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Abstract
Introduction: Working memory is a critical cognitive ability that affects our daily 
functioning and relates to many cognitive processes and clinical conditions. Episodic 
memory is vital because it enables individuals to form and maintain their self-
identities. Our study analyzes the extent to which whole-brain functional connectiv-
ity observed during completion of an N-back memory task, a common measure of 
working memory, can predict both working memory and episodic memory.
Methods: We used connectome-based predictive models (CPMs) to predict 502 
Human Connectome Project (HCP) participants' in-scanner 2-back memory test 
scores and out-of-scanner working memory test (List Sorting) and episodic memory 
test (Picture Sequence and Penn Word) scores based on functional magnetic reso-
nance imaging (fMRI) data collected both during rest and N-back task performance. 
We also analyzed the functional brain connections that contributed to prediction for 
each of these models.
Results: Functional connectivity observed during N-back task performance predicted 
out-of-scanner List Sorting scores and to a lesser extent out-of-scanner Picture 
Sequence scores, but did not predict out-of-scanner Penn Word scores. Additionally, 
the functional connections predicting 2-back scores overlapped to a greater degree 
with those predicting List Sorting scores than with those predicting Picture Sequence 
or Penn Word scores. Functional connections with the insula, including connections 
between insular and parietal regions, predicted scores across the 2-back, List Sorting, 
and Picture Sequence tasks.
Conclusions: Our findings validate functional connectivity observed during the N-
back task as a measure of working memory, which generalizes to predict episodic 
memory to a lesser extent. By building on our understanding of the predictive power 
of N-back task functional connectivity, this work enhances our knowledge of rela-
tionships between working memory and episodic memory.
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1  | INTRODUC TION

Working memory is the ability to retain a limited quantity of infor-
mation and put it to use in cognitive tasks (Cowan, 2014). Our daily 
functioning relies heavily on working memory, and working mem-
ory capacity, a construct used to connote differences in individuals' 
working memory capabilities (Wilhelm et al., 2013). Working mem-
ory capacity is related to other cognitive abilities including problem 
solving (Wiley & Jarosz,  2012), reading comprehension (Daneman 
& Carpenter,  1980), reasoning (Kyllonen & Christal,  1990), con-
trolled attention (Engle et  al.,  1999), and fluid intelligence (Colom 
et  al.,  2015). Furthermore, working memory capacity is impaired 
in a number of psychiatric and neurodevelopmental conditions, 
including schizophrenia (Gold et  al., 2003, 2006), attention deficit 
disorder (Alderson et al., 2013), and reading disabilities (Gathercole 
et al., 2006). Episodic memory is a form of declarative memory that 
focuses on the ability to recall events tied to a specific place and 
time (Dikmen et al., 2014). This type of memory is critical because 
it helps individuals build and maintain their self-identities (Dikmen 
et al., 2014). To further our understanding of relationships between 
working and episodic memory, our study seeks to determine the ex-
tent to which functional connectivity observed during performance 
of an N-back working memory task reflects individual differences in 
both working memory and episodic memory.

In neuroimaging research, the N-back task is a common test of 
working memory (Jaeggi et al., 2010). The N-back test, first intro-
duced by Kirchner (1958), targets memory by requiring participants 
to recognize the item presented n items back. This test is popular be-
cause varying n is an easy way to manipulate working memory loads 
(Jaeggi et  al., 2010) and because the test's administration and re-
sponse requirements are not overly complex (Conway et al., 2003). 
Although the N-back task measures aspects of working memory, 
work has suggested that performance on this task does not reflect 
working memory capacity alone. For example, Kane et al. (2007) and 
Jaeggi et al. (2010) both found that performance on the N-back task 
is related to both working memory abilities and fluid intelligence.

Prior studies have found a relationship between working and ep-
isodic memory. Lugtmeijer et al.  (2019) found a significant correla-
tion (r = .504, p = .005) between the 2-back working memory test 
scores and the subsequent episodic memory test scores of 29 adults 
ages 20–29. This finding suggests a relationship between the N-back 
test and episodic memory for young adults. Other research also has 
established relationships between individual differences in episodic 
memory and working memory. Hertzog et al. (2003) found that for 
303 adults ages 61–91, over 6 years, changes in episodic memory 
were significantly correlated with changes in working memory and 
that these shifts could best be explained by changes in induction and 
fact retrieval. In two different experiments that each examined dis-
tinct sets of twenty individuals (between ages 18 and 35) with poor 
working memory capabilities, Unsworth (2007) found that those 
with lower working memory capacity also experienced deficits in 
episodic retrieval and that these individuals struggle with episodic 
retrieval in part because they search through more items than those 

with strong working memory capacity do. Unsworth et  al.  (2011), 
which explored how encoding specificity affects the relationship 
between an individual's episodic recall and working memory ca-
pacity, deduced that the conditions surrounding an episodic recall 
task affect the correlation between performance on the task and 
working memory capacity. For a sample of 11,537 9–10-year-olds, 
Rosenberg, Martinez, et al. (2020) found a sizable Spearman correla-
tion between List Sorting and Picture Sequence memory test scores 
(r  =  .34) and between 2-back and Picture Sequence memory test 
scores (r  =  .31). We use 2-back and List Sorting scores to opera-
tionalize working memory and Picture Sequence scores to represent 
episodic memory.

Prior work has established that functional connectivity, mea-
sured by functional magnetic resonance imaging (fMRI) scans, can 
be an effective metric to predict individual differences in cognitive 
abilities and behavior. Finn et al. (2015) found that every individual 
has a unique pattern of functional connectivity that can be mea-
sured either at rest or during a cognitive task. Previous work has 
discovered relationships between functional connectivity and nu-
merous cognitive abilities, such as attention (Rosenberg et al., 2016; 
Yoo et al., 2018), impulsivity (Li et al., 2013), and intelligence (Finn 
et al., 2015; Hearne et al., 2016; van den Heuvel et al., 2009; Yoo 
et al., 2019). Critically, functional connectivity can be used to predict 
memory capabilities, as previous work has established relationships 
between functional connectivity and both working memory (Avery 
et  al.,  2020) and Alzheimer's-related cognitive impairment (Lin 
et al., 2018). Avery et al. (2020) found that functional connectivity 
observed during both rest and N-back task performance predicted 
in-scanner 2-back task performance.

Building on Avery et al. (2020), we evaluate the extent to which N-
back task functional connectivity reflects different types of memory by 
measuring how well fMRI data collected during an N-back task predicts 
several out-of-scanner memory test scores. To evaluate whether these 
trends are specific to N-back task functional connectivity or generalize 
to rest functional connectivity, we also measure how well fMRI data 
collected at rest predicts the same memory test scores. Using Human 
Connectome Project (HCP) fMRI data and memory test scores, we an-
alyze the extent to which N-back task functional connectivity captures 
individual differences in both working memory and episodic memory 
by evaluating: (a) the extent to which resting-state and N-back task 
functional connectivity can predict out-of-scanner List Sorting, Picture 
Sequence, and Penn Word scores, and (b) the commonalities between 
the features predicting in-scanner 2-back task performance and those 
predicting out-of-scanner List Sorting, Picture Sequence, and Penn 
Word memory test performance. Both the N-back and List Sorting 
(Tulsky et al., 2014) tests are considered measures of working memory, 
whereas the Picture Sequence (Dikmen et al., 2014) and Penn Word 
(Gur et al., 2001, 2010) tests capture episodic memory. Thus, we hy-
pothesize that N-back task functional connectivity will better predict 
List Sorting than Picture Sequence or Penn Word memory test scores, 
and that the functional connections that predict 2-back task perfor-
mance will be more similar to those that predict List Sorting scores than 
to those that predict Picture Sequence or Penn Word scores.
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2  | METHODS

2.1 | Data

We obtained rest and N-back task fMRI data and behavioral task per-
formance data from the December 2015 HCP 900-participant release 
(Van Essen et al., 2013). These scans had a 3T scanner magnetic field, a 
multiband factor (slice acceleration factor) of 8, no in-plane phase en-
code acceleration, a spatial resolution of 2 mm isotropic, a 33 ms delay 
between signal excitation and image acquisition time (echo time), and 
a .72 s volume repetition time (Uğurbil et al., 2013). We used the same 
502-participant subset of this data set as Avery et al. (2020) and thus 
build on this work. Each of these participants (mean age 28 ± 3.6 years; 
274 females) completed all nine HCP fMRI conditions and across 
these conditions had a grand mean frame-to-frame head motion less 
than .10 mm and a maximum frame-to-frame motion less than .15 mm 
(Greene et al., 2018). Head motion from left/right and right/left phase-
encoding runs was averaged to obtain average frame-to-frame motion 
for each fMRI task. Each of these participants also had 2-back, List 
Sorting, Picture Sequence, and Penn Word scores available and was 
not missing any functional atlas nodes or time points. All participants 
provided written consent per the regulations of the following institu-
tions: Washington University in Saint Louis, University of Minnesota, 
Oxford University, Saint Louis University, Indiana University, University 
d'Annunzio, Ernst Strüngmann Institute, Warwick University, Radboud 
University Nijmegen, and Duke University.

BioImage Suite (Joshi et  al.,  2011) and minimally preprocessed 
HCP data (Glasser et al., 2013) were used to create functional con-
nectivity matrices that served as input to our connectome-based pre-
dictive models (CPMs) (Finn et al., 2015; Rosenberg et al., 2016; Shen 
et al., 2017). These matrices represent the magnitude of functional 
connectivity between predefined nodes encompassing the entire 
brain. In generating these connectivity matrices, we first regressed 
a series of nuisance covariates out of the fMRI data, removed the 
linear trend, and performed low-pass filtering. These nuisance co-
variates included 12 motion parameters and white matter, cerebral 
spinal fluid, and global signals. For low-pass filtering, data were tem-
porally smoothed with a Gaussian filter (mean = 0, variance = 2.17, 
cutoff frequency = .12 Hz). We divided the brain into 268 regions de-
fined in volumetric space (Shen et al., 2013) and extracted the mean 
fMRI signal time series at each of these nodes. We defined regions in 
volumetric space because we wanted to include subcortical regions 
and replicate previous CPM work, particularly Avery et al. (2020) on 
which this study builds, that used a volumetric Shen 268-node atlas. 
We obtained connectivity matrix entries by calculating the Pearson 
correlation coefficients between each pair of time series and then 
converting these r-values to z-values using the Fisher transform.

We used fMRI data collected both while participants were at 
rest and while they performed two five-minute N-back memory 
task runs. The N-back task required participants to complete 2-back 
and 0-back memory tests, each 50% of the time. Participants were 
presented with pictures of four different types of stimuli: places, 
tools, faces, and body parts. Each run consisted of eight task blocks 

and four resting fixation blocks. Each task block consisted of a spe-
cific memory test (0-back or 2-back) for 10 images of one stimulus 
type. Additional details regarding this task can be found in Barch 
et al. (2013).

We examined individual variation in performance on Form A of 
the Penn Word memory test (Gur et al., 2001, 2010). This test was 
designed to measure verbal episodic memory. Participants were first 
asked to remember 20 words. After 20 minutes, participants were 
given 40 words, which included the 20 original words and 20 new 
words. Participants were asked to guess whether each word was 
new or part of the original set. We analyzed each participant's num-
ber of correct responses for this task.

For the Picture Sequence memory test, we quantified partici-
pants' abilities to remember increasingly long series of pictures and 
the order in which the pictures were presented. In this National 
Institutes of Health (NIH) Toolbox test (Dikmen et  al.,  2014), par-
ticipants were shown a number of pictures and given one point for 
each correctly ordered pair of pictures. Most episodic memory tests 
largely depend upon verbal skills, whereas the Picture Sequence test 
was specifically designed to measure episodic memory in young chil-
dren who lack verbal skills.

For the List Sorting memory test (Tulsky et al., 2014), we quantified 
participants' abilities to recall and manipulate sequences of pictures. 
Also an NIH Toolbox assessment, this test presented participants with 
increasingly long series of pictures of food and animals. As part of this 
test, participants completed two tasks. In the first task, participants 
were shown pictures of either food or animals and then were asked to 
recall the objects and order them from smallest to largest. In the sec-
ond task, participants were shown pictures of both food and animals 
and then were asked to recall the objects and separately order the 
animal pictures and the food pictures, each based on the size of the 
depicted objects. Each participant's final score was determined based 
on the number of correct sorts across both tasks. The List Sorting 
memory test is a sequencing task, a task-type which has proven suc-
cessful in measuring working memory in many previous works (Gold 
et al., 1997; Mungas et al., 2000; Tulsky et al., 2003; Wechsler, 1997).

2.2 | Measuring the similarity between 
memory tests

We calculated correlations between participants' performance on 
different memory tests to verify whether the CPM and functional 
anatomy analyses reflect inherent similarities between memory tests. 
We calculated the correlations between each pair of observed 2-back, 
Penn Word, Picture Sequence, and List Sorting scores. For each of 
these correlations, we reported a parametric p-value. Using Steiger's 
z-tests to compare pairs of correlations, we evaluated whether 2-back 
task performance was more closely related to List Sorting test per-
formance than to Picture Sequence or Penn Word test performance. 
To correct for multiple comparisons, for each p-value in both our 
Steiger's z-test and CPM analyses, we applied a Bonferroni correction 
to the original significance threshold (p < .05).
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2.3 | Connectome-based predictive modeling

Using the R programming language (version 3.4.4), for both rest and 
N-back task functional connectivity, we constructed four CPMs to 
predict the 2-back, List Sorting, Picture Sequence, and Penn Word 
memory test scores of the 502 examined HCP participants. We per-
formed this analysis with rest functional connectivity to determine 
whether the patterns of results observed for N-back task functional 
connectivity analysis generalized to functional connectivity ob-
served in the absence of an explicit task. We predicted participants' 
performance on only the 2-back memory test portion of the N-back 
task because the 2-back test (mean accuracy = 84.7%, standard de-
viation of accuracy  =  10.4%) taxes working memory more heavily 
than does the 0-back test (mean accuracy =  91.4%, standard de-
viation of accuracy = 10.1%). The 2-back and List Sorting tasks are 
considered working memory measures, whereas the Penn Word and 
Picture Sequence tasks target episodic memory. Thus, predicting 
these memory test scores based on fMRI data collected during an N-
back task allowed us to characterize the extent to which functional 
connectivity measured during an N-back task captures both working 
and episodic memory.

CPM, a type of recently developed brain-based prediction ap-
proach, identifies key connections from whole-brain functional 
connectivity and uses these connections to predict variation in a 
behavior or trait across participants (Finn et  al.,  2015; Rosenberg 
et al., 2016; Shen et al., 2017). For our study, the predicted behav-
ior was performance on a memory test (2-back, Penn Word, Picture 
Sequence, or List Sorting). For each type of functional connectivity 
(rest and N-back task), we constructed separate CPMs for each of 
the four memory tests examined.

The first step in training our CPMs was edge selection, or iden-
tification of the specific functional connections that were most re-
lated to behavior in the training sample. We selected connections 
that were either positively or negatively correlated (at a .01 p-value 
threshold) with the measured behavior. In selecting connectivity 
features, we used a partial correlation to control for participants' av-
erage frame-to-frame head motion. In other words, during feature 
selection, we correlated the strength of every connection with be-
havior in the training sample, controlling for frame-to-frame head 
motion.

Our edge selection step allowed us to create what we define as 
a mask, the set of edges, or connections between brain nodes, that 
are significantly correlated with the examined behavior. Edges sig-
nificantly positively correlated with behavior constituted what we 
call the positive mask, and edges significantly negatively correlated 
with behavior comprised the negative mask. For each training data 
set participant, we then computed the mean positive mask edge 
weight and the mean negative mask edge weight by averaging the 
strengths of the positive mask edges and negative mask edges for 
that particular participant. Using the R MASS package's “rlm” func-
tion (Venables & Ripley, 2002), we built a robust linear regression 
with a bisquare weighting function to relate memory test scores to 
the difference between average positive mask and average negative 

mask edge weights in the training set. For model validation, we used 
the training data set's positive and negative masks to calculate this 
input for testing data set participants. We then input these values 
into the trained robust linear regression to predict the behavior of 
each testing data set participant. Of note, positive and negative net-
works were defined separately to allow us to interpret the anatomy 
of networks positively and negatively related to behavioral scores. 
Including collinear predictors in a regression model can cause model 
parameter estimates to be unreliable (Alin, 2010). To avoid collinear 
predictors, a single value (mean connectivity strength in the positive 
network minus mean connectivity strength in the negative network) 
was input into the linear model to generate behavioral predic-
tions, as described in previous work (Avery et al., 2020; Rosenberg, 
Scheinost, et al., 2020).

We measured the ability of the N-back task functional connec-
tivity to predict each score by calculating the correlations between 
CPM-predicted and observed Penn Word, Picture Sequence, and 
List Sorting scores, and the correlations between CPM-predicted 2-
back scores and observed Penn Word, Picture Sequence, and List 
Sorting scores. We similarly evaluated the extent to which fMRI scan 
data collected at rest predicted List Sorting, Picture Sequence, and 
Penn Word scores.

We trained and tested our CPMs using 10-fold cross-validation. 
For each combination of functional connectivity (rest and N-back 
task) and memory test score (2-back, List Sorting, Picture Sequence, 
and Penn Word), we ran 1,000 iterations of 10-fold cross-validation 
in order to obtain reliable estimates of CPM performance. For each 
iteration, we divided participants into 10 roughly equal folds, ensur-
ing that members of the same family were in the same fold. In gen-
erating these folds, we first randomly assigned each family to a fold. 
If any fold had more than 60 participants, we moved all members of 
the largest fold's largest family to the smallest fold. We repeated this 
process until we had no folds with more than 60 participants. We 
predicted the memory test scores of each fold's participants using 
a CPM trained on the other nine folds of data. For a particular it-
eration, the same 10-fold cross-validation split was used for CPMs 
predicting 2-back, Penn Word, Picture Sequence, and List Sorting 
scores. In evaluating CPM performance, we reported average cor-
relations between CPM-predicted and observed scores across 1,000 
iterations of 10-fold cross-validation. To calculate a non-parametric 
p-value for every average correlation, we ran 1,000 iterations of 10-
fold cross-validation null CPM models for each functional connectiv-
ity/memory test score pair. We defined a null CPM model as a CPM 
for which the order of participant connectivity matrices remained 
the same, but the memory test scores were randomly shuffled. For a 
particular iteration, the same 10-fold cross-validation split was used 
for null CPMs predicting 2-back, Penn Word, Picture Sequence, and 
List Sorting memory test scores. We calculated null correlations, 
which were correlations between null CPM-predicted and observed 
memory test scores. For each actual model average correlation, 
the p-value was calculated as p =  (1 +  the number of null correla-
tions greater than or equal to the actual model average correlation)/
(1 + the total number of iterations).
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For both rest and N-back task functional connectivity, we tested 
whether predictive power for List Sorting scores was statistically 
different from predictive power for Picture Sequence or Penn Word 
scores. For each of the two metrics of CPM performance (correlations 
between predicted and observed Penn Word, Picture Sequence, and 
List Sorting scores, and correlations between predicted 2-back and 
observed Penn Word, Picture Sequence, and List Sorting scores), we 
separately evaluated these differences. For each combination of func-
tional connectivity type and CPM performance metric, we separately 
examined the distribution of the differences between each iteration's 
List Sorting and Picture Sequence correlations and the distribution of 
the differences between each iteration's List Sorting and Penn Word 
correlations. Each of these distributions contained 1,000 correlation 
differences from 1,000 iterations. For each distribution of correlation 
differences, we performed a t-test to determine whether this distribu-
tion was significantly different from the distribution of the differences 
between the null model correlations for the same memory test scores. 
For example, for CPMs with N-back task functional connectivity as 
input, we compared: (a) the distribution of the differences of the cor-
relations between CPM-predicted and observed List Sorting scores 
minus the correlations between CPM-predicted and observed Picture 
Sequence scores to (b) the distribution of the differences of the cor-
relations between null CPM-predicted and observed List Sorting 
scores minus the correlations between null CPM-predicted and ob-
served Picture Sequence scores. Through these analyses, for both 
rest and N-back task functional connectivity, we determined whether 
the difference in the ability of the connectivity matrices to predict one 
memory test versus another was statistically significant.

2.4 | Analyzing the functional anatomy of 
predictive networks

To characterize the connections used by 2-back, Penn Word, Picture 
Sequence, and List Sorting models, we analyzed the edges between 
each pair of 268 brain nodes (Shen et al., 2013) used to predict each 
memory test score. For each combination of functional connectivity 
(rest and N-back task) and memory test score (2-back, List Sorting, 
Picture Sequence, and Penn Word), we trained a CPM on data from 
all 502 participants and tracked the identified predictive positive 
mask and predictive negative mask connectivity features.

To measure the similarity between the predictive positive mask 
connectivity features of the 2-back and those of each other mem-
ory test score, we calculated the percentage of overlapping edges 
between the positive mask used to predict the 2-back score and the 
positive mask used to predict each other score. Similarly, we calcu-
lated the percentage of overlapping edges between the predictive 
negative masks of the 2-back and each other memory test score.

Additionally, based on results from the CPM trained on data 
from all 502 participants, we visualized the functional connections 
that predicted each memory test score. We grouped the 268 brain 

nodes (Shen et al., 2013) into 8 functional canonical networks and 
10 anatomic macroscale brain regions. Each connection between ca-
nonical networks and each connection between macroscale regions 
consisted of many edges between these 268 brain nodes. Canonical 
networks were defined as in Finn et al. (2015) and included the de-
fault mode, subcortical cerebellum, frontoparietal, motor, medial 
frontal, visual association, VI, and VII. The selected macroscale re-
gions were a variety of cortical and subcortical brain regions, includ-
ing the prefrontal cortex, motor cortex, insula, parietal, temporal, 
occipital, limbic, cerebellum, subcortical, and brainstem.

For each combination of functional connectivity (rest and N-back 
task) and memory test score (2-back, Penn Word, Picture Sequence, 
and List Sorting), we visualized the contribution of each canonical 
network and macroscale region to predictive networks. Additionally, 
for both rest and N-back task functional connectivity, we visualized 
the connections that consistently predicted 2-back, List Sorting, and 
Picture Sequence scores—that is, the connections that predicted all 
three of these measures of memory.

2.5 | Controlling for age in connectome-based 
predictive modeling

To test whether controlling for age, a potential confounding factor 
(Small, 2001), altered results, we performed analyses with the HCP's 
age-adjusted versions of two types of memory test scores. The HCP 
provided age-adjusted versions of both the Picture Sequence and 
List Sorting scores, but not the Penn Word or 2-back scores. The 
memory test scores for which the HCP offered age-adjusted ver-
sions were NIH Toolbox scores, which were age-adjusted using NIH 
Toolbox normative data (Barch et al., 2013). As the Penn Word and 
2-back scores are not NIH Toolbox scores, equivalent normative data 
were not available, preventing us from generating age-adjusted ver-
sions of these scores. We calculated the correlations between each 
pair of observed 2-back, Penn Word, age-adjusted List Sorting, and 
age-adjusted Picture Sequence scores. We completed both CPM and 
functional anatomy analyses for the age-adjusted Picture Sequence 
and age-adjusted List Sorting scores. These analyses were compara-
ble to those completed for the unadjusted versions of these scores.

3  | RESULTS

3.1 | Measuring the similarity between memory 
tests

3.1.1 | Comparing correlations between 2-back and 
other observed memory test scores

For the studied HCP participants, we determined that the corre-
lation between the observed 2-back and List Sorting scores was 
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greater than both the correlation between the observed 2-back and 
Penn Word scores and the correlation between the observed 2-back 
and Picture Sequence scores (see Table 1). At a p < .05 significance 
level corrected for multiple comparisons, Steiger's z-tests (using 
two-sided p-values) found that these differences were statistically 
significant for both the List Sorting/Penn Word comparison (z = 3.2 
and p = 1.3e−3) and the List Sorting/Picture Sequence comparison 
(z = 2.4 and p = 1.7e−2). When we examined age-adjusted Picture 
Sequence and age-adjusted List Sorting scores, for the same signifi-
cance threshold, the correlation between the 2-back and List Sorting 
scores was significantly greater than the correlation between the 2-
back and Penn Word scores and marginally significantly greater than 
the correlation between the 2-back and Picture Sequence scores 
(see Tables S1 and S2).

3.1.2 | Evaluating the correlations between observed 
List Sorting, Picture Sequence, and Penn Word 
memory test scores

To identify the overlap in represented constructs across the memory 
tests, we evaluated the correlations between each pair of observed 
List Sorting, Picture Sequence, and Penn Word memory test scores. 
We found a relatively large correlation between the observed List 
Sorting and Picture Sequence scores (r =  .30, p = 6.2e−12), and a 
much smaller correlation between the observed List Sorting and 
Penn Word scores (r = .09, p = 4.5e−2) (see Table 1). The correlation 
between the observed Picture Sequence and Penn Word memory 

test scores (r = .20, p = 4.1e−6), the two episodic memory measures, 
was relatively small (see Table 1). The correlations between the Penn 
Word, age-adjusted Picture Sequence, and age-adjusted List Sorting 
scores were relatively similar to those between all unadjusted scores 
(see Table S1).

3.2 | Analyzing connectome-based predictive 
models predicting different memory test scores

3.2.1 | Evaluating model performance for different 
memory test scores

We examined two different metrics of CPM performance: cor-
relations between predicted and observed Penn Word, Picture 
Sequence, and List Sorting scores, and correlations between pre-
dicted 2-back and observed Penn Word, Picture Sequence, and List 
Sorting scores.

Using N-back task connectivity matrices as input, CPMs signifi-
cantly predicted List Sorting (working memory) scores, and mar-
ginally predicted Picture Sequence (episodic memory) scores. At a 
p  <  .05 significance level corrected for multiple comparisons, we 
observed a significant correlation between the CPM-predicted and 
observed List Sorting scores and a marginally significant correlation 
between the CPM-predicted and observed Picture Sequence scores 
(see Table 2 and Figure 1). At the same significance level, we saw 
significant correlations between the CPM-predicted 2-back scores 
and both the observed Picture Sequence scores and the observed 

Penn Word
Picture 
Sequence List Sorting

2-back .20 (p = 5.2e−6) .27 (p = 1.4e−9) .38 (p < 2.2e−16)

Penn Word — .20 (p = 4.1e−6) .09 (p = 4.5e−2)

Picture Sequence — — .30 (p = 6.2e−12)

Note: The correlations between the observed 2-back, Penn Word, Picture Sequence, and List 
Sorting memory test scores of the 502 examined Human Connectome Project (HCP) participants.

TA B L E  1   Correlations between 
observed memory test scores

TA B L E  2   Correlations between predicted and observed memory test scores

Training & test 
behavior

Models trained and tested using resting-state functional 
connectivity

Models trained and tested using N-back task functional 
connectivity

Mean
r-value

Standard deviation
r-value p-value

Mean
r-value

Standard deviation
r-value p-value

2-back .20a  1/1,001a  .36a  1/1,001a 

Penn Word −.02 .02 .62 .05 .03 .24

Picture Sequence .07 .02 .15 .11 .02 3.5e−2

List Sorting .10 .02 4.8e−2 .24 .01 1.0e−3

Note: The correlations between the predicted and observed Penn Word, Picture Sequence, and List Sorting memory test scores of the 502 examined 
Human Connectome Project (HCP) participants.
aThese numbers were taken from Avery et al. (2020), which for the same set of subjects as our work, used the same rest and N-back task functional 
connectivity and 10-fold cross-validation to predict 2-back memory test scores.
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List Sorting scores (see Table 3 and Figure 1). Neither the correla-
tion between the CPM-predicted and observed Penn Word (episodic 
memory) scores nor the correlation between the CPM-predicted 2-
back and observed Penn Word scores were significant (see Tables 2 
and 3 and Figure 1).

For List Sorting and Picture Sequence memory test score predic-
tion, the results of the resting-state functional connectivity models 
did not fully replicate those of the N-back task functional connec-
tivity models, but both rest and N-back task functional connectivity 
poorly predicted Penn Word scores (see Tables 2 and 3 and Figure 1). 

F I G U R E  1  Histograms comparing correlations between predicted and observed memory test scores for actual and null connectome-
based predictive models. For both rest and N-back task functional connectivity and for iterations of both actual and null connectome-based 
predictive models (CPMs), each of the 1,000 correlations between predicted and observed Penn Word, Picture Sequence, and List Sorting 
scores and each of the 1,000 correlations between predicted 2-back and observed Penn Word, Picture Sequence, and List Sorting scores.
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Whereas N-back task functional connectivity predicted List Sorting 
scores and marginally predicted Picture Sequence scores, rest func-
tional connectivity marginally predicted List Sorting scores and did 
not significantly predict Picture Sequence scores.

The rest and N-back task functional connectivity analyses that 
used age-adjusted List Sorting and age-adjusted Picture Sequence 
scores demonstrated similar trends to the comparable analyses that 
used the unadjusted versions of these scores (see Tables S3 and S4 
and Figure S1). Overall, these results suggest that N-back task func-
tional connectivity captures not only working memory, but also epi-
sodic memory capabilities.

3.2.2 | Comparing model performance for different 
memory test scores

Our t-tests supported the hypothesis that at a p < .05 significance 
level corrected for multiple comparisons, N-back task functional 
connectivity predicted List Sorting scores significantly better than 
it predicted Picture Sequence or Penn Word scores (see Tables 4 
and 5 and Figure S2). For both metrics of CPM performance and 
for comparisons of List Sorting correlations both to Penn Word 
correlations and to Picture Sequence correlations, each t-test pro-
duced a p-value that was less than 2.2e−16. For each comparison, 
the 97.5% confidence interval contrasting the difference distri-
bution and its corresponding null difference distribution did not 
contain 0.

Rest functional connectivity comparison analyses produced 
different results from the comparable N-back task analyses (see 
Tables 4 and 5 and Figure S2). For example, for N-back task func-
tional connectivity, the correlation between predicted 2-back scores 
and observed List Sorting scores was significantly stronger than the 
correlation between CPM-predicted 2-back scores and observed 
Picture Sequence scores. In contrast, for rest functional connectiv-
ity, the correlation between predicted 2-back scores and observed 
Picture Sequence scores was significantly stronger than the cor-
relation between predicted 2-back scores and observed List Sorting 
scores.

The rest and N-back task comparison analyses that used age-
adjusted List Sorting and age-adjusted Picture Sequence scores 
achieved similar results (see Tables S5 and S6 and Figure S3).

3.3 | Analyzing the functional anatomy of models 
predicting different memory test scores

3.3.1 | Measuring the percentage of overlapping 
edges used to predict 2-back and other memory 
test scores

For both rest and N-back task connectivity matrices, our analyses 
of the functional anatomy of our CPMs found that the connections 
used in 2-back score prediction were most similar to those used in 
List Sorting score prediction, second most similar to those used in 

TA B L E  3  Correlations between predicted 2-back and other observed memory test scores

Observed behavior

Models trained and tested using resting-state 
functional connectivity

Models trained and tested using N-back task functional 
connectivity

Mean
r-value

Standard deviation
r-value p-value

Mean
r-value

Standard deviation
r-value p-value

Penn Word .02 .01 .31 −1.6e−3 7.4e−3 .51

Picture Sequence .09 .01 2.5e−2 .12 .01 3.0e−3

List Sorting .05 .01 .11 .21 .01 1.0e−3

Note: The correlations between the predicted 2-back and the observed Penn Word, Picture Sequence, and List Sorting memory test scores of the 
502 examined Human Connectome Project (HCP) participants.

TA B L E  4   Comparing correlations between predicted and observed memory test scores

Training & test 
behaviors

Models trained and tested using resting-state functional 
connectivity

Models trained and tested using N-back task functional 
connectivity

t-value p-value
97.5% confidence 
interval t-value p-value

97.5% confidence 
interval

Penn Word/List Sorting 37.5 <2.2e−16 (.11, .13) 58.6 <2.2e−16 (.18, .20)

Picture Sequence/List 
Sorting

9.6 <2.2e−16 (.02, .04) 42.8 <2.2e−16 (.12, .13)

Note: The t-test results for comparing difference distributions for the correlations between predicted and observed memory test scores to the 
corresponding null difference distributions. Each actual and each null difference distribution equals a distribution of correlations between predicted 
and observed List Sorting scores minus correlations between predicted and observed Picture Sequence or Penn Word scores. Thus, a significant 
positive t-value indicates that List Sorting scores were predicted significantly better than Picture Sequence or Penn Word scores. A significant 
negative t-value indicates that Picture Sequence or Penn Word scores were predicted significantly better than List Sorting scores.



     |  9 of 16STARK et al.

Picture Sequence score prediction, and least similar to those used 
in Penn Word score prediction. For both rest and N-back task func-
tional connectivity and for both positive and negative masks, the 
percentage of overlapping significant edges between masks was 
largest for the 2-back and List Sorting masks, second largest for the 
2-back and Picture Sequence masks, and smallest for the 2-back and 
Penn Word masks (see Table 6). Our identical analyses that used age-
adjusted rather than unadjusted Picture Sequence and List Sorting 
scores exhibited similar results (see Table S7).

3.3.2 | Examining the brain connections used to 
predict each memory test score

Figures 2 and 3 provide insight into the N-back task functional con-
nections predicting performance on all three of the 2-back, List 
Sorting, and Picture Sequence tasks. Figure  2 separately visual-
izes the N-back task functional connections significantly related to 
each memory test score. For both rest and N-back task functional 
connectivity, Figure 3 visualizes the connections that significantly 
predicted all three of 2-back, List Sorting, and Picture Sequence 
scores. N-back task functional connectivity at least marginally sig-
nificantly predicted all three of these scores. Thus, Figure 3 helps 
us understand which connections contribute to memory capabili-
ties that are shared across these tasks. The N-back task functional 

connectivity plots in Figure  3 and the plots in Figure  2 (2-back: 
column 1, List Sorting: column 2, and Picture Sequence: column 3) 
illustrate an involvement of connections with the insula, including 
connections between insular and parietal regions, and between in-
sular and motor regions. Figure 4 separately visualizes the rest func-
tional connections significantly related to each memory test score. 
The rest functional connectivity plots in Figures  3 and 4 suggest 
that the predictive models based on rest functional connectivity do 
not all share these connections employed by the N-back functional 
connectivity models. For plots showing age-adjusted versions of the 
Picture Sequence and List Sorting scores produce similar trends, see 
Figures S4, S5, and S6.

4  | DISCUSSION

In analyzing the extent to which N-back task functional connectiv-
ity reflects different types of memory, we found that N-back task 
functional connectivity predicts individual performance on another 
working memory measure, and, to a lesser extent, on an episodic 
memory measure. Furthermore, insular and parietal functional con-
nectivity observed during N-back task performance predicted both 
working and episodic memory. Together, these findings advance our 
understanding of relationships between working memory and epi-
sodic memory.

TA B L E  5  Comparing correlations between predicted 2-back and other observed memory test scores

Observed behaviors

Models trained and tested using resting-state functional 
connectivity

Models trained and tested using N-back task 
functional connectivity

t-value p-value 97.5% confidence interval t-value p-value
97.5% confidence 
interval

Penn Word/List Sorting 15.7 <2.2e−16 (.03, .04) 109.1 <2.2e−16 (.21, .22)

Picture Sequence/List 
Sorting

−21.3 <2.2e−16 (−.04, −.03) 52.9 <2.2e−16 (.09, .10)

Note: The t-test results for comparing difference distributions for the correlations between predicted 2-back and other observed memory test scores 
to the corresponding null difference distributions. Each actual and each null difference distribution equals a distribution of correlations between 
predicted 2-back and observed List Sorting scores minus correlations between predicted 2-back and observed Picture Sequence or Penn Word 
scores. Thus, a significant positive t-value indicates that CPM-predicted 2-back scores are significantly more similar to observed List Sorting scores 
than to observed Picture Sequence or Penn Word scores. A significant negative t-value indicates that CPM-predicted 2-back scores are significantly 
more similar to observed Picture Sequence or Penn Word scores than to observed List Sorting scores.

TA B L E  6  Functional anatomy similarity metric values

Training behaviors

Models trained using resting-state functional 
connectivity

Models trained using N-back task functional 
connectivity

Positive mask
percentage of 
overlapping edges

Negative mask
percentage of 
overlapping edges

Positive mask
percentage of 
overlapping edges

Negative mask
percentage of 
overlapping edges

2-back/Penn Word .04 .03 .06 .06

2-back/Picture Sequence .13 .10 .23 .20

2-back/List Sorting .17 .11 .71 .50

Note: For both positive and negative masks, the percentage of overlapping edges between the mask of significant edges used to predict the 2-back 
score and the mask used to predict each other score. Larger percentages indicate greater similarity.
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4.1 | Analyzing the predictive power of rest and 
N-back task functional connectivity for different 
memory test scores

Functional connectivity observed during N-back task performance 
predicted individual differences in both working memory, measured 

with List Sorting memory test scores, and episodic memory, measured 
with Picture Sequence memory test scores, but predicted individual 
differences in working memory significantly better. The finding that 
the correlation between observed 2-back and List Sorting scores 
was significantly greater than the correlation between observed 2-
back and Picture Sequence scores, as well as the sizable correlation 

F I G U R E  2   N-back task functional connections predicting each memory test score. N-back task functional connectivity positively (red) 
and negatively (blue) significantly related to each memory test score is grouped into canonical networks (top) and macroscale regions 
(bottom). Cells are shaded according to the percentage of all possible edges within a network/region or between a pair of networks/
regions significantly related to performance on the task of interest (from left to right, 2-back, List Sorting, Picture Sequence, or Penn Word). 
Canonical networks include the default mode (DM), subcortical cerebellum (SubC), frontoparietal (FP), motor (MT), medial frontal (MF), 
visual association (VA), VI, and VII. Macroscale regions include the prefrontal cortex (Pfc), motor cortex (Mot), insula (Ins), parietal (Par), 
temporal (Tmp), occipital (Occ), limbic (Lmb), cerebellum (Crb), subcortical (Sub), and brainstem (Bsm).
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F I G U R E  3  Functional connections predicting scores on the 2-back, List Sorting, and Picture Sequence tasks. For each functional 
connection within a canonical network/macroscale region or between a pair of networks/regions, shading indicates the percentage of all 
possible rest (top) and N-back task (bottom) edges that positively (red) and negatively (blue) significantly predict performance across the 2-
back, List Sorting, and Picture Sequence tasks. This figure examines the edges that significantly predicted all three of these scores, exploring 
which connections contribute to memory capabilities that are shared across these tasks. Glass brain plots (right) illustrate macroscale region 
connections that positively (red) and negatively (blue) predict behavior across all three tasks. Canonical networks include the default mode 
(DM), subcortical cerebellum (SubC), frontoparietal (FP), motor (MT), medial frontal (MF), visual association (VA), VI, and VII. Macroscale 
regions include the prefrontal cortex (Pfc), motor cortex (Mot), insula (Ins), parietal (Par), temporal (Tmp), occipital (Occ), limbic (Lmb), 
cerebellum (Crb), subcortical (Sub), and brainstem (Bsm).
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between observed List Sorting and Picture Sequence scores, sug-
gest that the results of these predictive analyses reflect behavioral-
level trends. The differences between the results of rest and N-back 
task functional connectivity predictive analyses suggest that rest 
functional connectivity's predictive power for these memory test 
scores differs from that of N-back task functional connectivity. Our 

N-back task functional connectivity results demonstrate specificity, 
supporting the hypothesis that functional connectivity observed as 
a particular cognitive process is taxed may best predict that process 
(Finn et al., 2017). These results also, however, demonstrate general-
izability, in that N-back task functional connectivity reflects, to some 
degree, episodic memory abilities.

F I G U R E  4  Rest functional connections predicting each memory test score. Rest functional connectivity positively (red) and negatively 
(blue) significantly related to each memory test score is grouped into canonical networks (top) and macroscale regions (bottom). Cells are 
shaded according to the percentage of all possible edges within a network/region or between a pair of networks/regions significantly related 
to performance on the task of interest (from left to right, 2-back, List Sorting, Picture Sequence, or Penn Word). Canonical networks include 
the default mode (DM), subcortical cerebellum (SubC), frontoparietal (FP), motor (MT), medial frontal (MF), visual association (VA), VI, and 
VII. Macroscale regions include the prefrontal cortex (Pfc), motor cortex (Mot), insula (Ins), parietal (Par), temporal (Tmp), occipital (Occ), 
limbic (Lmb), cerebellum (Crb), subcortical (Sub), and brainstem (Bsm).
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Our work, like Lugtmeijer et  al.  (2019) and Unsworth (2007), 
found a relationship between working and episodic memory capabil-
ities for young adults. Like Lugtmeijer et al. (2019), we found a statis-
tically significant relationship between N-back test performance and 
episodic memory test performance for young adults. We also found 
that the correlations between the observed 2-back, List Sorting, and 
Picture Sequence memory test scores of the HCP participants (see 
Table 1) were similar to the correlations between the same memory 
test scores for ages 9–10 Adolescent Brain Cognitive Development 
Study participants (Rosenberg, Martinez, et  al.,  2020). Thus, our 
findings may generalize to a younger age range.

Neither resting-state nor N-back task functional connectivity 
significantly predicted Penn Word scores. Thus, functional con-
nectivity observed either during a working memory task or in the 
absence of a cognitive task did not predict individual differences in 
verbal episodic memory. The relatively small correlation between 
the observed Picture Sequence and Penn Word scores suggests that 
these two measures capture quite different types of episodic mem-
ory. Although, for Penn Word scores, we observe a null effect for 
functional connectivity observed both at rest and during a working 
memory task, it is an open question whether functional connectivity 
observed during a task that specifically engages episodic memory 
would predict individual differences in episodic memory ability.

4.2 | Characterizing predictive network anatomy

Contributions of insular and parietal functional connectivity to 
predictions of 2-back, List Sorting, and Picture Sequence scores 
align with previous results in the literature. For example, parietal 
activation is observed during both working memory tasks (Chai 
et al., 2018) and episodic retrieval (Cabeza et al., 2008). Vilberg and 
Rugg (2008) suggests that the episodic buffer, a part of Baddeley's 
working memory model that is critical to episodic long-term mem-
ory (Baddeley, 2000), is located in the parietal cortex. In Baddeley's 
model, the episodic buffer is used to temporarily store multimodal 
information (Baddeley, 2000). Thus, these works suggest that main-
tenance of retrieved information could contribute to parietal activa-
tions for both working and episodic memory tasks. This hypothesis 
is consistent with Unsworth (2007), which suggests that those with 
lower working memory capacity experience deficits in episodic re-
trieval in part because they search through more items than those 
with strong working memory capacity do. Although the insula is 
not considered a core region consistently activated during working 
memory (Chai et al., 2018) or episodic memory (Allen & Fortin, 2013) 
tasks, previous work has found that the insula contributes to both 
working and episodic memory. Menon and Uddin (2010) found that 
the insula improves access to working memory resources during de-
tection of an event. Xie et al. (2012) discovered that for individuals 
with amnestic mild cognitive impairment, disrupted intrinsic con-
nectivity of the insula network is correlated with deficits in epi-
sodic memory. Rest functional connectivity 2-back, List Sorting, and 

Picture Sequence plots did not all share these insular and parietal 
connections. Given that the N-back functional connectivity models 
outperformed the rest functional connectivity models, these find-
ings suggest that N-back task functional connectivity captures more 
of the connections relevant to the memory capabilities shared by 
these tasks than rest functional connectivity does.

4.3 | Limitations

One limitation of the present work is that age-adjusted versions of 
scores were available only for the Picture Sequence and List Sorting 
scores, not for the 2-back or Penn Word scores. Our analyses of 
age-adjusted Picture Sequence and age-adjusted List Sorting scores 
produced similar results to our analyses of the unadjusted versions 
of these scores. We do not believe that the unavailability of age-
adjusted versions of the other scores is a major issue as the age 
range of the examined HCP subjects is relatively narrow (mean age 
28 ± 3.6 years).

Another potential limitation is that this work did not account for 
task-related coactivation, which could have influenced connectivity 
estimates. Greene et al. (2020), which, like our paper, analyzed HCP 
data, found that for various tasks, task functional connectivity's abil-
ity to predict phenotype was not solely driven by task coactivation. 
This paper found that activation predicts phenotype only when the 
behavior completed during a task is related to the phenotype. Thus, 
it is possible that in our work, task coactivation accounts for some, 
but not all of the N-back task functional connectivity's predictive 
power for related memory test scores. Additionally, our rest analysis 
found that rest functional connectivity marginally significantly pre-
dicted List Sorting test performance (r = .10, p = 4.8e−2). Previous 
work, such as Rosenberg et al.  (2016) and Avery et al.  (2020), also 
found that rest functional connectivity predicts behavioral score 
performance. These rest functional connectivity findings suggest 
that for N-back task functional connectivity, task coactivation is not 
the sole predictor of memory test performance.

4.4 | Future work

Further work could use similar techniques to examine how well 
N-back task functional connectivity predicts other measures of 
working memory, episodic memory, and other types of memory. In 
evaluating how well N-back task connectivity matrices can predict 
other working memory test scores, we could gain a deeper insight 
into the types of working memory that N-back task functional con-
nectivity captures well. Likewise, using N-back task functional con-
nectivity to predict test scores that primarily measure other types of 
memory could provide insight into the range of memory capabilities 
captured by N-back task functional connectivity and the relation-
ships between the functional connections predicting different types 
of memory.
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5  | CONCLUSIONS

Our work demonstrates the ability of N-back task functional connec-
tivity to predict individual performance on another measure of work-
ing memory, and, to a lesser extent, on a measure of episodic memory. 
Thus, N-back task functional connectivity may capture cognitive 
processes that are essential to both working and episodic memory. 
By furthering our knowledge of N-back task functional connectivity, 
these findings provide insights into relationships between working 
memory and episodic memory, which are critical to better under-
standing many neurological conditions and crucial cognitive abilities.
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