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Abstract

Mesenchymal stromal cells are an important component of the bone marrow hematopoietic

niche. Prior studies showed that signaling from members of the transforming growth factor

(TGF) superfamily in mesenchymal stromal cells is required for normal niche development.

Here, we assessed the impact of TGF family signaling on niche maintenance and stress

responses by deleting Smad4 in mesenchymal stromal cells at birth, thereby abrogating

canonical TGF signaling. No alteration in the number or spatial organization of CXCL12-

abundant reticular (CAR) cells, osteoblasts, or adipocytes was observed in Osx-Cre,

Smad4fl/fl mice, and expression of key niche factors was normal. Basal hematopoiesis and

stress erythropoiesis responses to acute hemolytic anemia were normal. TGF-β potently

inhibits stromal CXCL12 expression in vitro; however, G-CSF induced decreases in bone

marrow CXCL12 expression and subsequent hematopoietic stem/progenitor cell mobiliza-

tion were normal in Osx-Cre, Tgfbr2fl/fl mice, in which all TGF-β signaling in mesenchymal

stromal is lost. Finally, although a prior study showed that TGF-β enhances recovery from

myeloablative therapy, hematopoietic recovery following single or multiple doses of 5-flur-

auracil were normal in Osx-Cre, Tgfbr2fl/fl mice. Collectively, these data suggest that TGF

family member signaling in mesenchymal stromal cells is dispensable for hematopoietic

niche maintenance under basal and stress conditions.

Introduction

The bone marrow contains a complex dynamic population of stromal and hematopoietic cells

that together generate a unique microenvironment, or niche, to support hematopoiesis. Mes-

enchymal stromal cells (MSCs) are an important component of the bone marrow hematopoi-

etic niche and include CXCL12-abundant reticular (CAR) cells, adipocytes, osteolineage cells,

arteriolar pericytes, and mesenchymal stem cells, all of which have been implicated in
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hematopoietic stem/progenitor cell (HSPC) maintenance.[1–7] The signals that regulate

MSCs and their impact on hematopoiesis are not well characterized.

There is evidence that TGF-β signaling regulates MSCs in the bone marrow. TGF-β has

complex stage-specific effects on bone marrow MSCs. It stimulates osteoprogenitor prolifera-

tion and induces mesenchymal stem cell migration, while inhibiting terminal osteoblast differ-

entiation.[8] In vitro modeling of the interaction between TGF-β and bone marrow MSCs

reveal its potential to negatively regulate adipocyte and osteoblast differentiation while pro-

moting osteoblast progenitor proliferation.[9–11] In addition, genetic abrogation of TGF-β
signaling in mesenchymal progenitor cells during development results in impaired osteoblast

differentiation and a marked expansion of CAR cells and bone marrow adiposity.[12,13]

These stromal alterations are associated with a shift in hematopoiesis from lymphopoiesis to

myelopoiesis.[12] In contrast, abrogation of TGF-β signaling in mesenchymal progenitor cells

at birth (using a doxycycline-inducible Osx-Cre transgene) resulted in no discernable alter-

ations in the niche or basal hematopoiesis. Thus, TGF-β signaling in mesenchymal cells during

development is required for the establishment of a normal hematopoietic niche but is dispens-

able for niche maintenance in adults under steady-state conditions.

There also is evidence that other members of the TGF family of cytokines may contribute

to the development, maintenance, and/or function of MSCs in the bone marrow. The TGF

superfamily consists of approximately 45 ligands divided into four subgroups: TGF-βs, deca-

pentaplegic-Vg-related (DVR), activins/inhibins, and other distant TGF members.[14,15] The

DVR subgroup consists of bone morphogenetic proteins (BMPs) and growth differentiation

factors (GDFs) which play a critical role in skeletal patterning and soft and hard tissue develop-

ment.[8,16–20] Deletion of Bmpr1a (Alk3) in hematopoietic and stromal cells using Mx1-Cre,
which targets osteoblast lineage cells, is associated with an increase in N-cadherin positive

osteoblasts and a modest increase in HSCs, suggesting that BMP signaling in stromal cells may

negatively regulate the stem cell niche.[21] Multiple groups have also shown that inhibition of

activin signaling by treating with an activin receptor 2 alpha (ACVR2a) ligand trap stimulates

erythropoiesis in vivo.[22–25] Indeed, clinical trials have demonstrated improvements in ane-

mia in patients with myelodysplastic syndrome treated with sotatercept, a ACVR2a antagonist.

[23,26] Although ACVR2a signaling in erythroid progenitors contributes to this effect,[22,24]

two groups showed that inhibition of ACVR2a signaling in bone marrow stromal cells also

stimulates erythropoiesis.[23,27]

Myelosuppressive therapy induces marked alterations in the bone marrow microenviron-

ment that includes an expansion of osteolineage cells and adipocytes, which have been linked

to hematopoietic recovery.[28,29] Relevant to this study, myelosuppressive chemotherapy acti-

vates TGF-β in the bone marrow, and inhibition of TGF-β signaling enhances recovery from

chemotherapy.[30] Whether TGF-β or other TGF family member signaling in mesenchymal

cells contributes to stromal and hematopoietic responses to myeloablative therapy or other

stressors is an open and clinically relevant question. Of note, recent single cell RNA sequenc-

ing of bone marrow stromal cells shows that Tgfbr1, Tfgbr2, Tgfbr3, and Smad 4 are expressed

in osteolineage cells and perivascular stromal cells.[31]

TGF family ligands bind to their cognate type I and type II serine/threonine kinase recep-

tors to phosphorylate and active pathway-restricted SMADs (R-SMADs), which in turn com-

plex with SMAD4 to active target genes. Thus, SMAD4 is required for all canonical TGF

family signaling. Here, we show that deletion of Smad4 in bone marrow MSCs at birth results

in no discernible alteration in the bone marrow hematopoietic niche. Indeed, basal and stress

hematopoiesis are normal. These data suggest that canonical TGF-β family signaling is not

required for hematopoietic niche maintenance or niche response to certain hematopoietic

stressors.
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Results

Post-natal loss of Smad4 in MSCs does not alter the bone marrow stromal

microenvironment

To investigate the role of canonical TGF family member signaling in bone marrow MSCs to

hematopoietic niche maintenance, we deleted Smad4 in mesenchymal cells using a doxycy-

cline-repressible Sp7 (osterix)-Cre transgene (Osx-Cre). Prior studies have shown that Osx-Cre
targets the majority of MSCs in the bone marrow, including osteoblasts, adipocytes, pericytes,

and CXCL12-abundant reticular (CAR) cells, but not endothelial cells or hematopoietic cells.

[5,32,33] We previously reported that constitutive activation of Osx-Cre, by maintaining Osx-
Cre, Smad4fl/fl mice off of doxycycline throughout embryonic development, results in a loss of

osteoblasts, a marked increase in adiposity, and severe runting.[12] Thus, in this study, we acti-

vated the Osx-Cre transgene post-natally by removing doxycycline 1–2 days after birth. To

confirm targeting, we performed lineage mapping studies on 6-to-8-week-old Osx-Cre,
ROSA26Ai9/+ (Ai9), Smad4fl/fl mice, in which tdTomato expression is induced in cells that have

undergone Cre-mediated recombination. As expected, in control Osx-Cre, Ai9 mice tdTo-

mato+ perivascular CAR cells and osteocalcin+ endosteal osteoblasts were observed; a similar

pattern was observed in Osx-Cre, Ai9, Smad4fl/fl mice (Fig 1A and S1A Fig). To assess Smad4

Fig 1. Mesenchymal stromal cell number and organization are normal in Osx-Cre Smad4fl/fl mice. (A)

Representative photomicrographs of femur sections fromOsx-Cre Ai9 or Osx-Cre, Ai9, Smad4fl/fl mice showing DAPI

stained nuclei (blue), osteocalcin (OCN) expressing mature osteoblasts (green), and tdTomato+ mesenchymal stromal

cells (red). (B) Relative Smad4 mRNA expression of sorted tdTomato+ CD45- Ter119- stromal cells normalized to β-
actin mRNA. (C) Representative flow plots showing the gating strategy used to identify CD31+ Sca1– sinusoidal

endothelial cells (SE) and CD31+ Sca1+ arteriolar endothelial cells (AE, left panel); data are gated on CD45–Ter119–

cells. The right panel shows PDGFRβ+ Sca1– CD31– mesenchymal stromal (PβS–) cells and PDGFRβ+ Sca1+ (PβS+)

mesenchymal stem cells. (D) Number of SE, AE, PβS–, and PβS+ cells per femur is shown for Osx-Cre (control) or Osx-
Cre Smad4fl/fl mice. (E) Relative mRNA expression in whole bone marrow compared to β-actin mRNA of the indicated

gene. Data represent the mean ± SEM. ����P< 0.0001 by unpaired student t-test.

https://doi.org/10.1371/journal.pone.0233751.g001
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deletion, we sorted tdTomato+ stromal cells from the bone marrow of Osx-Cre, Ai9, Smad4fl/fl

mice. Expression of full length Smad4 mRNA was essentially absent, confirming efficient dele-

tion of Smad4 in bone marrow MSCs (Fig 1B).

Immunostaining of bone sections from Osx-Cre, Ai9, Smad4fl/fl mice suggested that the

number and organization of bone marrow MSCs was comparable to control mice (Fig 1A, and

S1 Fig). To further characterize the hematopoietic niche, we quantified the number of

PDGFRβ+ Sca1+ CD31- lineage- cells (mesenchymal stem/progenitor cells) and PDGFRβ+

Sca1- CD31- lineage- cells (a mixture of CAR cells and osteoblasts) by flow cytometry (Fig 1C).

We also quantified CD31+ Sca1- lineage- venous sinusoidal cells and CD31+ Sca1+ lineage-

arteriolar endothelial cells. In each case, the number of stromal cells was similar to control

mice (Fig 1D). We previously reported that loss of TGF-β signaling in MSCs during develop-

ment results in a marked increase in bone marrow adiposity. However, no increase in bone

marrow adipocytes was observed in Osx-Cre, Smad4fl/fl mice (S1B Fig). Finally, total bone mar-

row expression of key niche factors, including Spp1, Scf, and Cxcl12, was comparable in Osx-
Cre, Smad4fl/fl and control mice (Fig 1E). Together, these data suggest SMAD4 signaling in

bone marrow MSCs is not required for their maintenance under steady-state conditions.

Post-natal loss of Smad4 in MSCs does not alter basal hematopoiesis

We next examined basal hematopoiesis in Osx-Cre, Smad4fl/fl mice. Peripheral blood counts

and the level of circulating T cells, B cells, and neutrophils were normal (Fig 2A and 2B). Like-

wise, the number of myeloid, B-cell, and T-cell lineage cells in the bone marrow was compara-

ble to control mice (Fig 2C and 2D). The number of phenotypic hematopoietic stem cells

(HSCs), common myeloid progenitors (CMPs), granulocyte-macrophage progenitors

(GMPs), megakaryocyte-erythrocyte progenitors (MEPs), and LSK cells in the bone marrow

of Osx-Cre, Smad4fl/fl also was similar to control mice (Fig 2E–2G). Finally, no perturbation in

Fig 2. Basal hematopoiesis is normal in Osx-Cre Smad4fl/fl mice. (A) Peripheral counts in Osx-Cre (control) or Osx-
Cre Smad4fl/fl mice. (B) Number of circulating CD3ε+ (T-lineage), B220+ (B-lineage), and CD11b+ Gr1+

(Granulocytes). (C) Bone marrow cellularity. (D) Number of CD3ε+, B220+, and CD11b– Gr1+ cells per femur. (E)

Number of common myeloid progenitors (CMP, lineage−Sca1– Kit+ CD34+ cells), granulocyte-macrophage

progenitors (GMP, lineage−Sca1– Kit+ CD34+ CD16/32+ cells), and megakaryocyte-erythrocyte progenitors (MEP,

lineage−Sca1– Kit+ CD34– CD16/32– cells) per femur. (F) Number of phenotypic hematopoietic stem/progenitor cells

(lineage−Sca1+ Kit+, LSK cells) per femur. (G) Number of phenotypic hematopoietic stem cells (LSK CD48– CD41–

CD150+ cells) per femur. (H) Spleen cellularity. (I) Number of CD3ε+, B220+, and CD11b+ Gr1+ per spleen. (J)

Number of CMP, GMP, and MEP per spleen. (K) Number of LSK cells per spleen. (L) Number of phenotypic HSCs

per spleen. Data represent the mean ± SEM.

https://doi.org/10.1371/journal.pone.0233751.g002
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the number of mature hematopoietic cells or HSPCs in the spleen of Osx-Cre, Smad4fl/fl mice

was observed (Fig 2H–2L). Collectively, these data show that SMAD4 signaling in bone mar-

row mesenchymal cells is not required to maintain basal hematopoiesis.

Post-natal loss of Smad4 in MSCs does not alter basal or stress

erythropoiesis

There is evidence that activin signaling in bone marrow stromal cells may contribute to the

regulation of erythropoiesis.[23] Flow cytometry was used to identify and quantify phenotypic

erythroid progenitors in bone marrow and spleen (Fig 3A). The number of stage I proerythro-

blasts (CD44high Ter119int cells), stage II basophilic erythroblasts (CD44high, Ter119high for-

ward scatterhigh cells), stage III (polychromatic erythroblasts, (CD44high, Ter119high forward

scatterint cells), and stage 4 orthochromatic erythroblasts (CD44high, Ter119high forward

Fig 3. Erythropoiesis is normal in Osx-Cre Smad4fl/fl mice. (A) Representative flow plots showing the gating strategy

to identify different stages of erythroid development: stage I proerythroblasts (CD44high Ter119int cells); stage II

basophilic erythroblasts (CD44high, Ter119high forward scatterhigh cells); stage III (polychromatic erythroblasts,

(CD44high, Ter119high forward scatterint cells); and stage IV orthochromatic erythroblasts (CD44high, Ter119high

forward scatterhigh cells). (B) Percentage of erythroid progenitors in the bone marrow. (C) Absolute number of

erythroid progenitors per femur. (D) Absolute number of erythroid progenitors per spleen. (E) Mice were treated with

a single 30 mg/kg dose of phenylhydrazine to induce hemolysis on day 0. Shown is the hematocrit at the indicated time

after phenylhydrazine. Data represent the mean ± SEM. Significance determined by one-way ANOVA.

https://doi.org/10.1371/journal.pone.0233751.g003
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scatterhigh cells) in the bone marrow or spleen was similar in control and Osx-Cre, Smad4fl/fl

mice (Fig 3B–3D).

To assess stress erythropoiesis, we characterized the response of mice to the induction of

acute hemolytic anemia after phenylhydrazine treatment. As expected, in control mice, treat-

ment with phenylhydrazine induced an acute fall in the hematocrit followed by recovery over

a 10-day period (Fig 3E). The magnitude of anemia and kinetics of recovery were similar in

Osx-Cre, Smad4fl/fl mice. These data show that SMAD4-dependent signaling in mesenchymal

stromal cells is not required for the suppressive effect of activins on erythropoiesis.

Post-natal loss of Smad4 in mesenchymal stromal cells does not alter

hematopoietic recovery following myeloablative chemotherapy

A prior study suggested that TGF-β contributes to hematopoietic recovery following myeloa-

blative therapy. However, the contribution of TGF-β signaling in MSCs to hematopoietic

recovery is unknown. To address this question, we characterized the hematopoietic response

to 5-fluorouracil (5-FU) in Osx-Cre, Tgfbr2 fl/fl mice, in which both canonical and non-canoni-

cal TGF-β signaling is abrogated in MSCs. Of note, we previously reported that basal hemato-

poiesis was normal in these mice when Osx-Cre was activated on day 1–2 after birth.[12] In

control mice, treatment with a single dose of 5-FU induced neutropenia with a nadir on day 7

and complete recovery by day 9 (Fig 4A). Both the magnitude of neutropenia induced by 5-FU

and kinetics of neutrophil recovery were similar in Osx-Cre Tgfbr2fl/fl mice. Repeated doses of

5-FU induce HSC exhaustion and death in mice due to hematopoietic failure. Similar median

survival after weekly 5-FU was observed in Osx-Cre, Tgfbr2fl/fl and control mice (Fig 4B).

These data show that TGF-β signaling in bone marrow MSCs does not contribute to hemato-

poietic recovery following myeloablative therapy. Of note, survival following repeated treat-

ment with 5-FU in Osx-Cre, Smad4fl/fl mice was comparable to control mice, suggesting that

Fig 4. TGF-β signaling in mesenchymal stromal cells is not required for hematopoietic recovery following

myeloablation with 5-FU. (A) Osx-Cre Tgfbr2fl/fl or Osx-Cre (control) mice were treated with a single 150 mg/kg dose

of 5-FU and hematopoietic recovery assessed by serial blood counts (n = 5 per cohort). (B) Osx-Cre Tgfbr2fl/fl or

control mice were treated weekly with 150 mg/kg of 5-FU for 4 weeks to induce HSC exhaustion. Shown is mouse

survival (n = 5 per cohort). (C) Osx-Cre Smad4fl/fl or control mice were treated weekly with 150 mg/kg of

5-fluorouracil (5-FU) for 4 weeks to induce HSC exhaustion. Shown is mouse survival (n = 8 per cohort). Data

represent the mean ± SEM. Significance determined by Log-rank Mantel-Cox test with Gehan-Breslow-Wilcoxon test.

https://doi.org/10.1371/journal.pone.0233751.g004
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canonical signaling by other TGF-β family members in MSCs also does not contribute to

hematopoietic stress responses to myeloablative therapy (Fig 4C).

Loss of Smad4 in mesenchymal stromal cells does not affect HSPC

mobilization by granulocyte-colony stimulating factor

There is strong evidence that G-CSF induced HSPC mobilization is mediated, at least in part,

by the downregulation of CXCL12 expression in bone marrow MSCs.[34–39] Treatment of

bone marrow stromal cell lines with TGF downregulates CXCL12 expression in a SMAD4-de-

pendent fashion.[40,41] There also is evidence that G-CSF treatment is associated with

increased circulating TGF-β1 levels.[42] Together, these observations suggest the hypothesis

that canonical TGF-β family signaling in bone marrow MSCs, by downregulating CXCL12

expression, may contribute to G-CSF induced HSC mobilization. To test this hypothesis, we

first asked whether TGF-β1 regulates CXCL12 in primary murine bone marrow MSCs. Indeed,

treatment of cultures of primary bone marrow MSC with TGF-β1 for 3 days resulted in a signif-

icant decrease in CXCL12 mRNA expression (Fig 5A). We next characterized G-CSF induced

HSPC mobilization in Osx-Cre, Smad4fl/fl mice. Treatment of control mice with G-CSF for 5

days induced robust mobilization of colony-forming cells (CFU-C) and Lineage- Sca+ Kit+

(LSK) cells into the blood and spleen (Fig 5B–5F). A similar level of HSPC mobilization was

observed in Osx-Cre, Smad4fl/fl mice. Consistent with prior studies, G-CSF induced a marked

decrease in total bone marrow CXCL12 mRNA expression, with a similar decrease observed in

Osx-Cre, Smad4fl/fl mice (Fig 5G). We also analyzed G-CSF induced HSPC mobilization in Osx-
Cre, Tgfbr2fl/fl mice, where all TGF-β1 signaling in MSCs is abrogated. Again, HPSC mobiliza-

tion by G-CSF, as measured by CFU-C levels in blood and spleen, was comparable to control

mice (S2 Fig). Collectively, these data show that neither TGF-β1 signaling nor canonical TGF

family signaling in bone marrow MSCs is required for efficient HSPC mobilization by G-CSF.

Discussion

Recent single cell RNA sequencing studies of murine bone marrow stromal cells show that

most of the receptors for TGF family members are expressed at low levels on mesenchymal

Fig 5. TGF-β signaling in mesenchymal stromal cells is not required for G-CSF induced HSPC mobilization. (A)

Bone marrow mesenchymal stromal cell cultures were established from wildtype mice. Cells were treated with TGFβ1

ligand (10 ng/ml) for 72 hours and then RNA harvested. Shown is Cxcl12 mRNA expression relative to β-actin mRNA.
���P< 0.001 by unpaired t-test. (B-D) Osx-Cre Smad4fl/fl or control mice were treated with 125 mg/kg of granulocyte-

colony stimulating factor (G-CSF) or saline alone twice daily for 7 days. Shown are the number of colony forming cells

(CFU-C) in bone marrow (B), blood (C) or spleen (D). (E-F) Shown are the number of LSK cells in bone marrow (E),

blood (F), or spleen (G) after 7 days of G-CSF or saline treatment. Data represent the mean ± SEM. Significance

determined by two-way ANOVA with alpha of 0.05 and Sidak’s multiple comparisons test. ���P< 0.001
����P< 0.0001.

https://doi.org/10.1371/journal.pone.0233751.g005
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stromal cells, including osteolineage cells, isolated from adult mice under steady state condi-

tions. Prior studies have established that TGF family members play an important role during

development in the generation of the hematopoietic niche in the bone marrow. In particular,

we recently showed that TGF-β signaling plays a key role in the specification of fetal mesen-

chymal progenitor cells to a non-adipocyte fate. There also is evidence, mainly from cell cul-

ture systems, that TGF family members can regulate the function of mesenchymal stromal

cells. In contrast, our data suggest that canonical SMAD4-dependent TGF family member sig-

naling in mesenchymal stromal cells is dispensable for their maintenance in the bone marrow

hematopoietic niche, once the niche is established. Of note, since Osx-Cre only targets mesen-

chymal stromal cells in the bone marrow, the contribution of TGF family member signaling in

other stromal cells, such as endothelial cells, to basal and stress hematopoiesis remains

uncertain.

There is evidence that alterations in mesenchymal stromal cells contribute to stress hemato-

poiesis responses. G-CSF induced HSPC mobilization is associated with a loss of active osteo-

blasts and decreased CXCL12 expression in bone marrow MSCs. Myeloablation due to

chemotherapy or radiation therapy is associated with an expansion of bone marrow adipo-

cytes, which support hematopoietic recovery through secretion of stem cell factor.[29] Myeloa-

blative radiation also induces a loss of osteoblasts, which is followed by an expansion of

osteolineage cells.[28] Our data suggest that SMAD-dependent signaling by TGF family mem-

bers in bone marrow MSCs is not a major contributor to hematopoiesis responses to certain

stressors, including myeloablation therapy with 5-FU, acute anemia, and G-CSF treatment.

Whether TGF family member signaling contributes to hematopoiesis responses after other

stressors, such as irradiation needs further study.

TGF family members activate multiple intracellular signaling pathways besides SMADs,

including Erk[43–45], Rho-like GTPases[46–51], JNK/p38[52,53], and PI3K/Akt[54–56]. Our

prior and current data suggest that both SMAD-dependent and -independent TGF-β signaling

in bone marrow MSCs is dispensable for hematopoietic niche maintenance and response to

certain stressors. However, for the other TGF family members, there is a possibility that non-

SMAD dependent signaling may regulate bone marrow MSCs. Indeed, a prior study showed

that loss of BMP receptor type 1A (Bmpr1a) in bone marrow MSCs results in an expansion of

N-cadherin+ osteoblastic cells and an increase in HSCs.[21] Our data suggests that non-

SMAD4 dependent BMP signaling likely mediates this response. Further studies are needed to

test this hypothesis and characterize the contribution of non-canonical signaling by TGF fam-

ily members in bone marrow MSCs to the regulation of basal or stress hematopoiesis.

Materials and methods

Contact for reagents and resource sharing

Further information and requests for resources and reagents should be directed to Daniel C.

Link (danielclink@wustl.edu).

Mice and animal housing

Osx1-GFP::Cre[57], Ai9[58], Smad4 fl/fl [59], and Tgfbr2fl/fl [60] mice were obtained from The

Jackson Laboratory (Bar Harbor, ME). Mice were crossed to generate Osx-Cre Tgfbr2fl/fl, Osx-
Cre Ai9 Tgfbr2fl/fl, Osx-Cre Smad4fl/fl, and Osx-Cre Ai9 Smad4fl/fl mice on a C57Bl/6 back-

ground. To suppress the Osx-Cre transgene throughout embryonic development, mice were

maintained on doxycycline chow (200 mg/serving) until post-natal day 0. All experiments

were done using 6-8-week-old mice. An equal number of male and female mice were used.

Mice were maintained under standard pathogen-free conditions, and all of the procedures
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performed in this study were approved by the Washington University Animal Studies Com-

mittee (approval number 20180018). Mice were anesthetized using isoflurane for all proce-

dures, and they were euthanized using CO2 asphyxiation followed by cervical dislocation.

Flow cytometry

Peripheral blood, bone marrow, and spleen mononuclear cell (MNC) preparations were sus-

pended in Tris-buffered ammonium chloride (pH 7.2) buffer for 15 minutes at room tempera-

ture (RT) to lyse red blood cells. MNCs were then incubated with target antibodies at 4˚C for

30 minutes in phosphate buffered saline (PBS) containing 1mM ethylenediaminetetraacetic

acid (EDTA) and 0.2% (weight/volume) bovine serum albumin (BSA). The HSPC panel

included Pe-Cy7-conjugated CD117 (2B8); BV711-conjugated Ly-6A/E; BV605-conjugated

CD150 (TC15-12F12.2) BV421-conjugated CD48 (HM48-1); APC-conjugated CD16/32

(2.4G2); FITC-conjugated CD34 (RAM34); and PE-conjugated CD135 (A2F10.1) and the fol-

lowing APC-Cy7-conjugated antibodies recognizing lineage markers: CD3e (145-2C11), B220

(RA3-6B2), Gr1 (RB6-8C5), Ter119 (TER-119), and CD11b (M1/70). The mesenchymal cell

panel included PerCP-Cy5.5-conjugated Ly-6A/E (D7), BV421-conjugated CD31 (390), bio-

tin-conjugated PDGFRβ (APB5), PE-conjugated streptavidin, APC-Cy7-conjugated CD45

(30-F11) and Ter119 (TER-119) antibodies. The lineage cell panel included PE-conjugated

CD115 (CSF-1R), FITC-conjugated Ly-6G/Ly-6C (RB6-8C5), BV421-conjugated CD45R/

B220 (RA3-6B2), and APC-Cy7-conjugated CD3ε (145-2C11). The erythroid panel included

FITC-conjugated Ter119 (TER-119), PE-conjugated CD44 (IM7) and the following APC--

Cy7-conjugated antibodies: Ly-6G/Ly-6C (RB6-8C5), CD45R/B220 (RA3-6B2), and CD3ε
(145-2C11). All antibodies were obtained from BioLegend (San Diego, CA), unless otherwise

indicated. Data were acquired using a FACS Aria III flow cytometer (BD biosciences, San Jose,

CA) and analyzed using FlowJoTM v10.6.1 software (BD biosciences).

Cell sorting

Mouse femurs, tibias, and pelvises were homogenized in PBS using a mortar and pestle. The cell

suspension was then incubated in PBS containing 1.7 mg/ml collagenase type 1 (#17100017,

ThermoFisher), 1.7 mg/ml collagenase type 2 (#LS004174, Worthington, Lakewood, NJ), and

1.7 mg/ml collagenase type 4 (#LS004188, Worthington) at 37˚C while shaking for 15 minutes.

The resulting cell suspension was filtered through CellTrics 50μm filters (Sysmex, Goerlitz, Ger-

many) to remove debris, creating a single-cell suspension. The samples were then incubated at

4˚C for 30 minutes in PBS containing 1mM EDTA and 0.2% BSA with the following panel of

BV421-conjugated lineage antibodies: CD45, Gr1, CD11b, and B220. Ai9+ lineage- cells were

sorted using a Sony iCyt Synergy SY3200 (Synergy)” cell sorter (Sony, San Jose, CA).

Immunostaining of bone sections. Mouse femurs were fixed in PBS containing 4% parafor-

maldehyde, pH 7.4, for 24 hours at 4˚C. Bones were then decalcified in PBS containing 14%

EDTA, pH 7.4, for 14 days at 4˚C, changing buffer every 24 hours. Following incubation in

PBS containing 30% sucrose for 1 hour at room temperature, bones were embedded in optimal

cutting temperature compound (OCT) (Sakura Finetek, Torrance, CA). The tissue blocks

were cut into 12μm sections using a Leica Cryo-Jane system (Leica Biosystems, Wetzlar, Ger-

many). For immunostaining, the slides were first incubated in 0.1M Tris-Cl pH 7.5, 150mM

NaCl, and 0.1% Tween 20 (TNT) buffer containing 10% donkey serum for 1 hour at room

temperature. Sections were then incubated for 15 minutes at room temperature using the Avi-

din/Biotin Blocking Kit (SP-2001; Vector Laboratories, Burlingame, CA). Sections were incu-

bated with the primary antibody overnight at 4˚C and, where applicable, then incubated with

the secondary antibody at a 1 to 100 dilution for 1 hour at room temperature. The following
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antibodies were used: rabbit anti-osteocalcin (FL-95) at a 1:50 dilution (Santa Cruz Biotechnol-

ogy Dallas, TX) and goat anti-VE-cadherin (AF1002) at a 1:25 dilution (R&D Systems Minne-

apolis, MN). Finally, slides were mounted with ProLong Gold antifade reagent with DAPI

(Life Technologies, Inc., Grand Island, NY). Images were acquired using an LSM 700 confocal

microscope (Carl Zeiss Microscopy, Peabody, MA) and processed using Volocity1 v6.5.1

software (PerkinElmer, Waltham, MA). Oil red staining was performed using the Sigma Oil

Red O kit per manufacturer’s recommendations (Millipore Sigma Darmstadt, Germany). Sec-

tions were mounted with Organo/Limonene Mount™ (Millipore Sigma), and images were

acquired using a Hamamatsu Nanozoomer (Hamamatsu Photonics, Hamamatsu City, Japan).

Quantitative reverse-transcription PCR

Total bone marrow RNA was obtained by flushing femurs with 1 ml of Trizol (Invitrogen).

RNA was prepared according to the manufacturer’s specification. One-step quantitative

reverse-transcription PCR was performed using 50 ng of total RNA and the iTaqTM Universal

Probes One-Step Kit (Bio Rad, Hercules, CA) with no template and no reverse transcriptase

controls. mRNA expression is normalized to β-actin mRNA expression. Data was collected on

a StepOnePlusTM Real-Time PCR System (Thermo Fisher). The following quantitative PCR

primer/probe sets were used:

TaqMan1 Assays and Arrays:

Actb, Mus_musculus VIC–spanning exons 1–2 Mm04394036_g1

Kit ligand, Mus_musculus FAM–spanning exons 2–3 Mm00442972_m1

Cxcl12, Mus_musculus FAM–spanning exons 2–3 Mm00445553_m1

Spp1, Mus_musculus FAM–spanning exons 3–4 Mm00436767_m1

IDT PrimeTime Std1 qPCR Assay:

Smad4, Mus_musculus FAM–spanning exons 8–9 Mm.PT.58.31543505

Mesenchymal stromal cell culture

C57BL/6 mice were sacrificed at 3-to-4-weeks-old, and hindlimb bones were harvested and

mechanically disrupted in complete Dulbecco’s modified eagle medium (DMEM) containing

20% fetal bovine serum (FBS) and penicillin-streptomycin using a mortar and pestle. The

resulting cell suspension was cultured overnight at 37˚C with 5% CO2, and the following day

non-adherent cells removed by gentle aspiration. Adherent cells were cultured until reaching

approximately 40% confluence (generally, 5–6 days). 100,000–200,000 cells were plated in 6

well plates 24 hours prior to treatment. TGFβ1 (14-8342-80, Life Technologies) was added

every 24 hours for 72 hours at a dose of 10ng/mL.

Colony-forming unit assay

25μL of peripheral blood, or 50,000 bone marrow MNCs, or 50,000 spleen MNCs were sus-

pended in DMEM containing 2% FBS and 1% penicillin-streptomycin. The cell suspensions

were mixed with 2 mL of methocult (M3434, Stemcell Technologies, Vancouver, Canada)

prior to plating 1.1 mL of the methocult-cell mix in one 35 mm dish, repeating with the

remaining mix for two technical replicates. The dishes were placed in a 100 mm petri dish

with a third 35 mm dish containing 3 mL of sterile water. The samples were incubated at 37˚C,

5% CO2 in air and� 95% humidity for 7–10 days prior to colony counting.

PLOS ONE Canonical TGF beta signaling in mesenchymal stromal cells is dispensable for hematopoietic niche maintenance

PLOS ONE | https://doi.org/10.1371/journal.pone.0233751 May 29, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0233751


Phenylhydrazine, 5-FU, and G-CSF treatments

Phenylhydrazine (30 mg/kg, Sigma) was given daily for 2 days by intraperitoneal injection. A

single injection of 5-FU (150 mg/kg, F6627-5G, Sigma) was given by intraperitoneal injection.

For the HSC exhaustion experiments, mice were treated with weekly 150mg/kg doses of 5-FU.

Human G-CSF (125 mg/kg, Amgen, Thousand Oaks, CA) was given twice daily for 7 days via

intraperitoneal injection. Complete blood counts were obtained using the HV950 hemavet

(Drew Scientific, Miami Lakes, FL).

Quantification and statistical analysis

Significance was determined using Prism v8.1.2 (GraphPad, San Diego, CA, USA). For single

parameter analysis, unpaired t-test were used to assess statistical significance. For multiple

parameter data, statistical significance was calculated using one-way or two-way analysis of

variance (ANOVA). P values less than 0.05 were considered significant. Expression data are

log transformed prior to statistical analysis.

Supporting information

S1 Fig. Characterization of mesenchymal stromal cells in Osx-Cre, Ai9, Smad4fl/fl mice. (A)

Representative photomicrographs of femur sections from Osx-Cre Ai9 (control) or Osx-Cre,
Ai9, Smad4fl/fl (Smad4fl/fl) mice showing DAPI stained nuclei and tdTomato (Ai9) mesenchy-

mal stromal cells with morphologic similarities to CAR cells. (B) Representative images of

femurs stained with oil red o (purple/red staining) to identify adipocytes (black arrowheads).

Femur sections from Osx-Cre Tgfbr2fl/fl mice are included as a positive control, since we previ-

ously showed that constitutive deletion of Tgfbr2 in mesenchymal stromal cells is associated

with a marked increase in bone marrow adiposity (Abou-Ezzi, Stem Cell Reports, 2019).

(TIF)

S2 Fig. G-CSF induced HSPC mobilization is normal in Osx-Cre Tgfbr2fl/fl mice. (A-C)

Osx-Cre Tgfbr2fl/fl or Osx-Cre (control mice) were treated with 125 mg/kg of granulocyte-col-

ony stimulating factor (G-CSF) twice daily for 7 days (). Shown are the number of colony

forming cells (CFU-C) in bone marrow (A), blood (B) or spleen (C). D-E) Shown are the num-

ber of LSK cells in bone marrow (D) and spleen (E) after 7 days of G-CSF. Data represent the

mean ± SEM. ���P< 0.001 and ����P< 0.0001 by two-way ANOVA with an alpha of 0.05 and

Sidak’s multiple comparisons test. The saline treated cohort is the same as in Fig 5.

(TIF)
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