
ARTICLE

Received 30 Sep 2015 | Accepted 8 Apr 2016 | Published 26 May 2016

A spin-liquid with pinch-line singularities
on the pyrochlore lattice
Owen Benton1, L.D.C. Jaubert1, Han Yan1 & Nic Shannon1

The mathematics of gauge theories lies behind many of the most profound advances in

physics in the past 200 years, from Maxwell’s theory of electromagnetism to Einstein’s

theory of general relativity. More recently it has become clear that gauge theories also

emerge in condensed matter, a prime example being the spin-ice materials which host an

emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed

by the presence of pinch-point singularities in neutron-scattering measurements. Here we

report the discovery of a spin-liquid where the low-temperature physics is naturally described

by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure

underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like

analogues of the pinch points observed in spin-ice. Remarkably, these features may already

have been observed in the pyrochlore material Tb2Ti2O7.
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G
auge symmetries are paramount in the understanding of
many of the most fundamental theories of physics. Recent
decades have seen an increasing appreciation of the role

of gauge theories in condensed matter physics, emerging from
the long-wavelength description of the collective behaviour of
electrons. Emergent gauge theories have proved particularly
important in the study of spin-liquids, strongly fluctuating,
disordered magnetic states, the description of which lies beyond
the familiar territory of Landau theory1–6.

The use of a gauge theory to describe the fluctuations of a
spin-liquid is exemplified by the case of the spin-ice materials
R2M2O7 (R¼Ho, Dy, M¼Ti, Sn) (refs 7,8). At low temperatures,
the spin configurations in a spin-ice are subject to a constraint
directly analogous to Gauss’ law for a magnetic field and
consequently may be described in terms of a gauge theory.
Among the many striking consequences of this is the observation
of pinch-point singularities in the magnetic neutron scattering
structure factor9, as observed in Ho2Ti2O7 (ref. 10), cf. Fig. 1a.
Pinch-point scattering has also been observed in the putative
quantum spin-ice Tb2Ti2O7 (refs 11–13). However, in this case,
the experimental scattering shows pronounced butterfly-like
features in the non-spin-flip (NSF) channel and the scattering
in the spin-flip (SF) channel shows narrow arm-like features
extending along the h111i directions of reciprocal space, neither
of which features are predicted for a spin-ice. This raises the
question of whether other types of spin-liquid may be found
amongst rare-earth pyrochlore magnets.

Here we introduce a different kind of spin-liquid on the
pyrochlore lattice. This spin-liquid arises on the phase diagram of
a realistic model for pyrochlore magnets. As with spin-ice, the
theory of this spin-liquid contains a gauge symmetry. The nature
of this theory is fundamentally different to the Maxwellian theory
which describes spin-ice, but just as the emergent gauge structure
of spin-ice reveals itself in pinch-point scattering, so the gauge
structure of this spin-liquid has striking consequences for
scattering experiments. We will show that at low temperatures,
this gauge structure leads to line-like singularities along the h111i

directions of reciprocal space, which we dub ‘pinch lines’ since
they are extended versions of the pinch-points exhibited in
spin-ice. This is particularly interesting in the light of neutron
scattering results on the pyrochlore magnets Tb2Ti2O7 and
Yb2Ti2O7, which show strong, sharpening features along the
h111i directions of reciprocal space. Indeed, our theory is able to
account for several features of the diffuse scattering observed in
Tb2Ti2O7 (refs 11–13), which are unaccounted for by a theory
based on a spin-ice model.

Results
Spin-liquid regime in a model for pyrochlore magnets.
We begin with the most general, symmetry-allowed, Hamiltonian
for nearest neighbour anisotropic exchange on the pyrochlore
lattice14–16:

Hex ¼
P
hiji

Si � �J ij � Sj; �J 01 ¼
J2 J4 J4

� J4 J1 J3

� J4 J3 J1

0
@

1
A ð1Þ

where the exchange matrix �J 01 couples nearest neighbours along
the r01¼ (0,1,1) direction and the other exchange matrices can be
generated from �J 01 using point group operations. As shown in
refs 16,17, it is possible to map out the entire classical ground-
state phase diagram of equation (1) by an exact transcription of
the Hamiltonian in terms of local fields defined on each
tetrahedron16–18:

Hex ¼
1
2

X
tet

DA2 m2
A2 þDEm2

EþDT2 m2
T2
þDT1 �m2

T1 � þDT1 þm2
T2 þ

h i
þE0

ð2Þ
where all the coefficients DaZ0, E0 is the ground-state energy and
the sum runs over all tetrahedra in the lattice.

The five fields mA2 , mE, mT2 , mT1 � , mT1 þ appearing in
equation (2) are defined in Supplementary Table 1.
They transform according to the A2, E, T2, T1 irreducible
representations of the point group and have respective dimension
1,2,3,3 and 3. Along a line of points in parameter space the three
ordered phases which respectively maximize the fields mT1 � ,
mT2 , mE become degenerate. This line includes the point
J1¼ J2¼ J4¼ 0, J3o0 (cf. Fig. 2a). For parameter sets along this
line of points we have DA2 ¼DE¼DT1 � ¼ 0, DA2 , DT1 þ40 and
the Hamiltonian is given by

HCL
ex ¼

1
2

X
tet

½DA2 m2
A2
þDT1 þm2

T1 þ �þE0: ð3Þ

In a classical ground state of equation (3) it must be the case
that

mA2 ¼ 0; mT1 þ ¼ 0 ð4Þ
for every tetrahedron in the lattice. All of the results derived in
this paper flow from the implementation of these constraints.
These provide an exact description of the classical ground states
along the line in parameter space where the three phases in
Fig. 2a are degenerate. Observing the consequences of these
constraints does not, however, require precise fine-tuning of the
Hamiltonian to equation (3). These constraints will also dominate
the physics at finite temperatures for any choice of parameters
where DA2 , DE, DT1 �ooDA2 , DT1 þ , such that energy cost of
having a finite value of the fields mT1 � , mT2 , mE is much lower
than the cost to have a finite value of mA2 , mT1 þ .

The constraints in equation (4) are insufficient to select an
ordered ground state in themselves. In such circumstances,
fluctuations may select a preferred ordered state via the order-by-
disorder mechanism, but Monte Carlo simulations indicate that
they fail to do so, down to temperatures 3 orders of magnitude
below the scale of the bare coupling (see Fig. 2b,c). The system
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Figure 1 | Comparison of correlations in spin-ice with those of the

spin-liquid discussed in this work. Predictions for polarized neutron

scattering experiments are shown in the (a,b) SF and (c,d) NSF channels, as

measured by Fennell et al.10,11. (a) Prediction for spin-ice in the SF channel

exhibiting pinch-point singularities. (b) Prediction for scattering in the SF

channel in the spin-liquid discussed in this work. (c) Prediction for spin-ice

in the NSF channel. This channel is completely featureless in a nearest

neighbour model for spin-ice—as shown here—and develops smooth

maxima at the zone boundaries in the presence of long range dipole

interactions10. (d) Prediction for scattering in the NSF channel in the

spin-liquid discussed in this work. In contrast to spin-ice, the spin-liquid

discussed here exhibits singular features in both SF and NSF scattering.

Results are taken from classical Monte Carlo simulation of the nearest

neighbour model Hex (equation (1)), as described in the text.
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thus remains in a disordered but highly correlated state down to
low temperature.

Theory of the spin-liquid regime. We can understand the
correlations of the spin-liquid from equation (4). The demand
that the fields mA2 and mT1 þ vanish everywhere leaves the fields
{mE, mT2 , mT1 � } with freedom to fluctuate in the ground state.
The spatial variation of these fluctuations is constrained by the
fact that neighbouring tetrahedra share a spin, therefore a
fluctuation of the local fields on one tetrahedron affects the
values of the local fields on the neighbouring tetrahedra. The
fields mE, mT2 , mT1 �must therefore fluctuate in a correlated
manner in order to avoid inducing violations of equation (4). In
what follows we show how these correlated fluctuations can be
understood in terms of the fluctuations of a tensor field with a
continuous gauge freedom.

The constraints on the spatial variation of mE, mT2 , mT1 � may
be obtained from the continuity of fields between A and B
sublattice tetrahedra. The ground-state constraints (equation (4))
in fact imply a set of local conservation laws, on the lattice. These
conservation laws in turn suggest that a coarse-graining approach
can be successful in describing the fluctuations of mE, mT2 , mT1 � ,
and, unlike the global conservation laws which underpin
hydrodynamic theories, these fully local conservation laws can

have consequences even for short wavelength fluctuations, as we
shall see. Expanding the local constraints to leading order in a
gradient expansion we find

r �mT1 � ¼ 0 ð5Þ
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where the angle f0T1
is a function of the exchange parameters,

defined in the Methods section.
We wish to resolve the constraints (5) and (6) naturally using a

gauge-theoretic approach. Note that since mT1 � appears in both
constraints, we cannot simply introduce separate gauge fields to
resolve equations (5) and (6). Instead, we incorporate the eight
components of {mE, mT2 , mT1 � } into a traceless tensor field B:
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Satisfaction of equation (6), along with the condition Tr½B� ¼ 0
is guaranteed by the introduction of a symmetric, tensor field Y
and writing

B ¼ D � Y; D �
0 � @z @y

@z 0 � @x

� @y @x 0:

0
@

1
A ð8Þ

The form of the matrix gauge field Y is then constrained by
equation (5), which is satisfied if we take Y of the form

Y ¼
c Wz Wy

Wz c Wx

Wy Wx c

0
@

1
A: ð9Þ

We can generate alternative forms of Y by applying Abelian
gauge transformations to equation (9) of the form

Ymn ! Ymnþ @m@nz ð10Þ
The transformations of equation (10) leave the flux matrix B, and
therefore the physical spin system, unchanged. The form of Y in
equation (9) thus corresponds to a specific choice of gauge. The
theory of the spin-liquid is therefore invariant under a group of
gauge transformations z 2 R. Abelian gauge transformations of a
similar form to equation (10), acting on tensor fields also appear
in the linearized theory of general relativity19 and the theory of
S¼ 2 gauge fields20.

At low temperatures, where there are only fluctuations of the
local fields mE, mT2 , mT1 � , the free energy will be controlled by
the entropy of these fluctuations. Coarse-graining over some
volume much larger than a unit cell but much smaller than the
whole system, there will be more states available (and therefore
more entropy) with small values of mE, mT2 and mT1 � (ref. 5).
The most general symmetry-allowed Gaussian free energy
describing small fluctuations of these fields, when written in
terms of the tensor field Y, takes the form

F SL ¼ T
Z

d3r
Vu:c:

laTr ðD � YÞ � ðD � YÞT
h ih

þ lbTr ðD � YÞ � ðD � YÞ½ � þ lc

X
m

D � Yð Þ2mm

#

ð11Þ
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Figure 2 | Evidence of spin-liquid behaviour from Monte Carlo

simulation. (a) Classical ground-state phase diagram of Hex (equation (1))

for J3o0, in the plane J4¼0, showing how ordered phases with symmetry

T1, E and T2 meet at the point J1¼ J2¼0 (ref. 16). (b) Order-parameter

susceptibilities and (c) heat capacity calculated in classical Monte Carlo

simulation of Hex (equation (1)), for parameters J1¼ J2¼ J4¼0, J3o0.

No phase transition is observed down to T¼0.001 |J3|. Instead, the order-

parameter susceptibilities of neighbouring ordered phases exhibit a Curie

law crossover, characteristic of a Coulombic spin-liquid54. The symbols

used for different symmetry channels are shown in the inset.
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which is invariant under the gauge transformations of
equation (10).

Consequences for neutron scattering experiments. The
distinctive nature of this spin-liquid, and of the theory which
describes it (equation (11)), can be revealed by neutron scattering
experiments. This can be seen by calculating the correlation
functions of the local fields mE, mT2 , mT1 � in momentum space.
In addition to displaying pinch-point singularities at zone centres,
these correlation functions are singular approaching any
momentum q which is along the (h, h, h) directions of reciprocal
space, or along any direction related by the lattice symmetry to
(h, h, h). This contrasts with the case of the Coulombic spin-
liquid which occurs in the case of spin-ice, where the correlation
functions are only singular at the Brillouin zone centre. Since the
fields mE, mT2 , mT1 � are simply linear combinations of the spins,
this singular behaviour will also show up in the spin structure
factor S(q), measurable in neutron scattering experiments.

In the vicinity of one of these singularities, at T¼ 0, the
scattering is approximated by

S Kþ qk þ q?
� �

�
X
ab

gab K; qk
� � qa?qb?

q2
?

ð12Þ

where K is a reciprocal lattice vector, q|| is parallel to a h111i
direction and q> is orthogonal to that direction. The coefficients
gab determine the orientation of the singularity in q-space. Their
dependence on the Brillouin zone K may be thought of as a form
factor determining the contribution of the fluctuations of each
field ml to the scattering in each Brillouin zone. The dependence
on q|| is smooth and near a zone centre K one may write
gab(K, q||)Egab(K, 0).

For gab=/dab the structure factor in the limit q>-0 will depend
on the direction of approach and we have a singularity, along the
entire h111i direction. Equation (12) has the form of a pinch-
point singularity extended into a line. We therefore will refer to it
as a ‘pinch-line’ singularity.

These pinch lines can be observed by taking planar cuts
through the scattering, which intersect these lines away from
reciprocal lattice vectors (Fig. 3a). This is illustrated using a T¼ 0
calculation of S(q) from the continuum theory (equation (11)) in
Fig. 3b,e. For comparison, we show in Fig. 3c,f, the same quantity
calculated at finite temperature within classical Monte Carlo
simulation.

The simulation results show sharp features in the structure
factor approaching the h111i directions, as predicted by the
theory (equation (10)). There is a small broadening of these
singularities, coming from the finite temperature thermal
fluctuations present in the Monte Carlo simulation. These
features are even more clearly visible in the correlation functions
of the local fields {mE, mT2 , mT1 � }; see Supplementary Fig. 1 and
Supplementary Note 1. The presence of the pinch lines in the
simulation results is a strong validation of our theory of the
spin-liquid regime.

The continuum theory (equation (10)) was derived from local
constraints, with associated local conservation laws, and the
structure of the theory is inherited from the structure of those
local constraints. This leads us to expect that the pinch-line
singularities will be robust features of the spin-liquid, even at
short wavelengths. We have confirmed this expectation using two
independent, lattice-based calculations. Firstly, the sharpening of
the scattering around the h111i directions is clearly seen in the
Monte Carlo simulations in Fig. 3c,f. Secondly, we have also
performed a 1=N calculation of the spin correlations along the
lines of that performed for the Heisenberg model in ref. 21. This
calculation also predicts pinch-line singularities along the h111i

directions of reciprocal space, as shown in Fig. 3d,g. It is therefore
apparent that these singularities are a robust feature of the
spin-liquid, arising from the structure of its ground-state
constraints, which is captured by the continuum theory derived
in this work.

Discussion
Thus far we have uncovered a spin-liquid described by a tensor
field carrying a continuous gauge symmetry, arising in a
particular limit of a realistic model for magnetism on the
pyrochlore lattice (equation (1)). The signal feature of this
spin-liquid is sharp line-like singularities along h111i directions
of reciprocal space, which occur in addition to pinch-point
singularities at zone centres. These pinch-line singularities are
unique to the spin-liquid discussed in this paper and as such
provide a very discriminating smoking-gun signature of this
magnetic state. In the light of this discovery, it is interesting to
consider two known pyrochlore materials, which are often
discussed in the context of spin-liquid physics: Tb2Ti2O7 and
Yb2Ti2O7.

Tb2Ti2O7 has long been a focal point for discussion of
three-dimensional spin-liquid physics22–24. While equation (1)
alone may not constitute a complete quantitative model for the
physics of Tb2Ti2O7 it is interesting to compare observations on
Tb2Ti2O7 with the phenomenology of the spin-liquid. Polarized
neutron scattering experiments on Tb2Ti2O7 have shown
evidence of singular scattering at Brilllouin zone centres, but
the form of this scattering looks rather different to a typical
spin-ice, especially in the non-spin-flip (NSF) channel. At the
same time, the data presented in ref. 11, shows bright, narrow
features extending along the h111i directions.

As a point of comparison to these experiments, the behaviour
of the structure factor S(q) in the spin-flip (SF) and non-spin-flip
(NSF) channels, appropriate to a polarized neutron scattering
experiment with initial polarization n||(1, –1, 0), is shown in
Fig. 1, for the same set of exchange parameters as in Fig. 3.
Narrow prominences are visible in the SF channel along the h111i
directions (Fig. 1b). There are also pinch points in both channels
at Brillouin zone centres. The distribution, orientation and
polarization dependence of the pinch points observed in (ref. 11)
is the same as that in Fig. 1b,d. In particular, we are able to
reproduce the shape of the features in the NSF channel,
something which cannot be done with a spin-ice-based descrip-
tion. The possibility that the theory described in this work could
apply to Tb2Ti2O7 is lent weight by a recent attempt at
parameterizing a pseudo-spin Hamiltonian for Tb2þ xTi2� xO7þ
y (ref. 25) which places it close to the three-way phase boundary
at which this spin-liquid emerges in our classical treatment.

Spin-liquid behaviour at finite temperature does not rule out the
possibility of an magnetic order at lower temperature. Indeed,
recent experiments have demonstrated the presence of competing
ordering phenomena in Tb2Ti2O7, with quadrupolar26,27

and short range ordered antiferromagnetic states12,28,29 being
observed depending on the sample stoichiometry and experimental
cooling protocol. This is consistent with the nature of the spin-
liquid considered in our manuscript, which sits at the confluence of
many competing orders. In particular, we note that the ground-
state manifold of the spin-liquid contains states consistent with the
q*¼ (±1/2,±1/2,±1/2) order observed under field cooled
conditions12,28. These states can only be connected to the other
states of the spin-liquid by rotation of an OðLÞ number of spins,
where L is the linear size of the system. This may suggest an
explanation for the sensitivity to how the system is cooled—namely
that field cooling may drive the system into a state from which it is
hard to reach the other parts of the ground-state manifold.
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The combination of spin-liquid physics and prominent features
in the scattering along q||(1, 1, 1) is also strongly reminiscent of
the discussion surrounding another pyrochlore: Yb2Ti2O7

(refs 30–34). Indeed, it has recently been argued that the
unusual physics of this material springs from competition
between the E and T1 regions of the phase diagram in Fig. 2a
(refs 16,35). In this context, it is not unreasonable to imagine that
the physics of the paramagnetic phase of Yb2Ti2O7 may be
influenced by a nearby spin-liquid phase of the form described
here. This provides an interesting alternative scenario to quantum
spin-ice physics in that material.

One concern which arises, in any comparison with experiment,
is the extent to which the validity of this theory depends on
detailed, fine-tuning of parameters. At first sight, this might seem
like a serious obstacle, since it is unlikely that any real material
would exist exactly at the point where three different ordered
phase meet. However, in practice, a moderate detuning of
parameters is only likely to be important in determining the
nature of the competing (classical) ground state. As long as
experiments are carried out in the disordered phase, at a
temperature such that violations of the constraint, equation (4),
are rare, the long-wavelength physics will still be described by
equation (11), and pinch lines can be observed, albeit with a finite
width coming from thermal fluctuations. The robustness of pinch
lines against a finite density of thermally excited violations of
equation (4) is evidenced by our Monte Carlo simulations
(Fig. 3c,f), which incorporate thermal excitations out of the
spin-liquid ground-state manifold. Thus, at finite temperature,

the signature features of the spin-liquid, including pinch
lines, should remain observable for a finite region of parameter
space.

Another important question is the way in which quantum
fluctuations will affect the properties of the spin-liquid at low
temperartures. In the one case which is fully explored, quantum
spin-ice, quantum tunnelling between different spin-ice
configurations stabilizes a quantum spin-liquid ground state
with the same U(1) gauge structure as the parent, classical
spin-liquid36–41. Meanwhile, stronger off-diagonal exchange
interactions between individual spins drive the system to order
at low temperatures42–44. However in both cases, classical
spin-liquid behaviour is still observed over long-length scales, at
finite temperature. Similarly, studies of the quantum S¼ 1/2
Heisenberg model on the pyrochlore lattice find similar spin
correlations45–47 to those predicted by the gauge-theoretic
description of the classical problem21. In the present case, the
nature of the ground state in the presence of quantum
fluctuations is an open problem, with both ordered and
quantum spin-liquid phases a realistic possibility. However, the
simplest estimate of the effect of quantum fluctuations, within
linear spin-wave theory, suggests that the ground state is
disordered for a finite range of parameters around the
classically degenerate point16. And, given the large entropy
associated with the classical spin-liquid, it seems likely that the
system will retain many of its operational features—including
the extended pinch lines—at finite temperature, regardless of its
quantum ground state.
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Figure 3 | Gauge structure of the spin-liquid as revealed through pinch-line singularities. (a) Location of pinch-line singularities in reciprocal space.

(b,e) Spin structure factor S(q) in parallel planes in reciprocal space in the Brillouin zone centred on K¼ (3,3,1), as calculated from the continuum theory

(equation (11)). Singular features are visible where these planes intersect h111i directions, as indicated by the black circles in each panel. These pinch-line

singularities, equation (12), are characteristic of the gauge structure of the spin-liquid. (c,f) Spin structure factor calculated in finite temperature Monte

Carlo simulation, in the same regions of reciprocal space. The pinch lines appear in the simulation results as sharp features around the point where h111i
directions intersect the plane. (d,g) A calculation of the structure factor made with a lattice-based 1=N theory, also exhibiting pinch-line singularities. The

simulations were performed at a temperature T¼0.001 K for a cluster of N¼ 256,000 sites and dimensions 40a0�40a0� 10a0 where a0 is the linear size

of a cubic unit cell. Results were calculated for parameters J1¼0.042, J2¼0.122, J3¼ �0.118 and J4¼ �0.04 meV, with anisotropic

g-tensor g?=gk ¼ 1=3, in approximate correspondence to Tb2Ti2O7 (ref. 55). Since the crystal field ground state in Tb2Ti2O7 is a non-Kramers doublet, the

finite value of g> should be thought of as coming from mixing with the low-lying crystal field excitation.
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The theory presented in this work provides a fundamentally
different paradigm to the emergent electromagnetism known
from spin-ice and possesses a gauge freedom bearing an
intriguing similarity to that appearing in the linearized theory
of general relativity. This leads to the possibility of a unified
theory of classical spin-liquids on the pyrochlore lattice, and a
classification of the above based on their associated
gauge freedoms and the consequent singularities in their
correlation functions. These issues will be explored further
elsewhere.

The discovery of a classical spin-liquid is also a promising
starting point to search for new quantum spin-liquid ground
states. Previous experience suggests that most quantum spin-
liquids are found in models close to a point of high classical
degeneracy, and in the case of spin-ice the same gauge symmetry
underpins both the classical and quantum spin-liquid states. We
therefore hope that this work can open the way for even richer
physics to be discovered upon the inclusion of quantum
fluctuations.

In conclusion, we have demonstrated the existence of an
unusual kind of classical spin-liquid phase on the pyrochlore
lattice, described by the fluctuations of a tensor field with a
continuous gauge freedom. The nature of this spin-liquid is
revealed by pinch-line singularities in correlations which could be
observed in neutron scattering experiments.

Methods
Decomposition of Hamiltonian in terms of local fields. It was shown in ref. 16
that the generalized model for nearest neighbour exchange on the pyrochlore
lattice (equation (1)) may be exactly rewritten in terms of local fields, defined on
the pyrchlore tetrahedra

Hex ¼
1
2

X
tet

DA2 m2
A2
þDEm2

E þDT2 m2
T2

�
þDT1 þm2

T1 þ þDT1 �m2
T1 �

�
þ constant:

ð13Þ
The fields are labelled by the irreducible representations of the point group
according to which they transform. These fields are defined in Supplementary
Table I.

The angle f0T1
which appears in the definitions of mT1 þ and mT1 � and

equation (6) is chosen such that there is no bilinear coupling between mT1 þ and
mT1 � and such that

aT1 � � aT1 þ : ð14Þ
Note that this convention for the definition of the T1 symmetric fields is

different to that chosen in ref. 16.

Monte Carlo simulation. The classical Monte Carlo simulations used to obtain the
results in Figs 1–3 are based on the Metropolis algorithm with parallel temper-
ing48,49 and over-relaxation50. The spins are treated as classical vectors of fixed
length |Si|¼ 1/2 with local updates using the Marsaglia method51.

Following common practice in Monte Carlo simulations, the order-parameter
susceptibilities appearing in Fig. 2 are calculated according to the following
formula:

w ¼ N
T

m2
l

� �
� mlj jh i2

� �
ð15Þ

where N is the number of spins in the system, T is the temperature and ml are the
local fields appearing in equation (2).

Lattice-based calculation of the structure factor. For the purposes of
comparison with the continuum theory developed in the main text, we have also
performed some lattice-based calculations of the correlations in the spin-liquid
regime.

These calculations follow a method which has been previously been shown
successful in understanding the correlations of disordered phases of spin-ice9 the
Heisenberg model on the pyrochlore lattice21,52, and protons in water ice53.

In this approach the constraints on the lengths of the spins

S2
i ¼ S2 ð16Þ

are only enforced on average

S2
i

� �
¼ S2: ð17Þ

Equation (17) is enforced by means of a Lagrange multiplier l added to the
Hamiltonian. We write

bH ! bHl ¼ bHþ l
X

i

S2
i ð18Þ

where b is the inverse temperature.
Using a Fourier transformation bHl may be written as

bHl ¼
1
2

~S ð� qÞ �MðqÞ � ~SðqÞ ð19Þ

where ~S qð Þ is a 12-component vector formed from the Fourier transforms of the
three spin components on each of the four sublattices.

The correlations of ~S qð Þ are then

~Si � qð Þ~Sj qð Þ
� �

¼ M� 1 qð Þ
� �

ij ð20Þ

and l can be chosen such that equation (17) is obeyed.
Where MðqÞ possesses flat bands of eigenvalues at the bottom of its

spectrum—as is the case in the spin-liquid regime—the limit T-0 of the
correlation function becomes a projection matrix, projecting into the subspace
described by the associated eigenvectors53. This projection operator can be thought
of as enforcing the local ground-state constraints9.

It is this, zero-temperature, limit of the correlation function which is plotted in
Fig. 3d,g of the main text.

The approach outlined here can be constructed as a perturbative expansion in
powers of 1=N , where N is a number of copies of the system and the spin length
constraint (equation (17)) becomes

1
N
XN
a¼1

S2
i;a ¼ S2 ð21Þ

This method is described in more detail in ref. 17.

Data availability:. This is a theoretical work. The authors declare that the data
supporting the findings of this study are available within the article and its
supplementary information.
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