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Liquid Biopsy Enables Quantification of the 
Abundance and Interindividual Variability of 
Hepatic Enzymes and Transporters
Brahim Achour1,*, Zubida M. Al-Majdoub1, Agnieszka Grybos-Gajniak2, Kristi Lea3, Peter Kilford4,  
Mian Zhang4, David Knight5, Jill Barber1, Jeoffrey Schageman3 and Amin Rostami-Hodjegan1,6

Variability in individual capacity for hepatic elimination of therapeutic drugs is well recognized and is associated 
with variable expression and activity of liver enzymes and transporters. Although genotyping offers some degree of 
stratification, there is often large variability within the same genotype. Direct measurement of protein expression is 
impractical due to limited access to tissue biopsies. Hence, determination of variability in hepatic drug metabolism 
and disposition using liquid biopsy (blood samples) is an attractive proposition during drug development and 
in clinical practice. This study used a multi-“omic” strategy to establish a liquid biopsy technology intended to 
assess hepatic capacity for metabolism and disposition in individual patients. Plasma exosomal analysis (n = 29) 
revealed expression of 533 pharmacologically relevant genes at the RNA level, with 147 genes showing evidence 
of expression at the protein level in matching liver tissue. Correction of exosomal RNA expression using a novel 
shedding factor improved correlation against liver protein expression for 97 liver-enriched genes. Strong correlation 
was demonstrated for 12 key drug-metabolizing enzymes and 4 drug transporters. The developed test allowed 
reliable patient stratification, and in silico trials demonstrated utility in adjusting drug dose to achieve similar 
drug exposure between patients with variable hepatic elimination. Accordingly, this approach can be applied in 
characterization of volunteers prior to enrollment in clinical trials and for patient stratification in clinical practice to 
achieve more precise individual dosing.

The liver has a central role in the metabolic elimination of not 
only endogenous compounds but also exogenous chemicals, in-
cluding the majority of drugs. Variability in individual capacity 
for hepatic elimination of therapeutic drugs has been recognized 
and systematically studied over the past 50  years.1 Differences 
between patients in response to drug therapy are therefore com-
mon and they represent a persistent challenge for clinicians, often 

leading to suboptimal patient care.2 Departure from the “one-size-
fits-all” approach to dosing, routinely practiced in the clinic, to 
more individualized therapy has been advocated by recent guid-
ance,3,4 with the objective of improving drug efficacy, reducing ad-
verse reactions, and minimizing medicines wastage. In most cases, 
implementation of precise dosing has been linked to differences 
in genetics, particularly those affecting drug pharmacokinetics,5 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Precision dosing aims to deliver the right dose of a drug 
to the right patient. This requires a diagnostic test to stratify 
patients according to their individual metabolic capacity. 
Implementation of patient stratification using genetics has not 
been successful.
WHAT QUESTION DID THIS STUDY ADDRESS?
 Can patients be stratified based on their individual hepatic 
elimination capacity using liquid biopsy? Can liquid biopsy 
input be used to design individualized dosage regimens for pa-
tients with variable hepatic elimination?

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 This study developed a pharmacological test based on liquid 
biopsy measurement to monitor hepatic expression levels of key 
enzymes and transporters. This allowed effective patient strati-
fication and enabled improved precision of drug dose selection.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 This technology should facilitate patient stratification to 
achieve more precise dosing in the clinic and should enable 
improved characterization of volunteers prior to enrollment in 
clinical trials.
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such as polymorphisms in CYP2D66 and CYP2C9.7 However, 
despite the important role of pharmacogenetics in determining 
drug pharmacology, there is evidence of large expression variabil-
ity within each genotype,6,8 which can only be captured by expres-
sion data, and there are no known genetic signatures that define 
the wide expression variations observed for certain key enzymes, 
such as CYP3A4.9

A survey of the contribution of specific enzyme families to 
drug metabolism showed that cytochrome P450 and glucu-
ronosyltransferase enzymes mediate the direct metabolism of 
~  90% of the 200 most prescribed drugs in the United States 
in 2002,10 a trend that changed very little in recent years.11 The 
drug-eliminating function of the liver is also predicated on drug 
transporters, which play a key role in trafficking drugs and their 
metabolites in and out of liver cells. The interplay between the 
function of enzymes and transporters dictates a patient’s ex-
posure to a certain drug.12 Guiding patient stratification and 
individual dosing will therefore crucially require quantitative 
characterization, beyond genetics, of hepatic enzymes and trans-
porters in individual patients.13 Access to tissue biopsies is lim-
ited,14 and development of an effective and minimally invasive 
assay for patient stratification remains an essential requisite for 
precision dosing to become a clinical reality.15

In this study, we present a novel “liquid biopsy” test based on 
the analysis of enzymes and transporters in plasma exosomes iso-
lated from individual blood samples. A quantitative link with 
protein expression in matching liver tissue was established, for 
the first time, by accounting for specific shedding of exosomes 
from the liver into the bloodstream. The utility of the test was 
demonstrated in relation to identifying patients at the extremes 
of drug exposure and guiding drug dose selection using an in sil-
ico model.

METHODS
Human plasma and liver samples
Matched blood and liver samples were collected with informed consent 
from 29 patients (16 men, age range 44–85  years) undergoing surgical 
resection for liver cancer at the Manchester Royal Infirmary, Manchester 
University NHS Foundation Trust, UK, and stored at the Manchester 
Biomedical Research Centre biobank. Ethical approval was granted 
by the North West Research Ethics Committee (14/NW/1260, 19/
NW/0644). Liver samples were removed from histologically normal 
tissue adjacent to tumors. Blood was fractionated, and platelet-depleted 
plasma was stored in EDTA-treated cryogenic tubes at −80°C. Healthy 
(control) plasma from five donors (3 men, age range 23–57  years) was 
supplied by BioIVT (West Sussex, UK). One plasma sample was col-
lected from each patient/donor; in the case of patients with cancer, col-
lection was carried out within 1 hour prior to surgery. Tables S1 and S2 
show demographic and clinical information for the 29 and 5 donors, 
respectively. The experimental workflow for tissue and plasma (liquid 
biopsy) processing is summarized in Figure 1a.

Exosomal RNA extraction and sequencing
Plasma exosome extraction was carried out using polymer-assisted 
precipitation (ExoQuick; System Biosciences, Palo Alto, CA), follow-
ing the manufacturer’s instructions. Exosomal pellets were reconsti-
tuted in 200  µl nuclease-free 1X phosphate-buffered saline, pH 7.4. 
Purity of exosomal preparations was not assessed; the presence of 
exosomes was confirmed by transmission electron microscopy using 

a Tecnai 12 Biotwin microscope (FEI Ltd., Cambridge, UK). Cell-
free RNA (cfRNA) was extracted by MagMax cell-free total nucleic 
acid isolation kit (Thermo Fisher Scientific, Austin, TX), according 
to the manufacturer’s protocol. Reverse transcription was performed 
with 3.5  µl of isolated cfRNA using AmpliSeq cDNA Synthesis for 
Illumina (Cambridge, UK). The cDNA (5 µl) was used in target am-
plification by polymerase chain reaction (16 cycles) using AmpliSeq 
Transcriptome Human Gene Expression Panel and AmpliSeq 
HiFi Mix (Illumina). Libraries were prepared for sequencing using 
AmpliSeq Library PLUS (96 reactions). Amplicon libraries were puri-
fied using Agencourt AMPure XP (Thermo Fisher Scientific) and fur-
ther amplified (7 cycles). Universal primers complementary to adapter 
f low cell binding sites (P5 and P7) were used, and the final libraries 
were purified using Agencourt AMPure XP with size selection to re-
move fragments < 200 bp and > 700 bp. Normalized libraries (2 nM) 
were pooled and diluted (to 400  pM). Libraries were sequenced on 
NovaSeq 6000 platform (Illumina) with 2 × 150 bp paired-end reads 
using NovaSeq 6000 S2 Reagent kit (300 cycles). See Supporting 
Methods for additional details.

Sequencing data analysis was performed using RNA Amplicon App 
2.0.1 (Illumina), alignment used the Burrows Wheeler Aligner and differ-
ential expression analysis used DESeq2.16 Targets (enzymes/transporters) 
and liver-specific markers (used to describe shedding) were selected based 
on predefined criteria (Table 1 and Supporting Methods). The selected 
markers were APOA2, FGB, AHSG, HPX, SERPINC1, F2, CFHR2, 
F9, SPP2, MBL2, A1BG, TF, and C9. Targets included cytochrome 
P450 enzymes (CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5), 
glucuronosyltransferases (UGT1A1, 1A9, 2B4, and 2B7), and transport-
ers (ABCB1, ABCG2, ABCC2, and SLCO1B1). A cutoff of > 3 reads 
per transcript was considered for quantification. Expression levels were 
recorded relative to the total number of reads in each sample as reads per 
million (RPM).

Normalization of RNA expression using liver-specific 
exosomal shedding
Expression levels in plasma exosomes combine variability in liver expres-
sion and variability in shedding from the liver into the bloodstream. To 
offset variability in shedding, a novel shedding factor (SF) was devised 
based on plasma RNA of liver-specific markers (Table 1). SF was calcu-
lated for each sample according to Equation 1, and target levels were nor-
malized to patient-specific shedding using Equation 2.

SFj (in RPM) is the shedding factor for sample j, 
[

cfRNA
]

Markeri,j
 rep-

resents cfRNA concentration (in RPM) of marker i in sample j relative to 
the total number of reads in sample j, and n is the number of markers used 
to construct the SF. 

[

cfRNA
]

Targetk,j
 is cfRNA concentration of target k 

in sample j.

Proteomic analysis of liver samples
Liver tissue (42–379  mg) was mechanically homogenized, and mem-
brane fractions were prepared by differential centrifugation at 10,000 g 
for 20 minutes, followed by 100,000 g for 75 minutes. Protein content 
of homogenates and fractions was measured with the Bradford assay. 
Recovery of reticular and plasma membrane was assessed using cy-
tochrome P450 reductase (Sigma-Aldrich, Poole, UK) and alkaline 
phosphatase (Abcam, Cambridge, UK) assays, respectively. Individual 
samples and a quality control pool (43–50  µg protein) were prepared 

(1)SFj=

n
∑

i= 1

[

cfRNA
]
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(2)Normalized
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cfRNA
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Targetk,j
=
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cfRNA
]

Targetk,j
∕SFj
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for proteomics using filter-aided sample preparation,17,18 with protein 
solubilization by sodium deoxycholate (10% w/v). Stable isotope-la-
belled MetCAT (5 µl) and TransCAT (9 µl)19 were used as QconCAT 
standards for targeted proteomics. Disulfide bonds were reduced using 
100  mM 1,4-dithiothreitol, followed by alkylation with 50  mM iodo-
acetamide. Proteolysis used LysC (2% w/w, 30°C, 3 hours) and trypsin 
(4% w/w, 37°C, 16 hours). Unlabeled peptides, EGVNDNEEGFFSAR 
and GVNDNEEGFFSAR, were added at 38 and 125 fmol, respectively, 
to quantify the QconCAT standards.19,20 Samples were analyzed using 
an UltiMate 3000 rapid separation liquid chromatography system 
(Dionex, Surrey, UK) connected to an Orbitrap Elite mass spectrome-
ter (Thermo Fisher Scientific, Waltham, MA). Chromatography was 
carried out over a 90-minute gradient and eluted peptides were analyzed 
over 350–1,500 mass-to-charge (m/z) range at resolution of 120,000 (at 

m/z 400). Data-dependent acquisition was used to select the top 10 mul-
tiply-charged (+ 2 and + 3) ions for fragmentation by collision-induced 
dissociation, either automatically or a preference list was applied (to se-
lect QconCAT19 peptides).

Analysis and annotation of proteomic data
Proteomic data were processed using MaxQuant 1.6.7.0 (Max Planck 
Institute, Martinsried, Germany). Data were searched against a cus-
tomized database, comprising human UniprotKB database (74,788 
sequences) and two QconCAT sequences. For targeted analysis, data 
acquired with the preference list were searched for heavy and light 
QconCAT peptides. Light-to-heavy intensity ratios were applied with 
QconCAT concentrations to calculate protein levels, as previously de-
scribed.20 For global proteomic analysis, data collected using default 

Figure 1 Multi-omic analysis of matched liver and plasma samples. (a) The experimental workflow started at collection of matched liver and 
blood samples from the same patients. Blood was fractionated to isolate plasma, followed by isolation of exosomes and extraction of cell-free 
RNA (cfRNA), which was analyzed by next generation sequencing (NGS). Tissue was homogenized and processed by differential centrifugation 
to extract membrane fractions, followed by proteolysis of membrane proteins and mass spectrometric analysis. (b) Exosomal pellets extracted 
from plasma by polymer-assisted precipitation were visually inspected and examined by transmission electron microscopy (×13,000). (c) The 
yields of cfRNA (from each sample) and corresponding reverse transcribed cDNA were assessed, which reflected variability between samples. 
(d) Sequencing quality was examined, reflecting high quality scores (Q-scores). (e) For tissue processing, the level of membrane recovery 
(mean ± SE of the mean) was assessed using resident markers of endoplasmic reticulum and plasma membranes. (f) Proteomic analysis by 
mass spectrometry generated peptide and protein data, reflecting consistently high numbers of identified peptides and on average similar 
numbers of proteins (mean ± SD). (g) Protein identification was carried out with a sufficient number of peptides per protein (mean ± SD). 
(h) Quantification of proteins was possible for 84% of identified proteins using global proteomic data (n = 2,143), spanning 5 orders of 
magnitude. Of these, targeted measurement of eight enzymes, four transferases, and four transporters was possible using signature peptide 
data relative to QconCAT standard; the rank order of key target proteins is shown.
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acquisition settings were processed using the total protein approach.21 
Target concentrations were converted to tissue levels by multiplying by 
total protein content per unit tissue mass. Proteins identified by global 
proteomics were annotated for subcellular location (using Uniprot22 
and Gene Ontology)23 and molecular function (using Protein 
Analysis THrough Evolutionary Relationships (PANTHER)24 and 
the Database for Annotation, Visualization, and Integrated Discovery 
(DAVID)).25

In silico trials for dose selection using liquid biopsy
Quantitative multi-omic data were used to establish a quantitative 
link between plasma exosomal and liver tissue expression. To simulate 
the impact of liquid biopsy input on dose selection, drug trials were 
performed using Simcyp 18 release 2 (Sheffield, UK). Three CYP3A 
substrates were evaluated: alprazolam (low hepatic clearance), midaz-
olam (medium clearance), and ibrutinib (high clearance). Compound 
files were selected from the Simcyp library. Key parameters were those 
accessible from patient information or a blood sample in a routine 
clinical trial (Table S11). Three scenarios were simulated as follows 
(Table S12).

1. Uniform dosing: virtual individuals were administered a 
uniform oral dose, as detailed in routine prescribing infor-
mation (0.5  mg alprazolam, 5  mg midazolam, or 140  mg 
ibrutinib).

2. Stratified dosing: the same population was stratified into three 
groups based on their hepatic CYP3A4 content (liquid biopsy 
input). Simulations did not account for intestinal CYP3A4. For 

midazolam and ibrutinib, the top quartile was administered a 
dose twofold higher than the standard dose; the bottom quar-
tile was administered a dose threefold lower. For alprazolam, a 
twofold dose increase for the top quartile and a twofold dose 
reduction for the bottom quartile were made. Dose selection 
for the two quartiles was guided by expression levels and the 
outcome of the uniform dosing simulation. The middle group 
(the remaining 50% of the population) were administered a 
standard dose.

3. Individualized dosing: the same individuals were administered 
a dose based on the ratio of their individual hepatic CYP3A4 
content to the population average to simulate individual liquid 
biopsy input.

Drug exposure was measured as the area under the curve (AUC) of the 
plasma concentration-time profile, and population variability was calcu-
lated as coefficient of variation (CV).

Statistical data analysis
Microsoft Excel 2016, GraphPad Prism 8.3.0 (La Jolla, CA) and R 
3.6.0 were used for statistical analysis. Data were presented as mean 
and SD, when a measure of (interindividual) variability was required, 
or SEM to describe an error in laboratory procedures. CV was used to 
describe variability. Multivariate analyses (hierarchical cluster analysis 
and principal components analysis) were used to assess global differ-
ences in gene expression. Pearson’s correlation (r) was used to assess 
RNA-protein correlations in matched samples, and scatter around a 
linear fit was assessed by linear regression (R2). Differences between 

Table 1 Criteria for selecting liver markers and targets measured in plasma exosomes

Markers Targets

Marker
Tissue speci-
ficity (fold)a Liver expressionb

Detection in 
plasma (%)c Target

Tissue speci-
ficity (fold)a,d

Detection in 
plasma (%)c

RNA-protein corre-
lation in tissuee

APOA2 Liver (1068) ++++ 100 CYP3A4 Liver (45) 97 Yes

FGB Liver (556) ++++ 100 CYP2D6 Liver (7) 83 Yes

AHSG Liver (1903) +++ 100 CYP2C9 Liver (5) 100 Yes

CYP1A2 Liver (31) 97 Yes

HPX Liver (506) +++ 90 CYP2A6 Liver (165) 93 Yes

SERPINC1 Liver (670) +++ 93 CYP2C19 Liver (16) 97 Yes

F2 Liver (1472) +++ 93 CYP2E1 Liver (87) 100 Yes

CYP3A5 Liver, intestine 76 Yes

CFHR2 Liver (4661) +++ 100 UGT1A1 Liver (16) 83 Yes

F9 Liver (2258) +++ 93 UGT1A9 Liver, kidney 48 –f

SPP2 Liver (2145) ++ 79 UGT2B4 Liver (105) 97 –f

MBL2 Liver (1414) ++ 76 UGT2B7 Liver (5) 76 –f

A1BG Liver (180) ++ 90 P-gp Liver, intestine 100 Yes

MRP2 Liver (3) 90 Yes

TF Liver (12) ++ 97 BCRP Liver, intestine 100 Yes

C9 Liver (577) ++ 83 OATP1B1 Liver (618) 93 Yes

Liver-specific markers were used to calculate variability in shedding from the liver to the bloodstream. The markers were liver-specific, highly expressed in liver 
tissue, and consistently detectable in plasma. Targets were key drug-metabolizing enzymes and drug transporters, predominantly expressed in the liver (and 
released into the blood), detectable in plasma, preferably with evidence of correlation between RNA and protein in liver tissue.
 aEvidence from the Human Protein Atlas (HPA)28; the tissue specificity score is defined as fold difference relative to the organ with the second highest 
expression.  bEvidence from the HPA.28 cProportion of plasma samples (n = 29) in which a marker/target was detected.  dTargets are expressed in the liver 
and shedding is predominantly into the bloodstream.  eEvidence of RNA-protein correlation in tissue from in-house and literature data. See Table S10. fLack of 
evidence from previous studies for RNA-protein correlation in tissue.
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patients and controls were tested using unpaired t-test with Welch’s 
correction for dissimilar variance. Effects of demographics on expres-
sion and shedding were assessed using unpaired t-test for differences 
between male and female donors and linear regression for associations 
with age and body mass index. A cutoff P value of 0.05 was used for 
significance (Bonferroni-corrected for multiple iterations). Receiver 
operator characteristic (ROC) analysis was performed for liquid bi-
opsy measurements against tissue levels (used as a reference); the area 
under the ROC curve (AUC) was used to assess the predictive value 
of the test.

RESULTS
Plasma exosomal transcriptome
Plasma cfRNA from 29 patients with cancer and 5 healthy do-
nors was extracted and sequenced (Figure 1a). Exosomes were 
first isolated and examined by electron microscopy (Figure 1b), 
reflecting a size range of 30–100 nm. Exosomal cfRNA was then 
extracted and its quality and yield were assessed. The RNA qual-
ity parameter DV200 was 47%  ±  24% for the patient set (and 
64% ± 9% in healthy controls). DV200 < 15% was recorded fol-
lowing exosomal lysis, confirming the protective role of vesicles 
against RNA degradation. RNA concentration in patient sam-
ples was 1.2 ± 0.8 ng/µL (0.4–3 ng/µL; Figure 1c), translating to 
a yield of 7.3 ± 4.4 ng/mL plasma, compared with 1.8 ± 0.5 ng/
mL from healthy plasma. The cDNA concentration ranged from 
2.1 to 12.8 ng/µL in the patient set (Figure 1c), compared with 
0.6–5.1 ng/µL in controls.

AmpliSeq achieved highly multiplexed targeted sequencing of 
> 20,000 human RefSeq26 genes in a single assay, generating a set 

of reads for each sample (each read is a data string of bases corre-
sponding to each targeted cDNA fragment from each transcript). 
The number of reads mapped to a certain transcript was used as 
quantitative output. In total, 47–137 million reads were recorded 
in plasma from patients compared with 42–96 million in healthy 
plasma. Sequencing quality was excellent, with 97.3% of sequenced 
bases in the patient set (and 93.9% in the healthy set) achieving 
quality scores (Q-scores) of ≥  30; i.e., ≥  99.9% base call accu-
racy (Figure 1d). The number of transcripts measured in patient 
samples ranged from 18,128 to 21,334, compared with 17,869–
19,816 in the healthy set. Technical variability in healthy samples 
(Figure S1) reflected high global reproducibility across replicates. 
Comparison of the expression of > 20,000 genes between healthy 
and patient plasma by multivariate analysis showed clear distinc-
tion between the two sets (Figure S2). A total of 171 and 362 
gene transcripts of drug/xenobiotic-metabolizing enzymes and 
transporters (Tables S3 and S4), respectively, were quantifiable 
in plasma. Of these, 89 enzymes and 71 transporters were liver 
enriched.

Variability in liver-to-blood exosomal shedding
Liver-specific markers and targets (enzymes/transporters) 
are constitutively expressed in the liver and released within 
exosomes at variable rates in different patients (Figure 2a). 
Variability in blood measurements combines variability in tissue 
expression and variability in shedding. Shedding was described 
using a novel parameter (SF) constructed using 13 liver-specific 

Figure 2 Exosomal RNA shedding from the liver to the bloodstream. (a) Markers specific to the liver and targets are expressed in the liver 
and released in exosomes at different rates in different patients; variability in measured targets in the bloodstream comprises variability in 
expression and variability in shedding. (b) Measurement of shedding variability using 13 markers (Table1) revealed higher and more variable 
shedding from the liver in patients with cancer compared with healthy controls; P = 0.01. The whiskers represent the range, boxes represent 
the 25th and 75th centiles, and the lines are the medians. (c) Pharmacologically relevant target genes showed evidence of expression and 
shedding into the bloodstream (533 transcripts) and evidence of expression as protein in liver tissue (147 proteins). (d) Correlation between 
liver-enriched proteins and their corresponding RNA transcripts in plasma (97 targets) improved by normalization of RNA levels for shedding. 
RPM, reads per million.
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markers27 measured in plasma exosomes (Table S5). SF vari-
ability and reproducibility across two technological platforms 
(Ion Proton by Thermo and NovaSeq by Illumina) are shown 
in Figure S3. SF levels in the patient and healthy sets was 
22.16 ± 18.57 RPM (CV 84%) and 0.83 ± 0.26 RPM (CV 32%), 
respectively (Figure 2b). This ref lects shedding 26-fold higher 
and 2.6-fold more variable in patients with cancer relative to 
healthy controls (P  =  0.01). There were no significant differ-
ences in shedding between male and female donors (P > 0.05) 
and no significant association with age or body mass index 
(P > 0.05).

Hepatic membrane proteome
Membrane fractions were extracted from liver samples (matching 
the cancer plasma set). Membrane protein content per gram liver 
was 10.16  ±  5.07  mg/g. Recovery of reticular membrane (rele-
vant to enzymes) and plasma membrane (relevant to transporters) 
was 70.2% ± 7.7% and 54.5% ± 28.1%, respectively (Figure 1e). 
Global proteomic analysis of membrane fractions identified a total 
of 12,331 peptides (8,417  ±  503 per sample) and 2,562 proteins 
(1,578 ± 91 per sample), with an average of 5 peptides per protein 
(Figure 1f,g). Of the identified proteins, 2,143 proteins, spanning 
5 orders of magnitude, were quantified (Figure 1h). Reliable quan-
tification of a protein was considered when (a) there was evidence 
of its expression in liver (Human Protein Atlas),28 (b) it was iden-
tified by at least one unique or razor peptide, and (c) it was quan-
tified in >  10% of individual and quality control samples. More 
than 95% of the quantified proteins were mapped to a membrane 
compartment, constituting 91% of total membrane protein mass 
(Figure S4a,b). Quantified proteins were predominantly reticu-
lar, nuclear, mitochondrial, or cell membrane proteins; there was 
small contamination from cytoskeletal proteins (13% by mass).

Functional annotation revealed that 588 quantified proteins 
had enzymatic activity and 377 played a role in transport. These 
included 88 enzymes and 59 transporters involved in pharma-
cology. Enzymes included 22 cytochrome P450 proteins and 
11 uridine-5’-diphospho-glucuronosyltransferases, and trans-
porters included 14 ATP-binding cassette transporters and 45 
solute carriers (Figure S4c). Targeted analysis focused on key 
enzymes and transporters quantifiable by in-house QconCAT 
standards and the list was refined using predefined criteria 
(Table 1). Abundance of the selected targets (12 enzymes and 
4 transporters) was measured in enriched membrane fractions 
(Table S7) and scaled up to specific content in tissue (Table S8). 
Overall, the abundance values were in agreement with recent 
meta-analyses.29–31

Correlation between plasma transcript and hepatic protein 
levels
Expression of pharmacologically relevant genes was demon-
strated in plasma at the RNA level (533 genes) and in liver tissue 
at the protein level (147 genes; Figure 2c). Correlations between 
plasma RNA and tissue protein measurements were improved for 
liver-enriched genes (97 genes) upon normalization to liver shed-
ding by at least + 0.2 in Pearson’s coefficient (r) (Figure 2d). As 
a proof of principle, RNA (normalized for shedding) and protein 

expression data for 12 key drug-metabolizing enzymes and 4 
drug transporters are summarized in Figure 3a,b. Individual 
values are listed in Tables S6 and S8, respectively. Significant 
relationships were demonstrated for these genes in 29 matched 
samples (Figure 3c). Notably, correlations were strongest and 
most significant for cytochrome P450 enzymes (r  =  0.70–0.87, 
P  <  0.001, R2  =  0.50–0.75), compared with glucuronosyltrans-
ferases (r = 0.60–0.80, P < 0.05, R2 = 0.36–0.65) and transport-
ers (r = 0.66–0.74, P < 0.01, R2 = 0.43–0.54; Table S9). These 
correlations are a dramatic improvement over correlations prior 
to normalization (cytochrome P450 enzymes (R2 = 0.00–0.53), 
glucuronosyltransferases (R2  =  0.00–0.52), and transporters 
(R2 = 0.04–0.21)).

Liquid biopsy measurement as a test for patient 
stratification
To assess the utility of the developed test in patient stratifica-
tion, ROC analysis was applied to data for six P450 enzymes 
(CYP3A4, 2D6, 2C9, 1A2, 2A6, and 2C19), four glucurono-
syltransferases (UGT1A1, 1A9, 2B4, and 2B7), and four 
transporters (P-gp, BCRP, MRP2, and OATP1B1) in order to 
identify the top and bottom quartiles of the patient set. The 
two quartiles ref lect extremes of drug exposure; the top quar-
tile represents patients susceptible to lack of efficacy, and the 
bottom quartile represents patients most likely to experience 
toxicity. The test was effective as a predictor of the bottom 
quartile (AUC ≥ 0.64; Figure 4a) and performed even better 
with the top quartile (AUC  ≥  0.77; Figure 4b). Predictions 
for P450 enzymes were better than predictions for transferases 
and transporters. Identification of the extremes in population 
distribution of drug exposure can inform dose adjustment, 
whereas the middle group usually require a standard dose of the 
drug (Figure 4c).

Simulated drug exposure with liquid biopsy guided dose 
adjustment
Exposure (AUC of the plasma concentration-time profile) to 
three CYP3A substrates (alprazolam, midazolam, and ibruti-
nib) was simulated with dosing adjusted based on either strat-
ified (Figure 5a) or individualized (Figure 5b) regimens. The 
outcome was compared with a uniform oral dose. Simulations 
demonstrated similar average drug exposure with significant re-
duction in variability with stratified and individualized dosing 
(Figure 5c). Stratification led to 1.7-fold reduction in variability 
in all cases, whereas individualized dosing resulted in further 
reduction from 50% to 25% (2-fold), 84% to 42% (2- fold), and 
76% to 31% (2.5-fold) for alprazolam, midazolam, and ibrutinib, 
respectively (Figure 5d). The reduced variability in exposure re-
flects improved precision of oral dose selection.

DISCUSSION
In this study, we present data in support of a novel pharmacologi-
cal test for characterizing hepatic elimination capacity in individ-
ual patients by means of a “liquid biopsy.” The test is a minimally 
invasive method for the identification of patients susceptible to 
toxicity due to overdosing and those prone to ineffective therapy 
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Figure 3 Linking plasma measurements to liver content of enzymes and transporters. (a) Plasma RNA levels were normalized to individual 
shedding. (b) Protein levels were measured in unit tissue mass. Levels are presented as means ± SD. (c) Correlation matrix showing 
a quantitative link between the levels in plasma and liver tissue. Pearson’s correlation coefficients (r) were in the ranges 0.70–0.87 
(P < 0.001), 0.60–0.80 (P < 0.05), and 0.66–0.74 (P < 0.01) for cytochrome P450 enzymes (blue symbols), transferases (green symbols), and 
transporters (red symbols), respectively. RNA and protein data represent measurements above the limit of quantification. Plasma levels are 
expressed in reads per million (RPM) for transcripts measured by sequencing, and tissue levels are expressed in femtomoles of target protein 
per microgram liver tissue measured by targeted proteomics.
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due to underdosing. Because the test is not drug-specific, it has the 
advantage over traditional therapeutic drug monitoring of being 
applicable to all drug substrates of the quantified enzymes and 
transporters. Clinical use of liquid biopsy has so far focused on 
diagnostics, especially in oncology,32 and we propose that the de-
veloped test will address the gap in therapeutic applications, which 
have only recently started to be explored.33,34

Implementation of the assay relies on quantitative character-
ization of clinically relevant enzymes and transporters in plasma 
exosomes. Exosomes are small extracellular vesicles (30–100  nm 
in size),35 released by tissues into the bloodstream at different 
rates, depending on physiological conditions, disease states, and 

medication. Exosomes enclose proteins and nucleic acids sam-
pled from the intracellular biomolecular pool.33,36 We focused on 
enzymes and transporters that play a key role in determining the 
level of administered drug that reaches the systemic circulation. 
Remarkably, cfRNA screening revealed, for the first time, the 
presence of a wide range of pharmacologically relevant enzymes 
(171 transcripts) and transporters (362 transcripts) in plasma exo-
somes, which were readily quantifiable. Of these, 160 targets were 
liver enriched and may therefore be used to monitor liver activity. 
Proteomic evidence showed that 28% (i.e., 147) of the 533 phar-
macologically relevant genes quantified as transcripts in plasma 
were detectable as corresponding proteins in liver tissue. These 

Figure 4 The use of liquid biopsy test for patient stratification. (a) Receiver operator characteristic (ROC) analysis of the liquid biopsy test 
for predicting the bottom quartile of the patient set. (b) ROC analysis for the identification of the top quartile. The test was applied with 
data for six hepatic P450 enzymes (CYP3A4, 2D6, 2C9, 1A2, 2A6, and 2C19), four glucuronosyltransferases (UGT1A1, 1A9, 2B4, and 2B7), 
three efflux transporters (P-gp, BCRP, and MRP2), and one uptake transporter (OATP1B1). TPR and FPR represent true and false positive 
rates, respectively, the dashed diagonal line represents random chance, and area under the curve (AUC) values are shown in parentheses. 
Predictions of the bottom quartile were accurate (AUC ≥ 0.64) and those of the top quartile were very accurate (AUC ≥ 0.77). Predictions 
for P450 enzymes were better than predictions for transferases and transporters. (c) Stratification of patients to identify slow metabolizers 
(bottom quartile) and fast metabolizers (top quartile) in relation to key drug-metabolizing enzymes. The top quartile is likely to receive 
ineffective dosing whereas the bottom quartile is likely to experience toxicity. The prediction of patient strata facilitates decision making in 
relation to dose adjustment and choice of drug.
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genes are generally expressed at low levels, and transcriptomic anal-
ysis has the advantage of amplification of cDNA, allowing better 
detection.

A quantitative link between liquid biopsy and tissue measure-
ments was required for the test. Variability in plasma transcript 
levels comprises variability in liver expression and variability 
in shedding from the liver into the bloodstream. Liver-specific 
shedding was described quantitatively by a novel parameter 
(SF), which comprises quantitative RNA input for 13 mark-
ers. Liver shedding was found to be higher and more variable 
in patients with liver cancer than healthy controls. A similar 
trend of elevated levels of circulating exosomes was previously 
demonstrated for ovarian,37 oesophageal,38 colorectal,39 and 
hematological40 cancer. Normalization for shedding improved 
correlation between liver protein and plasma transcript levels 
for liver-enriched genes, leading to strong and significant cor-
relations for P450 enzymes and moderate to strong correlations 

for transferases and transporters. Differences in shedding be-
tween the healthy and cancer sets indicate that implementation 
of shedding normalization is likely to be population and dis-
ease-specific. Previous studies reported the presence of a limited 
number of P450 enzymes (12 targets) and glucuronosyltransfer-
ases (10 targets) in exosomes isolated from human plasma33,41; 
quantitative analysis demonstrated correlation for only one en-
zyme (CYP3A4) against specific liver activity (midazolam).33 
Attempts to identify enzymes in urine exosomes have not been 
successful42 and no previous work reported measurement of 
transporters in a liquid biopsy.

Correlation between RNA and protein in tissue has been in-
vestigated previously, often with conflicting outcomes.43–45 RNA 
measurements normally capture a “snapshot” of the dynamic lev-
els of transcripts in cells, which can go up or down depending on 
their specific turnover. More rigorous studies have shown better 
correlations than previously thought, especially for transcripts 

Figure 5 In silico drug trials with liquid biopsy technology for alprazolam, midazolam, and ibrutinib following uniform, stratified, or 
individualized dosing. (a) Stratified dosing relied on a dose ratio for each of three groups of patients (top quartile, bottom quartile, and middle 
50%) relative to a uniform dose of alprazolam (0.5 mg), midazolam (5 mg), and ibrutinib (140 mg). (b) Individualized dosing was performed 
based on individual dosage adjustment using patient-specific ratios relative to the defined uniform dose. The dose adjustment ratios in all 
cases were informed by liquid biopsy measurements, and the dose was calculated as the selected ratio multiplied by the uniform dose. (c) 
Simulation of the level of drug exposure (area under the curve (AUC) of the plasma concentration-time profile) after an oral dose of the three 
drugs; similar levels of the drug reached the systemic circulation over time in the three dosing scenarios. The whiskers represent the range 
of AUC, boxes represent the 25th and 75th centiles, the lines are the medians, and the + signs are the means. (d) Reduction in variability in 
exposure following stratified and individualized dosing informed by liquid biopsy was observed in all cases.
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and proteins with relatively slow turnover (longer half-lives).43,46 
The strong correlations shown in the present study could be due 
to the continuous shedding of RNA within exosomes into the 
bloodstream, where the levels in the pool (plasma) do not fluctu-
ate as much as tissue levels. This theory is consistent with an ex-
pected “damping effect,” resulting in measurement of steady-state 
(time-averaged) RNA levels in plasma.

Recent reports15,34 outlined the necessary requirements and ex-
pected trajectory to the application of liquid biopsy techniques in 
drug development and clinical practice. Proposed applications in-
clude patient stratification to achieve more precise dosing and im-
proved characterization of volunteers prior to enrollment in clinical 
trials. The requirement for changing a dosage regimen in these ap-
plications is highlighted in cases of adverse drug reactions or when a 
recommended dose is ineffective. Toxicity cases are associated with 
high levels of exposure to the drug, whereas cases of ineffective dos-
ing are characterized by low exposure. We assessed the developed 
test as a tool to identify patients at the extremes of drug exposure 
(top and bottom quartiles). Accurate predictions were achieved 
for both groups, especially in the case of P450 enzymes. Taking the 
main drug-metabolizing enzyme, CYP3A4, as an example, the test 
identified the top quartile at 99% confidence and the bottom quar-
tile at 84% confidence. Simulated trials of three CYP3A substrates 
(alprazolam, midazolam, and ibrutinib) demonstrated reduced 
variability in exposure (by 2-fold–2.5-fold) following oral dose ad-
justment using liquid biopsy input. The reduced variability in pre-
dicted drug exposure suggests that a more precise dose selection can 
be made in advance of initiating therapy using such technology.

In conclusion, this study demonstrates quantitative liquid biopsy 
projections based on plasma measurements to determine liver con-
tent of key enzymes and transporters. Considering the importance of 
intestinal and renal elimination, extension of this work to the attri-
butes of the gut and kidneys is a necessary step for successful applica-
tion in the clinical setting. Integration of this technique with specific 
pharmacokinetic models should facilitate efforts toward delivering 
precise and effective dosage regimens (precision dosing), as an es-
sential element of precision medicine. Limitations of the developed 
technology include its high cost (which is expected to go down as 
technology improves and becomes more wide spread), the require-
ment for specialist expertise in exosomal isolation and multi-omics 
(which we envisage might become more automated), and most im-
portantly the need for verification of the quantitative link between 
liquid biopsy and tissue in wider patient groups and repeated sam-
ples from the same individuals (which will be accumulated over time 
as other investigators apply the technique in their own settings).

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
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