 
mechanisms are not clear. In murine models of Alzheimer’s 
disease, both neuronal and microglial C3aR signaling has 
been implicated in contributing to neurodegeneration [35, 
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50]. Given that synaptic dysfunction and loss may be the 
initial steps in neurodegeneration [130, 131], studies on the 
involvement of the complement system, C3a-C3aR and in 
particular C3b-CR3 signaling in the elimination of synapses 
in the regions affected by secondary degeneration in the 
post-stroke brain are warranted.

Future Directions

Whereas complement activation, and C3a in particular, can 
contribute to endothelial cell activation, inflammatory cell 
recruitment and tissue injury in the acute phase after cer-
ebral ischemia, C3a-C3aR signaling evidently also supports 
functional recovery by stimulating post-stroke neural plastic-
ity including cell replacement, reorganization of axonal cir-
cuitry, and synaptogenesis. After intranasal administration, 
therapeutic peptides are transported mainly via peri-vascu-
lar bulk flow along the olfactory and trigeminal nerves and 
reach the brain and the cerebrospinal fluid within minutes 
[132]. The findings of the plasticity- and recovery-promoting 
effects of C3a given via this clinically highly feasible and 
non-invasive route are particularly intriguing as the thera-
peutic benefit was achieved when treatment was initiated as 
late as 7 days after stroke. The available data point to intra-
nasal delivery of C3aR agonists in the post-acute phase as 
an attractive approach to improve functional recovery after 
ischemic stroke. Given the lack of functional improvement 
promoting pharmacological therapies in the post-acute and 
chronic phase after stroke, clinical translation of these find-
ings is warranted. The broad therapeutic window would 
allow the majority if not all stroke survivors to benefit from 
such a treatment.
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