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Abstract
Introduction: Working memory is a critical cognitive ability that affects our daily 
functioning and relates to many cognitive processes and clinical conditions. Episodic 
memory	 is	 vital	 because	 it	 enables	 individuals	 to	 form	 and	 maintain	 their	 self-	
identities.	Our	study	analyzes	the	extent	to	which	whole-	brain	functional	connectiv-
ity observed during completion of an N-	back	memory	task,	a	common	measure	of	
working memory, can predict both working memory and episodic memory.
Methods: We	 used	 connectome-	based	 predictive	 models	 (CPMs)	 to	 predict	 502	
Human	 Connectome	 Project	 (HCP)	 participants'	 in-	scanner	 2-	back	 memory	 test	
scores	and	out-	of-	scanner	working	memory	test	(List	Sorting)	and	episodic	memory	
test	(Picture	Sequence	and	Penn	Word)	scores	based	on	functional	magnetic	reso-
nance	imaging	(fMRI)	data	collected	both	during	rest	and	N-	back	task	performance.	
We also analyzed the functional brain connections that contributed to prediction for 
each of these models.
Results: Functional	connectivity	observed	during	N-	back	task	performance	predicted	
out-	of-	scanner	 List	 Sorting	 scores	 and	 to	 a	 lesser	 extent	 out-	of-	scanner	 Picture	
Sequence	scores,	but	did	not	predict	out-	of-	scanner	Penn	Word	scores.	Additionally,	
the	functional	connections	predicting	2-	back	scores	overlapped	to	a	greater	degree	
with	those	predicting	List	Sorting	scores	than	with	those	predicting	Picture	Sequence	
or	Penn	Word	scores.	Functional	connections	with	the	insula,	including	connections	
between	insular	and	parietal	regions,	predicted	scores	across	the	2-	back,	List	Sorting,	
and	Picture	Sequence	tasks.
Conclusions: Our findings validate functional connectivity observed during the N-	
back task as a measure of working memory, which generalizes to predict episodic 
memory to a lesser extent. By building on our understanding of the predictive power 
of N-	back	task	functional	connectivity,	 this	work	enhances	our	knowledge	of	rela-
tionships between working memory and episodic memory.
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1  | INTRODUC TION

Working	memory	is	the	ability	to	retain	a	limited	quantity	of	infor-
mation	and	put	it	to	use	in	cognitive	tasks	(Cowan,	2014).	Our	daily	
functioning relies heavily on working memory, and working mem-
ory	capacity,	a	construct	used	to	connote	differences	in	individuals'	
working	memory	capabilities	(Wilhelm	et	al.,	2013).	Working	mem-
ory capacity is related to other cognitive abilities including problem 
solving	 (Wiley	&	 Jarosz,	 2012),	 reading	 comprehension	 (Daneman	
&	 Carpenter,	 1980),	 reasoning	 (Kyllonen	 &	 Christal,	 1990),	 con-
trolled	 attention	 (Engle	 et	 al.,	 1999),	 and	 fluid	 intelligence	 (Colom	
et	 al.,	 2015).	 Furthermore,	 working	 memory	 capacity	 is	 impaired	
in a number of psychiatric and neurodevelopmental conditions, 
including	 schizophrenia	 (Gold	et	 al.,	 2003,	2006),	 attention	deficit	
disorder	(Alderson	et	al.,	2013),	and	reading	disabilities	(Gathercole	
et	al.,	2006).	Episodic	memory	is	a	form	of	declarative	memory	that	
focuses on the ability to recall events tied to a specific place and 
time	(Dikmen	et	al.,	2014).	This	type	of	memory	is	critical	because	
it	helps	 individuals	build	and	maintain	 their	self-	identities	 (Dikmen	
et	al.,	2014).	To	further	our	understanding	of	relationships	between	
working and episodic memory, our study seeks to determine the ex-
tent to which functional connectivity observed during performance 
of an N-	back	working	memory	task	reflects	individual	differences	in	
both working memory and episodic memory.

In neuroimaging research, the N-	back	task	 is	a	common	test	of	
working	memory	 (Jaeggi	et	al.,	2010).	The	N- back test, first intro-
duced	by	Kirchner	(1958),	targets	memory	by	requiring	participants	
to recognize the item presented n items back. This test is popular be-
cause varying n is an easy way to manipulate working memory loads 
(Jaeggi	 et	 al.,	 2010)	 and	because	 the	 test's	 administration	 and	 re-
sponse	requirements	are	not	overly	complex	(Conway	et	al.,	2003).	
Although the N-	back	 task	 measures	 aspects	 of	 working	 memory,	
work has suggested that performance on this task does not reflect 
working	memory	capacity	alone.	For	example,	Kane	et	al.	(2007)	and	
Jaeggi	et	al.	(2010)	both	found	that	performance	on	the	N-	back	task	
is related to both working memory abilities and fluid intelligence.

Prior studies have found a relationship between working and ep-
isodic	memory.	Lugtmeijer	et	al.	 (2019)	found	a	significant	correla-
tion	(r = .504, p =	.005)	between	the	2-	back	working	memory	test	
scores	and	the	subsequent	episodic	memory	test	scores	of	29	adults	
ages	20–	29.	This	finding	suggests	a	relationship	between	the	N-	back	
test and episodic memory for young adults. Other research also has 
established relationships between individual differences in episodic 
memory	and	working	memory.	Hertzog	et	al.	(2003)	found	that	for	
303	adults	ages	61–	91,	over	6	years,	 changes	 in	episodic	memory	
were significantly correlated with changes in working memory and 
that these shifts could best be explained by changes in induction and 
fact retrieval. In two different experiments that each examined dis-
tinct	sets	of	twenty	individuals	(between	ages	18	and	35)	with	poor	
working	 memory	 capabilities,	 Unsworth	 (2007)	 found	 that	 those	
with lower working memory capacity also experienced deficits in 
episodic retrieval and that these individuals struggle with episodic 
retrieval in part because they search through more items than those 

with	 strong	working	memory	 capacity	 do.	Unsworth	 et	 al.	 (2011),	
which explored how encoding specificity affects the relationship 
between	 an	 individual's	 episodic	 recall	 and	 working	 memory	 ca-
pacity, deduced that the conditions surrounding an episodic recall 
task affect the correlation between performance on the task and 
working	memory	capacity.	For	a	sample	of	11,537	9–	10-	year-	olds,	
Rosenberg,	Martinez,	et	al.	(2020)	found	a	sizable	Spearman	correla-
tion	between	List	Sorting	and	Picture	Sequence	memory	test	scores	
(r =	 .34)	 and	 between	2-	back	 and	Picture	 Sequence	memory	 test	
scores	 (r =	 .31).	We	 use	 2-	back	 and	 List	 Sorting	 scores	 to	 opera-
tionalize	working	memory	and	Picture	Sequence	scores	to	represent	
episodic memory.

Prior work has established that functional connectivity, mea-
sured	by	 functional	magnetic	 resonance	 imaging	 (fMRI)	 scans,	 can	
be an effective metric to predict individual differences in cognitive 
abilities	and	behavior.	Finn	et	al.	(2015)	found	that	every	individual	
has	 a	 unique	 pattern	 of	 functional	 connectivity	 that	 can	 be	mea-
sured either at rest or during a cognitive task. Previous work has 
discovered relationships between functional connectivity and nu-
merous	cognitive	abilities,	such	as	attention	(Rosenberg	et	al.,	2016;	
Yoo	et	al.,	2018),	 impulsivity	(Li	et	al.,	2013),	and	intelligence	(Finn	
et	al.,	2015;	Hearne	et	al.,	2016;	van	den	Heuvel	et	al.,	2009;	Yoo	
et	al.,	2019).	Critically,	functional	connectivity	can	be	used	to	predict	
memory capabilities, as previous work has established relationships 
between	functional	connectivity	and	both	working	memory	(Avery	
et	 al.,	 2020)	 and	 Alzheimer's-	related	 cognitive	 impairment	 (Lin	
et	al.,	2018).	Avery	et	al.	(2020)	found	that	functional	connectivity	
observed during both rest and N-	back	task	performance	predicted	
in-	scanner	2-	back	task	performance.

Building	on	Avery	et	al.	(2020),	we	evaluate	the	extent	to	which	N-	
back task functional connectivity reflects different types of memory by 
measuring how well fMRI data collected during an N-	back	task	predicts	
several	out-	of-	scanner	memory	test	scores.	To	evaluate	whether	these	
trends are specific to N-	back	task	functional	connectivity	or	generalize	
to rest functional connectivity, we also measure how well fMRI data 
collected at rest predicts the same memory test scores. Using Human 
Connectome	Project	(HCP)	fMRI	data	and	memory	test	scores,	we	an-
alyze the extent to which N-	back	task	functional	connectivity	captures	
individual differences in both working memory and episodic memory 
by	 evaluating:	 (a)	 the	 extent	 to	which	 resting-	state	 and	N-	back	 task	
functional	connectivity	can	predict	out-	of-	scanner	List	Sorting,	Picture	
Sequence,	and	Penn	Word	scores,	and	(b)	the	commonalities	between	
the	features	predicting	in-	scanner	2-	back	task	performance	and	those	
predicting	 out-	of-	scanner	 List	 Sorting,	 Picture	 Sequence,	 and	 Penn	
Word memory test performance. Both the N-	back	 and	 List	 Sorting	
(Tulsky	et	al.,	2014)	tests	are	considered	measures	of	working	memory,	
whereas	the	Picture	Sequence	(Dikmen	et	al.,	2014)	and	Penn	Word	
(Gur	et	al.,	2001,	2010)	tests	capture	episodic	memory.	Thus,	we	hy-
pothesize that N-	back	task	functional	connectivity	will	better	predict	
List	Sorting	than	Picture	Sequence	or	Penn	Word	memory	test	scores,	
and	 that	 the	 functional	 connections	 that	predict	2-	back	 task	perfor-
mance will be more similar to those that predict List Sorting scores than 
to	those	that	predict	Picture	Sequence	or	Penn	Word	scores.
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2  | METHODS

2.1 | Data

We obtained rest and N-	back	task	fMRI	data	and	behavioral	task	per-
formance	data	from	the	December	2015	HCP	900-	participant	release	
(Van	Essen	et	al.,	2013).	These	scans	had	a	3T	scanner	magnetic	field,	a	
multiband	factor	(slice	acceleration	factor)	of	8,	no	in-	plane	phase	en-
code acceleration, a spatial resolution of 2 mm isotropic, a 33 ms delay 
between	signal	excitation	and	image	acquisition	time	(echo	time),	and	
a	.72	s	volume	repetition	time	(Uğurbil	et	al.,	2013).	We	used	the	same	
502-	participant	subset	of	this	data	set	as	Avery	et	al.	(2020)	and	thus	
build	on	this	work.	Each	of	these	participants	(mean	age	28	±	3.6	years;	
274	 females)	 completed	 all	 nine	 HCP	 fMRI	 conditions	 and	 across	
these	conditions	had	a	grand	mean	frame-	to-	frame	head	motion	less	
than	.10	mm	and	a	maximum	frame-	to-	frame	motion	less	than	.15	mm	
(Greene	et	al.,	2018).	Head	motion	from	left/right	and	right/left	phase-	
encoding	runs	was	averaged	to	obtain	average	frame-	to-	frame	motion	
for	 each	 fMRI	 task.	 Each	 of	 these	 participants	 also	 had	 2-	back,	 List	
Sorting,	Picture	Sequence,	and	Penn	Word	scores	available	and	was	
not missing any functional atlas nodes or time points. All participants 
provided written consent per the regulations of the following institu-
tions: Washington University in Saint Louis, University of Minnesota, 
Oxford University, Saint Louis University, Indiana University, University 
d'Annunzio,	Ernst	Strüngmann	Institute,	Warwick	University,	Radboud	
University Nijmegen, and Duke University.

BioImage	 Suite	 (Joshi	 et	 al.,	 2011)	 and	minimally	 preprocessed	
HCP	data	(Glasser	et	al.,	2013)	were	used	to	create	functional	con-
nectivity	matrices	that	served	as	input	to	our	connectome-	based	pre-
dictive	models	(CPMs)	(Finn	et	al.,	2015;	Rosenberg	et	al.,	2016;	Shen	
et	al.,	2017).	These	matrices	represent	the	magnitude	of	functional	
connectivity between predefined nodes encompassing the entire 
brain. In generating these connectivity matrices, we first regressed 
a series of nuisance covariates out of the fMRI data, removed the 
linear	 trend,	 and	 performed	 low-	pass	 filtering.	 These	 nuisance	 co-
variates included 12 motion parameters and white matter, cerebral 
spinal	fluid,	and	global	signals.	For	low-	pass	filtering,	data	were	tem-
porally	smoothed	with	a	Gaussian	filter	(mean	= 0, variance = 2.17, 
cutoff	frequency	=	.12	Hz).	We	divided	the	brain	into	268	regions	de-
fined	in	volumetric	space	(Shen	et	al.,	2013)	and	extracted	the	mean	
fMRI signal time series at each of these nodes. We defined regions in 
volumetric space because we wanted to include subcortical regions 
and	replicate	previous	CPM	work,	particularly	Avery	et	al.	(2020)	on	
which	this	study	builds,	that	used	a	volumetric	Shen	268-	node	atlas.	
We obtained connectivity matrix entries by calculating the Pearson 
correlation coefficients between each pair of time series and then 
converting these r-	values	to	z-	values	using	the	Fisher	transform.

We used fMRI data collected both while participants were at 
rest	 and	 while	 they	 performed	 two	 five-	minute	 N-	back	 memory	
task runs. The N-	back	task	required	participants	to	complete	2-	back	
and	0-	back	memory	tests,	each	50%	of	the	time.	Participants	were	
presented with pictures of four different types of stimuli: places, 
tools, faces, and body parts. Each run consisted of eight task blocks 

and four resting fixation blocks. Each task block consisted of a spe-
cific	memory	test	(0-	back	or	2-	back)	for	10	images	of	one	stimulus	
type. Additional details regarding this task can be found in Barch 
et	al.	(2013).

We	examined	individual	variation	in	performance	on	Form	A	of	
the	Penn	Word	memory	test	(Gur	et	al.,	2001,	2010).	This	test	was	
designed to measure verbal episodic memory. Participants were first 
asked to remember 20 words. After 20 minutes, participants were 
given 40 words, which included the 20 original words and 20 new 
words. Participants were asked to guess whether each word was 
new	or	part	of	the	original	set.	We	analyzed	each	participant's	num-
ber of correct responses for this task.

For	 the	 Picture	 Sequence	memory	 test,	we	 quantified	 partici-
pants'	abilities	to	remember	increasingly	long	series	of	pictures	and	
the order in which the pictures were presented. In this National 
Institutes	 of	Health	 (NIH)	 Toolbox	 test	 (Dikmen	 et	 al.,	 2014),	 par-
ticipants were shown a number of pictures and given one point for 
each correctly ordered pair of pictures. Most episodic memory tests 
largely	depend	upon	verbal	skills,	whereas	the	Picture	Sequence	test	
was specifically designed to measure episodic memory in young chil-
dren who lack verbal skills.

For	the	List	Sorting	memory	test	(Tulsky	et	al.,	2014),	we	quantified	
participants'	abilities	to	recall	and	manipulate	sequences	of	pictures.	
Also an NIH Toolbox assessment, this test presented participants with 
increasingly long series of pictures of food and animals. As part of this 
test, participants completed two tasks. In the first task, participants 
were shown pictures of either food or animals and then were asked to 
recall the objects and order them from smallest to largest. In the sec-
ond task, participants were shown pictures of both food and animals 
and then were asked to recall the objects and separately order the 
animal pictures and the food pictures, each based on the size of the 
depicted	objects.	Each	participant's	final	score	was	determined	based	
on the number of correct sorts across both tasks. The List Sorting 
memory	test	is	a	sequencing	task,	a	task-	type	which	has	proven	suc-
cessful	in	measuring	working	memory	in	many	previous	works	(Gold	
et	al.,	1997;	Mungas	et	al.,	2000;	Tulsky	et	al.,	2003;	Wechsler,	1997).

2.2 | Measuring the similarity between 
memory tests

We	 calculated	 correlations	 between	 participants'	 performance	 on	
different memory tests to verify whether the CPM and functional 
anatomy analyses reflect inherent similarities between memory tests. 
We	calculated	the	correlations	between	each	pair	of	observed	2-	back,	
Penn	Word,	Picture	Sequence,	and	List	Sorting	scores.	For	each	of	
these correlations, we reported a parametric p-	value.	Using	Steiger's	
z-	tests	to	compare	pairs	of	correlations,	we	evaluated	whether	2-	back	
task performance was more closely related to List Sorting test per-
formance	than	to	Picture	Sequence	or	Penn	Word	test	performance.	
To correct for multiple comparisons, for each p-	value	 in	 both	 our	
Steiger's	z-	test	and	CPM	analyses,	we	applied	a	Bonferroni	correction	
to	the	original	significance	threshold	(p <	.05).
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2.3 | Connectome- based predictive modeling

Using	the	R	programming	language	(version	3.4.4),	for	both	rest	and	
N-	back	task	functional	connectivity,	we	constructed	four	CPMs	to	
predict	the	2-	back,	List	Sorting,	Picture	Sequence,	and	Penn	Word	
memory test scores of the 502 examined HCP participants. We per-
formed this analysis with rest functional connectivity to determine 
whether the patterns of results observed for N-	back	task	functional	
connectivity analysis generalized to functional connectivity ob-
served	in	the	absence	of	an	explicit	task.	We	predicted	participants'	
performance	on	only	the	2-	back	memory	test	portion	of	the	N-	back	
task	because	the	2-	back	test	(mean	accuracy	=	84.7%,	standard	de-
viation of accuracy =	 10.4%)	 taxes	working	memory	more	heavily	
than	 does	 the	 0-	back	 test	 (mean	 accuracy	=	 91.4%,	 standard	 de-
viation of accuracy =	10.1%).	The	2-	back	and	List	Sorting	tasks	are	
considered working memory measures, whereas the Penn Word and 
Picture	 Sequence	 tasks	 target	 episodic	 memory.	 Thus,	 predicting	
these memory test scores based on fMRI data collected during an N-	
back task allowed us to characterize the extent to which functional 
connectivity measured during an N-	back	task	captures	both	working	
and episodic memory.

CPM,	 a	 type	of	 recently	developed	brain-	based	prediction	 ap-
proach,	 identifies	 key	 connections	 from	 whole-	brain	 functional	
connectivity and uses these connections to predict variation in a 
behavior	 or	 trait	 across	 participants	 (Finn	 et	 al.,	 2015;	 Rosenberg	
et	al.,	2016;	Shen	et	al.,	2017).	For	our	study,	the	predicted	behav-
ior	was	performance	on	a	memory	test	(2-	back,	Penn	Word,	Picture	
Sequence,	or	List	Sorting).	For	each	type	of	functional	connectivity	
(rest	and	N-	back	task),	we	constructed	separate	CPMs	for	each	of	
the four memory tests examined.

The first step in training our CPMs was edge selection, or iden-
tification of the specific functional connections that were most re-
lated to behavior in the training sample. We selected connections 
that	were	either	positively	or	negatively	correlated	(at	a	.01	p-	value	
threshold)	 with	 the	 measured	 behavior.	 In	 selecting	 connectivity	
features,	we	used	a	partial	correlation	to	control	for	participants'	av-
erage	frame-	to-	frame	head	motion.	 In	other	words,	during	 feature	
selection, we correlated the strength of every connection with be-
havior	 in	 the	 training	 sample,	 controlling	 for	 frame-	to-	frame	head	
motion.

Our edge selection step allowed us to create what we define as 
a mask, the set of edges, or connections between brain nodes, that 
are significantly correlated with the examined behavior. Edges sig-
nificantly positively correlated with behavior constituted what we 
call the positive mask, and edges significantly negatively correlated 
with	behavior	comprised	the	negative	mask.	For	each	training	data	
set participant, we then computed the mean positive mask edge 
weight and the mean negative mask edge weight by averaging the 
strengths of the positive mask edges and negative mask edges for 
that	particular	participant.	Using	the	R	MASS	package's	“rlm”	func-
tion	 (Venables	&	Ripley,	2002),	we	built	 a	 robust	 linear	 regression	
with	a	bisquare	weighting	function	to	relate	memory	test	scores	to	
the difference between average positive mask and average negative 

mask	edge	weights	in	the	training	set.	For	model	validation,	we	used	
the	training	data	set's	positive	and	negative	masks	to	calculate	this	
input for testing data set participants. We then input these values 
into the trained robust linear regression to predict the behavior of 
each testing data set participant. Of note, positive and negative net-
works were defined separately to allow us to interpret the anatomy 
of networks positively and negatively related to behavioral scores. 
Including collinear predictors in a regression model can cause model 
parameter	estimates	to	be	unreliable	(Alin,	2010).	To	avoid	collinear	
predictors,	a	single	value	(mean	connectivity	strength	in	the	positive	
network	minus	mean	connectivity	strength	in	the	negative	network)	
was input into the linear model to generate behavioral predic-
tions,	as	described	in	previous	work	(Avery	et	al.,	2020;	Rosenberg,	
Scheinost,	et	al.,	2020).

We measured the ability of the N-	back	task	functional	connec-
tivity to predict each score by calculating the correlations between 
CPM-	predicted	 and	 observed	 Penn	Word,	 Picture	 Sequence,	 and	
List	Sorting	scores,	and	the	correlations	between	CPM-	predicted	2-	
back	 scores	and	observed	Penn	Word,	Picture	Sequence,	 and	List	
Sorting scores. We similarly evaluated the extent to which fMRI scan 
data	collected	at	rest	predicted	List	Sorting,	Picture	Sequence,	and	
Penn Word scores.

We	trained	and	tested	our	CPMs	using	10-	fold	cross-	validation.	
For	 each	 combination	 of	 functional	 connectivity	 (rest	 and	N-	back	
task)	and	memory	test	score	(2-	back,	List	Sorting,	Picture	Sequence,	
and	Penn	Word),	we	ran	1,000	iterations	of	10-	fold	cross-	validation	
in	order	to	obtain	reliable	estimates	of	CPM	performance.	For	each	
iteration,	we	divided	participants	into	10	roughly	equal	folds,	ensur-
ing that members of the same family were in the same fold. In gen-
erating these folds, we first randomly assigned each family to a fold. 
If	any	fold	had	more	than	60	participants,	we	moved	all	members	of	
the	largest	fold's	largest	family	to	the	smallest	fold.	We	repeated	this	
process	until	we	had	no	folds	with	more	than	60	participants.	We	
predicted	the	memory	test	scores	of	each	fold's	participants	using	
a	CPM	trained	on	 the	other	nine	 folds	of	data.	For	a	particular	 it-
eration,	the	same	10-	fold	cross-	validation	split	was	used	for	CPMs	
predicting	2-	back,	Penn	Word,	Picture	 Sequence,	 and	 List	 Sorting	
scores. In evaluating CPM performance, we reported average cor-
relations	between	CPM-	predicted	and	observed	scores	across	1,000	
iterations	of	10-	fold	cross-	validation.	To	calculate	a	non-	parametric	
p-	value	for	every	average	correlation,	we	ran	1,000	iterations	of	10-	
fold	cross-	validation	null	CPM	models	for	each	functional	connectiv-
ity/memory test score pair. We defined a null CPM model as a CPM 
for which the order of participant connectivity matrices remained 
the	same,	but	the	memory	test	scores	were	randomly	shuffled.	For	a	
particular	iteration,	the	same	10-	fold	cross-	validation	split	was	used	
for	null	CPMs	predicting	2-	back,	Penn	Word,	Picture	Sequence,	and	
List Sorting memory test scores. We calculated null correlations, 
which	were	correlations	between	null	CPM-	predicted	and	observed	
memory	 test	 scores.	 For	 each	 actual	 model	 average	 correlation,	
the p-	value	was	calculated	as	p =	 (1	+ the number of null correla-
tions	greater	than	or	equal	to	the	actual	model	average	correlation)/
(1	+	the	total	number	of	iterations).
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For	both	rest	and	N-	back	task	functional	connectivity,	we	tested	
whether predictive power for List Sorting scores was statistically 
different	from	predictive	power	for	Picture	Sequence	or	Penn	Word	
scores.	For	each	of	the	two	metrics	of	CPM	performance	(correlations	
between	predicted	and	observed	Penn	Word,	Picture	Sequence,	and	
List	Sorting	 scores,	 and	correlations	between	predicted	2-	back	and	
observed	Penn	Word,	Picture	Sequence,	and	List	Sorting	scores),	we	
separately	evaluated	these	differences.	For	each	combination	of	func-
tional connectivity type and CPM performance metric, we separately 
examined	the	distribution	of	the	differences	between	each	iteration's	
List	Sorting	and	Picture	Sequence	correlations	and	the	distribution	of	
the	differences	between	each	iteration's	List	Sorting	and	Penn	Word	
correlations. Each of these distributions contained 1,000 correlation 
differences	from	1,000	iterations.	For	each	distribution	of	correlation	
differences,	we	performed	a	t-	test	to	determine	whether	this	distribu-
tion was significantly different from the distribution of the differences 
between the null model correlations for the same memory test scores. 
For	example,	 for	CPMs	with	N-	back	 task	 functional	connectivity	as	
input,	we	compared:	(a)	the	distribution	of	the	differences	of	the	cor-
relations	between	CPM-	predicted	and	observed	List	Sorting	scores	
minus	the	correlations	between	CPM-	predicted	and	observed	Picture	
Sequence	scores	to	(b)	the	distribution	of	the	differences	of	the	cor-
relations	 between	 null	 CPM-	predicted	 and	 observed	 List	 Sorting	
scores	minus	the	correlations	between	null	CPM-	predicted	and	ob-
served	 Picture	 Sequence	 scores.	 Through	 these	 analyses,	 for	 both	
rest and N-	back	task	functional	connectivity,	we	determined	whether	
the difference in the ability of the connectivity matrices to predict one 
memory test versus another was statistically significant.

2.4 | Analyzing the functional anatomy of 
predictive networks

To	characterize	the	connections	used	by	2-	back,	Penn	Word,	Picture	
Sequence,	and	List	Sorting	models,	we	analyzed	the	edges	between	
each	pair	of	268	brain	nodes	(Shen	et	al.,	2013)	used	to	predict	each	
memory	test	score.	For	each	combination	of	functional	connectivity	
(rest	and	N-	back	task)	and	memory	test	score	(2-	back,	List	Sorting,	
Picture	Sequence,	and	Penn	Word),	we	trained	a	CPM	on	data	from	
all 502 participants and tracked the identified predictive positive 
mask and predictive negative mask connectivity features.

To measure the similarity between the predictive positive mask 
connectivity	features	of	the	2-	back	and	those	of	each	other	mem-
ory test score, we calculated the percentage of overlapping edges 
between	the	positive	mask	used	to	predict	the	2-	back	score	and	the	
positive mask used to predict each other score. Similarly, we calcu-
lated the percentage of overlapping edges between the predictive 
negative	masks	of	the	2-	back	and	each	other	memory	test	score.

Additionally, based on results from the CPM trained on data 
from all 502 participants, we visualized the functional connections 
that	predicted	each	memory	test	score.	We	grouped	the	268	brain	

nodes	(Shen	et	al.,	2013)	 into	8	functional	canonical	networks	and	
10 anatomic macroscale brain regions. Each connection between ca-
nonical networks and each connection between macroscale regions 
consisted	of	many	edges	between	these	268	brain	nodes.	Canonical	
networks	were	defined	as	in	Finn	et	al.	(2015)	and	included	the	de-
fault mode, subcortical cerebellum, frontoparietal, motor, medial 
frontal,	visual	association,	VI,	and	VII.	The	selected	macroscale	re-
gions were a variety of cortical and subcortical brain regions, includ-
ing the prefrontal cortex, motor cortex, insula, parietal, temporal, 
occipital, limbic, cerebellum, subcortical, and brainstem.

For	each	combination	of	functional	connectivity	(rest	and	N-	back	
task)	and	memory	test	score	(2-	back,	Penn	Word,	Picture	Sequence,	
and	List	Sorting),	we	visualized	 the	contribution	of	each	canonical	
network and macroscale region to predictive networks. Additionally, 
for both rest and N-	back	task	functional	connectivity,	we	visualized	
the	connections	that	consistently	predicted	2-	back,	List	Sorting,	and	
Picture	Sequence	scores—	that	is,	the	connections	that	predicted	all	
three of these measures of memory.

2.5 | Controlling for age in connectome- based 
predictive modeling

To test whether controlling for age, a potential confounding factor 
(Small,	2001),	altered	results,	we	performed	analyses	with	the	HCP's	
age-	adjusted	versions	of	two	types	of	memory	test	scores.	The	HCP	
provided	 age-	adjusted	 versions	of	 both	 the	Picture	 Sequence	 and	
List	 Sorting	 scores,	 but	 not	 the	Penn	Word	or	2-	back	 scores.	 The	
memory	 test	 scores	 for	which	 the	HCP	 offered	 age-	adjusted	 ver-
sions	were	NIH	Toolbox	scores,	which	were	age-	adjusted	using	NIH	
Toolbox	normative	data	(Barch	et	al.,	2013).	As	the	Penn	Word	and	
2-	back	scores	are	not	NIH	Toolbox	scores,	equivalent	normative	data	
were	not	available,	preventing	us	from	generating	age-	adjusted	ver-
sions of these scores. We calculated the correlations between each 
pair	of	observed	2-	back,	Penn	Word,	age-	adjusted	List	Sorting,	and	
age-	adjusted	Picture	Sequence	scores.	We	completed	both	CPM	and	
functional	anatomy	analyses	for	the	age-	adjusted	Picture	Sequence	
and	age-	adjusted	List	Sorting	scores.	These	analyses	were	compara-
ble to those completed for the unadjusted versions of these scores.

3  | RESULTS

3.1 | Measuring the similarity between memory 
tests

3.1.1 | Comparing	correlations	between	2-	back	and	
other observed memory test scores

For	 the	 studied	 HCP	 participants,	 we	 determined	 that	 the	 corre-
lation	 between	 the	 observed	 2-	back	 and	 List	 Sorting	 scores	 was	
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greater	than	both	the	correlation	between	the	observed	2-	back	and	
Penn	Word	scores	and	the	correlation	between	the	observed	2-	back	
and	Picture	Sequence	scores	(see	Table	1).	At	a	p < .05 significance 
level	 corrected	 for	 multiple	 comparisons,	 Steiger's	 z-	tests	 (using	
two-	sided	p-	values)	 found	that	these	differences	were	statistically	
significant	for	both	the	List	Sorting/Penn	Word	comparison	(z = 3.2 
and p =	1.3e−3)	and	the	List	Sorting/Picture	Sequence	comparison	
(z = 2.4 and p =	1.7e−2).	When	we	examined	age-	adjusted	Picture	
Sequence	and	age-	adjusted	List	Sorting	scores,	for	the	same	signifi-
cance	threshold,	the	correlation	between	the	2-	back	and	List	Sorting	
scores	was	significantly	greater	than	the	correlation	between	the	2-	
back and Penn Word scores and marginally significantly greater than 
the	 correlation	 between	 the	 2-	back	 and	 Picture	 Sequence	 scores	
(see	Tables	S1	and	S2).

3.1.2 | Evaluating	the	correlations	between	observed	
List	Sorting,	Picture	Sequence,	and	Penn	Word	
memory test scores

To identify the overlap in represented constructs across the memory 
tests, we evaluated the correlations between each pair of observed 
List	Sorting,	Picture	Sequence,	and	Penn	Word	memory	test	scores.	
We found a relatively large correlation between the observed List 
Sorting	and	Picture	Sequence	scores	 (r = .30, p = 6.2e−12),	 and	a	
much smaller correlation between the observed List Sorting and 
Penn	Word	scores	(r =	.09,	p =	4.5e−2)	(see	Table	1).	The	correlation	
between	the	observed	Picture	Sequence	and	Penn	Word	memory	

test	scores	(r = .20, p =	4.1e−6),	the	two	episodic	memory	measures,	
was	relatively	small	(see	Table	1).	The	correlations	between	the	Penn	
Word,	age-	adjusted	Picture	Sequence,	and	age-	adjusted	List	Sorting	
scores were relatively similar to those between all unadjusted scores 
(see	Table	S1).

3.2 | Analyzing connectome- based predictive 
models predicting different memory test scores

3.2.1 | Evaluating	model	performance	for	different	
memory test scores

We examined two different metrics of CPM performance: cor-
relations between predicted and observed Penn Word, Picture 
Sequence,	 and	 List	 Sorting	 scores,	 and	 correlations	 between	 pre-
dicted	2-	back	and	observed	Penn	Word,	Picture	Sequence,	and	List	
Sorting scores.

Using N-	back	task	connectivity	matrices	as	input,	CPMs	signifi-
cantly	 predicted	 List	 Sorting	 (working	 memory)	 scores,	 and	 mar-
ginally	predicted	Picture	Sequence	 (episodic	memory)	 scores.	At	a	
p < .05 significance level corrected for multiple comparisons, we 
observed	a	significant	correlation	between	the	CPM-	predicted	and	
observed List Sorting scores and a marginally significant correlation 
between	the	CPM-	predicted	and	observed	Picture	Sequence	scores	
(see	Table	2	and	Figure	1).	At	 the	 same	significance	 level,	we	saw	
significant	correlations	between	the	CPM-	predicted	2-	back	scores	
and	both	the	observed	Picture	Sequence	scores	and	the	observed	

Penn Word
Picture 
Sequence List Sorting

2-	back .20	(p =	5.2e−6) .27	(p =	1.4e−9) .38	(p <	2.2e−16)

Penn Word —	 .20	(p =	4.1e−6) .09	(p =	4.5e−2)

Picture	Sequence —	 —	 .30	(p =	6.2e−12)

Note: The	correlations	between	the	observed	2-	back,	Penn	Word,	Picture	Sequence,	and	List	
Sorting	memory	test	scores	of	the	502	examined	Human	Connectome	Project	(HCP)	participants.

TA B L E  1   Correlations between 
observed memory test scores

TA B L E  2   Correlations between predicted and observed memory test scores

Training & test 
behavior

Models trained and tested using resting- state functional 
connectivity

Models trained and tested using N- back task functional 
connectivity

Mean
r- value

Standard deviation
r- value p- value

Mean
r- value

Standard deviation
r- value p- value

2-	back .20a  1/1,001a  .36a  1/1,001a 

Penn Word −.02 .02 .62 .05 .03 .24

Picture	Sequence .07 .02 .15 .11 .02 3.5e−2

List Sorting .10 .02 4.8e−2 .24 .01 1.0e−3

Note: The	correlations	between	the	predicted	and	observed	Penn	Word,	Picture	Sequence,	and	List	Sorting	memory	test	scores	of	the	502	examined	
Human	Connectome	Project	(HCP)	participants.
aThese	numbers	were	taken	from	Avery	et	al.	(2020),	which	for	the	same	set	of	subjects	as	our	work,	used	the	same	rest	and	N-	back	task	functional	
connectivity	and	10-	fold	cross-	validation	to	predict	2-	back	memory	test	scores.
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List	Sorting	scores	 (see	Table	3	and	Figure	1).	Neither	the	correla-
tion	between	the	CPM-	predicted	and	observed	Penn	Word	(episodic	
memory)	scores	nor	the	correlation	between	the	CPM-	predicted	2-	
back	and	observed	Penn	Word	scores	were	significant	(see	Tables	2	
and	3	and	Figure	1).

For	List	Sorting	and	Picture	Sequence	memory	test	score	predic-
tion,	the	results	of	the	resting-	state	functional	connectivity	models	
did not fully replicate those of the N-	back	task	functional	connec-
tivity models, but both rest and N-	back	task	functional	connectivity	
poorly	predicted	Penn	Word	scores	(see	Tables	2	and	3	and	Figure	1).	

F I G U R E  1  Histograms	comparing	correlations	between	predicted	and	observed	memory	test	scores	for	actual	and	null	connectome-	
based	predictive	models.	For	both	rest	and	N-	back	task	functional	connectivity	and	for	iterations	of	both	actual	and	null	connectome-	based	
predictive	models	(CPMs),	each	of	the	1,000	correlations	between	predicted	and	observed	Penn	Word,	Picture	Sequence,	and	List	Sorting	
scores	and	each	of	the	1,000	correlations	between	predicted	2-	back	and	observed	Penn	Word,	Picture	Sequence,	and	List	Sorting	scores.
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Whereas N-	back	task	functional	connectivity	predicted	List	Sorting	
scores	and	marginally	predicted	Picture	Sequence	scores,	rest	func-
tional connectivity marginally predicted List Sorting scores and did 
not	significantly	predict	Picture	Sequence	scores.

The rest and N-	back	task	functional	connectivity	analyses	that	
used	age-	adjusted	List	Sorting	and	age-	adjusted	Picture	Sequence	
scores demonstrated similar trends to the comparable analyses that 
used	the	unadjusted	versions	of	these	scores	(see	Tables	S3	and	S4	
and	Figure	S1).	Overall,	these	results	suggest	that	N-	back	task	func-
tional connectivity captures not only working memory, but also epi-
sodic memory capabilities.

3.2.2 | Comparing	model	performance	for	different	
memory test scores

Our t-	tests	supported	the	hypothesis	that	at	a	p < .05 significance 
level corrected for multiple comparisons, N-	back	task	functional	
connectivity predicted List Sorting scores significantly better than 
it	predicted	Picture	Sequence	or	Penn	Word	scores	(see	Tables	4	
and	5	and	Figure	S2).	For	both	metrics	of	CPM	performance	and	
for comparisons of List Sorting correlations both to Penn Word 
correlations	and	to	Picture	Sequence	correlations,	each	t-	test	pro-
duced a p-	value	that	was	less	than	2.2e−16.	For	each	comparison,	
the	 97.5%	 confidence	 interval	 contrasting	 the	 difference	 distri-
bution and its corresponding null difference distribution did not 
contain 0.

Rest functional connectivity comparison analyses produced 
different results from the comparable N-	back	 task	 analyses	 (see	
Tables	4	and	5	and	Figure	S2).	For	example,	 for	N-	back	 task	 func-
tional	connectivity,	the	correlation	between	predicted	2-	back	scores	
and observed List Sorting scores was significantly stronger than the 
correlation	 between	 CPM-	predicted	 2-	back	 scores	 and	 observed	
Picture	Sequence	scores.	In	contrast,	for	rest	functional	connectiv-
ity,	the	correlation	between	predicted	2-	back	scores	and	observed	
Picture	 Sequence	 scores	 was	 significantly	 stronger	 than	 the	 cor-
relation	between	predicted	2-	back	scores	and	observed	List	Sorting	
scores.

The rest and N-	back	 task	 comparison	 analyses	 that	 used	 age-	
adjusted	 List	 Sorting	 and	 age-	adjusted	 Picture	 Sequence	 scores	
achieved	similar	results	(see	Tables	S5	and	S6	and	Figure	S3).

3.3 | Analyzing the functional anatomy of models 
predicting different memory test scores

3.3.1 | Measuring	the	percentage	of	overlapping	
edges	used	to	predict	2-	back	and	other	memory	
test scores

For	both	 rest	and	N-	back	 task	connectivity	matrices,	our	analyses	
of the functional anatomy of our CPMs found that the connections 
used	in	2-	back	score	prediction	were	most	similar	to	those	used	in	
List Sorting score prediction, second most similar to those used in 

TA B L E  3  Correlations	between	predicted	2-	back	and	other	observed	memory	test	scores

Observed behavior

Models trained and tested using resting- state 
functional connectivity

Models trained and tested using N- back task functional 
connectivity

Mean
r- value

Standard deviation
r- value p- value

Mean
r- value

Standard deviation
r- value p- value

Penn Word .02 .01 .31 −1.6e−3 7.4e−3 .51

Picture	Sequence .09 .01 2.5e−2 .12 .01 3.0e−3

List Sorting .05 .01 .11 .21 .01 1.0e−3

Note: The	correlations	between	the	predicted	2-	back	and	the	observed	Penn	Word,	Picture	Sequence,	and	List	Sorting	memory	test	scores	of	the	
502	examined	Human	Connectome	Project	(HCP)	participants.

TA B L E  4   Comparing correlations between predicted and observed memory test scores

Training & test 
behaviors

Models trained and tested using resting- state functional 
connectivity

Models trained and tested using N- back task functional 
connectivity

t- value p- value
97.5% confidence 
interval t- value p- value

97.5% confidence 
interval

Penn Word/List Sorting 37.5 <2.2e−16 (.11,	.13) 58.6 <2.2e−16 (.18,	.20)

Picture	Sequence/List	
Sorting

9.6 <2.2e−16 (.02,	.04) 42.8 <2.2e−16 (.12,	.13)

Note: The t-	test	results	for	comparing	difference	distributions	for	the	correlations	between	predicted	and	observed	memory	test	scores	to	the	
corresponding	null	difference	distributions.	Each	actual	and	each	null	difference	distribution	equals	a	distribution	of	correlations	between	predicted	
and	observed	List	Sorting	scores	minus	correlations	between	predicted	and	observed	Picture	Sequence	or	Penn	Word	scores.	Thus,	a	significant	
positive t-	value	indicates	that	List	Sorting	scores	were	predicted	significantly	better	than	Picture	Sequence	or	Penn	Word	scores.	A	significant	
negative t-	value	indicates	that	Picture	Sequence	or	Penn	Word	scores	were	predicted	significantly	better	than	List	Sorting	scores.
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Picture	Sequence	score	prediction,	and	 least	similar	 to	 those	used	
in	Penn	Word	score	prediction.	For	both	rest	and	N- back task func-
tional connectivity and for both positive and negative masks, the 
percentage of overlapping significant edges between masks was 
largest	for	the	2-	back	and	List	Sorting	masks,	second	largest	for	the	
2-	back	and	Picture	Sequence	masks,	and	smallest	for	the	2-	back	and	
Penn	Word	masks	(see	Table	6).	Our	identical	analyses	that	used	age-	
adjusted	rather	than	unadjusted	Picture	Sequence	and	List	Sorting	
scores	exhibited	similar	results	(see	Table	S7).

3.3.2 | Examining	the	brain	connections	used	to	
predict each memory test score

Figures	2	and	3	provide	insight	into	the	N-	back	task	functional	con-
nections	 predicting	 performance	 on	 all	 three	 of	 the	 2-	back,	 List	
Sorting,	 and	 Picture	 Sequence	 tasks.	 Figure	 2	 separately	 visual-
izes the N-	back	task	functional	connections	significantly	related	to	
each	memory	test	score.	For	both	rest	and	N-	back	task	functional	
connectivity,	Figure	3	visualizes	 the	connections	 that	significantly	
predicted	 all	 three	 of	 2-	back,	 List	 Sorting,	 and	 Picture	 Sequence	
scores. N-	back	task	functional	connectivity	at	 least	marginally	sig-
nificantly	predicted	all	 three	of	these	scores.	Thus,	Figure	3	helps	
us understand which connections contribute to memory capabili-
ties that are shared across these tasks. The N-	back	task	functional	

connectivity	 plots	 in	 Figure	 3	 and	 the	 plots	 in	 Figure	 2	 (2-	back:	
column	1,	List	Sorting:	column	2,	and	Picture	Sequence:	column	3)	
illustrate an involvement of connections with the insula, including 
connections between insular and parietal regions, and between in-
sular	and	motor	regions.	Figure	4	separately	visualizes	the	rest	func-
tional connections significantly related to each memory test score. 
The	 rest	 functional	 connectivity	 plots	 in	 Figures	 3	 and	 4	 suggest	
that the predictive models based on rest functional connectivity do 
not all share these connections employed by the N-	back	functional	
connectivity	models.	For	plots	showing	age-	adjusted	versions	of	the	
Picture	Sequence	and	List	Sorting	scores	produce	similar	trends,	see	
Figures	S4,	S5,	and	S6.

4  | DISCUSSION

In analyzing the extent to which N-	back	task	functional	connectiv-
ity reflects different types of memory, we found that N-	back	 task	
functional connectivity predicts individual performance on another 
working memory measure, and, to a lesser extent, on an episodic 
memory	measure.	Furthermore,	insular	and	parietal	functional	con-
nectivity observed during N-	back	task	performance	predicted	both	
working and episodic memory. Together, these findings advance our 
understanding of relationships between working memory and epi-
sodic memory.

TA B L E  5  Comparing	correlations	between	predicted	2-	back	and	other	observed	memory	test	scores

Observed behaviors

Models trained and tested using resting- state functional 
connectivity

Models trained and tested using N- back task 
functional connectivity

t- value p- value 97.5% confidence interval t- value p- value
97.5% confidence 
interval

Penn Word/List Sorting 15.7 <2.2e−16 (.03,	.04) 109.1 <2.2e−16 (.21,	.22)

Picture	Sequence/List	
Sorting

−21.3 <2.2e−16 (−.04,	−.03) 52.9 <2.2e−16 (.09,	.10)

Note: The t-	test	results	for	comparing	difference	distributions	for	the	correlations	between	predicted	2-	back	and	other	observed	memory	test	scores	
to	the	corresponding	null	difference	distributions.	Each	actual	and	each	null	difference	distribution	equals	a	distribution	of	correlations	between	
predicted	2-	back	and	observed	List	Sorting	scores	minus	correlations	between	predicted	2-	back	and	observed	Picture	Sequence	or	Penn	Word	
scores. Thus, a significant positive t-	value	indicates	that	CPM-	predicted	2-	back	scores	are	significantly	more	similar	to	observed	List	Sorting	scores	
than	to	observed	Picture	Sequence	or	Penn	Word	scores.	A	significant	negative	t-	value	indicates	that	CPM-	predicted	2-	back	scores	are	significantly	
more	similar	to	observed	Picture	Sequence	or	Penn	Word	scores	than	to	observed	List	Sorting	scores.

TA B L E  6  Functional	anatomy	similarity	metric	values

Training behaviors

Models trained using resting- state functional 
connectivity

Models trained using N- back task functional 
connectivity

Positive mask
percentage of 
overlapping edges

Negative mask
percentage of 
overlapping edges

Positive mask
percentage of 
overlapping edges

Negative mask
percentage of 
overlapping edges

2-	back/Penn	Word .04 .03 .06 .06

2-	back/Picture	Sequence .13 .10 .23 .20

2-	back/List	Sorting .17 .11 .71 .50

Note: For	both	positive	and	negative	masks,	the	percentage	of	overlapping	edges	between	the	mask	of	significant	edges	used	to	predict	the	2-	back	
score and the mask used to predict each other score. Larger percentages indicate greater similarity.
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4.1 | Analyzing the predictive power of rest and 
N- back task functional connectivity for different 
memory test scores

Functional	connectivity	observed	during	N-	back	task	performance	
predicted individual differences in both working memory, measured 

with List Sorting memory test scores, and episodic memory, measured 
with	Picture	Sequence	memory	test	scores,	but	predicted	individual	
differences in working memory significantly better. The finding that 
the	 correlation	 between	 observed	 2-	back	 and	 List	 Sorting	 scores	
was	significantly	greater	than	the	correlation	between	observed	2-	
back	and	Picture	Sequence	scores,	as	well	as	the	sizable	correlation	

F I G U R E  2   N-	back	task	functional	connections	predicting	each	memory	test	score.	N-	back	task	functional	connectivity	positively	(red)	
and	negatively	(blue)	significantly	related	to	each	memory	test	score	is	grouped	into	canonical	networks	(top)	and	macroscale	regions	
(bottom).	Cells	are	shaded	according	to	the	percentage	of	all	possible	edges	within	a	network/region	or	between	a	pair	of	networks/
regions	significantly	related	to	performance	on	the	task	of	interest	(from	left	to	right,	2-	back,	List	Sorting,	Picture	Sequence,	or	Penn	Word).	
Canonical	networks	include	the	default	mode	(DM),	subcortical	cerebellum	(SubC),	frontoparietal	(FP),	motor	(MT),	medial	frontal	(MF),	
visual	association	(VA),	VI,	and	VII.	Macroscale	regions	include	the	prefrontal	cortex	(Pfc),	motor	cortex	(Mot),	insula	(Ins),	parietal	(Par),	
temporal	(Tmp),	occipital	(Occ),	limbic	(Lmb),	cerebellum	(Crb),	subcortical	(Sub),	and	brainstem	(Bsm).

2-back List Sorting Picture Sequence Penn Word
C

an
on

ic
al

N
et

w
or

k

P
os

it
iv

el
y

C
or

re
la

te
d

w
it

h
B

eh
av

io
r

N
eg

at
iv

el
y

C
or

re
la

te
d

w
it

h
B

eh
av

io
r

M
ac

ro
sc

al
e

R
eg

io
n

P
os

it
iv

el
y

C
or

re
la

te
d

w
it

h
B

eh
av

io
r

N
eg

at
iv

el
y

C
or

re
la

te
d

w
it

h
B

eh
av

io
r



     |  11 of 16STARK eT Al.

F I G U R E  3  Functional	connections	predicting	scores	on	the	2-	back,	List	Sorting,	and	Picture	Sequence	tasks.	For	each	functional	
connection within a canonical network/macroscale region or between a pair of networks/regions, shading indicates the percentage of all 
possible	rest	(top)	and	N-	back	task	(bottom)	edges	that	positively	(red)	and	negatively	(blue)	significantly	predict	performance	across	the	2-	
back,	List	Sorting,	and	Picture	Sequence	tasks.	This	figure	examines	the	edges	that	significantly	predicted	all	three	of	these	scores,	exploring	
which	connections	contribute	to	memory	capabilities	that	are	shared	across	these	tasks.	Glass	brain	plots	(right)	illustrate	macroscale	region	
connections	that	positively	(red)	and	negatively	(blue)	predict	behavior	across	all	three	tasks.	Canonical	networks	include	the	default	mode	
(DM),	subcortical	cerebellum	(SubC),	frontoparietal	(FP),	motor	(MT),	medial	frontal	(MF),	visual	association	(VA),	VI,	and	VII.	Macroscale	
regions	include	the	prefrontal	cortex	(Pfc),	motor	cortex	(Mot),	insula	(Ins),	parietal	(Par),	temporal	(Tmp),	occipital	(Occ),	limbic	(Lmb),	
cerebellum	(Crb),	subcortical	(Sub),	and	brainstem	(Bsm).
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between	observed	List	 Sorting	 and	Picture	Sequence	 scores,	 sug-
gest	that	the	results	of	these	predictive	analyses	reflect	behavioral-	
level trends. The differences between the results of rest and N-	back	
task functional connectivity predictive analyses suggest that rest 
functional	 connectivity's	 predictive	 power	 for	 these	memory	 test	
scores differs from that of N-	back	task	functional	connectivity.	Our	

N-	back	task	functional	connectivity	results	demonstrate	specificity,	
supporting the hypothesis that functional connectivity observed as 
a particular cognitive process is taxed may best predict that process 
(Finn	et	al.,	2017).	These	results	also,	however,	demonstrate	general-
izability, in that N-	back	task	functional	connectivity	reflects,	to	some	
degree, episodic memory abilities.

F I G U R E  4  Rest	functional	connections	predicting	each	memory	test	score.	Rest	functional	connectivity	positively	(red)	and	negatively	
(blue)	significantly	related	to	each	memory	test	score	is	grouped	into	canonical	networks	(top)	and	macroscale	regions	(bottom).	Cells	are	
shaded according to the percentage of all possible edges within a network/region or between a pair of networks/regions significantly related 
to	performance	on	the	task	of	interest	(from	left	to	right,	2-	back,	List	Sorting,	Picture	Sequence,	or	Penn	Word).	Canonical	networks	include	
the	default	mode	(DM),	subcortical	cerebellum	(SubC),	frontoparietal	(FP),	motor	(MT),	medial	frontal	(MF),	visual	association	(VA),	VI,	and	
VII.	Macroscale	regions	include	the	prefrontal	cortex	(Pfc),	motor	cortex	(Mot),	insula	(Ins),	parietal	(Par),	temporal	(Tmp),	occipital	(Occ),	
limbic	(Lmb),	cerebellum	(Crb),	subcortical	(Sub),	and	brainstem	(Bsm).
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Our	 work,	 like	 Lugtmeijer	 et	 al.	 (2019)	 and	 Unsworth	 (2007),	
found a relationship between working and episodic memory capabil-
ities	for	young	adults.	Like	Lugtmeijer	et	al.	(2019),	we	found	a	statis-
tically significant relationship between N-	back	test	performance	and	
episodic memory test performance for young adults. We also found 
that	the	correlations	between	the	observed	2-	back,	List	Sorting,	and	
Picture	Sequence	memory	test	scores	of	the	HCP	participants	(see	
Table	1)	were	similar	to	the	correlations	between	the	same	memory	
test	scores	for	ages	9–	10	Adolescent	Brain	Cognitive	Development	
Study	 participants	 (Rosenberg,	 Martinez,	 et	 al.,	 2020).	 Thus,	 our	
findings may generalize to a younger age range.

Neither	 resting-	state	 nor	 N-	back	 task	 functional	 connectivity	
significantly predicted Penn Word scores. Thus, functional con-
nectivity observed either during a working memory task or in the 
absence of a cognitive task did not predict individual differences in 
verbal episodic memory. The relatively small correlation between 
the	observed	Picture	Sequence	and	Penn	Word	scores	suggests	that	
these	two	measures	capture	quite	different	types	of	episodic	mem-
ory. Although, for Penn Word scores, we observe a null effect for 
functional connectivity observed both at rest and during a working 
memory	task,	it	is	an	open	question	whether	functional	connectivity	
observed during a task that specifically engages episodic memory 
would predict individual differences in episodic memory ability.

4.2 | Characterizing predictive network anatomy

Contributions of insular and parietal functional connectivity to 
predictions	 of	 2-	back,	 List	 Sorting,	 and	 Picture	 Sequence	 scores	
align	with	 previous	 results	 in	 the	 literature.	 For	 example,	 parietal	
activation	 is	 observed	 during	 both	 working	 memory	 tasks	 (Chai	
et	al.,	2018)	and	episodic	retrieval	(Cabeza	et	al.,	2008).	Vilberg	and	
Rugg	(2008)	suggests	that	the	episodic	buffer,	a	part	of	Baddeley's	
working	memory	model	that	 is	critical	to	episodic	 long-	term	mem-
ory	(Baddeley,	2000),	is	located	in	the	parietal	cortex.	In	Baddeley's	
model, the episodic buffer is used to temporarily store multimodal 
information	(Baddeley,	2000).	Thus,	these	works	suggest	that	main-
tenance of retrieved information could contribute to parietal activa-
tions for both working and episodic memory tasks. This hypothesis 
is	consistent	with	Unsworth	(2007),	which	suggests	that	those	with	
lower working memory capacity experience deficits in episodic re-
trieval in part because they search through more items than those 
with strong working memory capacity do. Although the insula is 
not considered a core region consistently activated during working 
memory	(Chai	et	al.,	2018)	or	episodic	memory	(Allen	&	Fortin,	2013)	
tasks, previous work has found that the insula contributes to both 
working	and	episodic	memory.	Menon	and	Uddin	(2010)	found	that	
the insula improves access to working memory resources during de-
tection	of	an	event.	Xie	et	al.	(2012)	discovered	that	for	individuals	
with amnestic mild cognitive impairment, disrupted intrinsic con-
nectivity of the insula network is correlated with deficits in epi-
sodic	memory.	Rest	functional	connectivity	2-	back,	List	Sorting,	and	

Picture	Sequence	plots	did	not	all	 share	 these	 insular	and	parietal	
connections. Given that the N-	back	functional	connectivity	models	
outperformed the rest functional connectivity models, these find-
ings suggest that N-	back	task	functional	connectivity	captures	more	
of the connections relevant to the memory capabilities shared by 
these tasks than rest functional connectivity does.

4.3 | Limitations

One	limitation	of	the	present	work	is	that	age-	adjusted	versions	of	
scores	were	available	only	for	the	Picture	Sequence	and	List	Sorting	
scores,	 not	 for	 the	 2-	back	 or	 Penn	Word	 scores.	Our	 analyses	 of	
age-	adjusted	Picture	Sequence	and	age-	adjusted	List	Sorting	scores	
produced similar results to our analyses of the unadjusted versions 
of	 these	 scores.	We	do	 not	 believe	 that	 the	 unavailability	 of	 age-	
adjusted versions of the other scores is a major issue as the age 
range	of	the	examined	HCP	subjects	is	relatively	narrow	(mean	age	
28	±	3.6	years).

Another potential limitation is that this work did not account for 
task-	related	coactivation,	which	could	have	influenced	connectivity	
estimates.	Greene	et	al.	(2020),	which,	like	our	paper,	analyzed	HCP	
data,	found	that	for	various	tasks,	task	functional	connectivity's	abil-
ity to predict phenotype was not solely driven by task coactivation. 
This paper found that activation predicts phenotype only when the 
behavior completed during a task is related to the phenotype. Thus, 
it is possible that in our work, task coactivation accounts for some, 
but not all of the N-	back	 task	 functional	 connectivity's	 predictive	
power for related memory test scores. Additionally, our rest analysis 
found that rest functional connectivity marginally significantly pre-
dicted	List	Sorting	test	performance	(r = .10, p =	4.8e−2).	Previous	
work,	such	as	Rosenberg	et	al.	 (2016)	and	Avery	et	al.	 (2020),	also	
found that rest functional connectivity predicts behavioral score 
performance. These rest functional connectivity findings suggest 
that for N-	back	task	functional	connectivity,	task	coactivation	is	not	
the sole predictor of memory test performance.

4.4 | Future work

Further	 work	 could	 use	 similar	 techniques	 to	 examine	 how	 well	
N-	back	 task	 functional	 connectivity	 predicts	 other	 measures	 of	
working memory, episodic memory, and other types of memory. In 
evaluating how well N-	back	task	connectivity	matrices	can	predict	
other working memory test scores, we could gain a deeper insight 
into the types of working memory that N-	back	task	functional	con-
nectivity captures well. Likewise, using N-	back	task	functional	con-
nectivity to predict test scores that primarily measure other types of 
memory could provide insight into the range of memory capabilities 
captured by N-	back	 task	 functional	 connectivity	 and	 the	 relation-
ships between the functional connections predicting different types 
of memory.
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5  | CONCLUSIONS

Our work demonstrates the ability of N-	back	task	functional	connec-
tivity to predict individual performance on another measure of work-
ing memory, and, to a lesser extent, on a measure of episodic memory. 
Thus, N-	back	 task	 functional	 connectivity	 may	 capture	 cognitive	
processes that are essential to both working and episodic memory. 
By furthering our knowledge of N-	back	task	functional	connectivity,	
these findings provide insights into relationships between working 
memory and episodic memory, which are critical to better under-
standing many neurological conditions and crucial cognitive abilities.
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